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Rapidity dependence of proton cumulants and correlation functions

Adam Bzdak1,* and Volker Koch2,†
1AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland

2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
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The dependence of multiproton correlation functions and cumulants on the acceptance in rapidity and transverse
momentum is studied. We find that the preliminary data of various cumulant ratios are consistent, within errors,
with rapidity and transverse momentum-independent correlation functions. However, rapidity correlations which
moderately increase with rapidity separation between protons are slightly favored. We propose to further explore
the rapidity dependence of multiparticle correlation functions by measuring the dependence of the integrated
reduced correlation functions as a function of the size of the rapidity window.
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I. INTRODUCTION

One of the central goals in strong interaction research is to
explore the phase diagram of QCD. Of particular interest is
the search for a possible first-order phase coexistence region
and its associated critical point. A significant effort in this
search, experimentally as well as theoretically, is concentrating
on the measurements and calculations of correlations and
cumulants of conserved charges. A particular emphasis has
been put on the cumulants of the baryon number [1–6], see also
Refs. [7–20] (see, e.g., Ref. [21] for an overview). Interpreting
these higher-order cumulants and their measurements, how-
ever, is not a straightforward exercise as discussed, e.g., in
Refs. [22–35]. Also, different, although related, ideas, based
on an intermittency analysis in the transverse momentum phase
space have been explored [36–38].

Recently, it has been pointed out [39,40] (see also
Refs. [20,41]) that it may be more instructive to study
(integrated) multiparticle correlations instead of cumulants.
In the limit when antiparticles can be ignored, which is the
case for antiprotons at low beam energies, the integrated
multiparticle correlations are linear combinations of the
various cumulants and thus can be extracted easily from the
measured cumulants. This has been performed on the basis
of preliminary data on proton cumulants from the STAR
Collaboration [42]. It was found that the systems created at low
beam energies (7.7–11.5 GeV) exhibit sizable three-proton
and strong four-proton correlations [40,43]. Indeed, as pointed
out in Ref. [44] in order to reproduce the observed magnitude
of these correlations one has, for example, to assume a strong
presence of eight-nucleon (or four-proton) clusters in the
system. In addition to the sheer magnitude of the correlations,
the centrality and rapidity dependence of these correlations
give additional insight into properties of the systems created
in these collisions [40].

In this paper we will explore the rapidity and to some
extent transverse momentum dependence of multiparticle
correlations in more detail. One of our motivations is a
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recent preliminary observation by the STAR Collaboration
[45,46] regarding the rapidity dependence of the two-proton
correlation function. Within the rapidity window |y| < 0.8,
the STAR Collaboration finds that across all Brookhaven
National Laboratory’s Relativistic Heavy Ion Collider energies
the two-proton reduced correlation function (see the definition
in Sec. II) in central Au + Au collisions is increasing with the
rapidity separation y1 − y2 between the two protons. The shape
of the correlation function can be approximately described by

c2(y1 − y2) = c0
2 + γ2(y1 − y2)2, γ2 > 0, (1)

where c0
2 is the value at y1 − y2 = 0 and γ2 is a positive number

with γ2 ∼ 2 × 10−2 at
√

s = 7.7 GeV [45].1 Taking such a
correlation at face value, one would conclude that protons
prefer to be separated in rapidity, or, in other words, they seem
to repel each other. The shape of the correlation function is
roughly energy independent, which is rather surprising since
protons at, say, 7.7 GeV originate almost exclusively from the
target and projectile nuclei whereas at 200 GeV the protons at
midrapidity mostly are produced.

The apparent anticorrelation between two protons was first
observed in e+e− collisions at

√
s = 29 GeV [48]. Recently an

analogous observation was made by the ALICE Collaboration
in the context of the two-baryon azimuthal correlations [49].
This measurement also found similar anticorrelations between
protons and λ’s, suggesting that the observed effects are not due
to the Pauli exclusion principle or electromagnetic interactions.
To our knowledge, the origin of this effect remains an open
question, which is important to resolve. Formation of clusters,
as suggested in Ref. [44] and as expected close to a critical
point and a phase transition, would naively lead to attractive
correlations in rapidity (i.e., protons would prefer to have
similar rapidity) and not anticorrelations. However, we should
keep in mind that these correlations are in rapidity and not

1At the recent Critical Point and Onset of Deconfinement Confer-
ence, the STAR Collaboration reported [47] that the rapidity depen-
dence of the two-proton correlation function depends considerably
on the method employed to subtract the uncorrelated single-particle
contribution from the data. Thus the value for γ2 quoted here may
still change and should be taken only as a rough guidance.

2469-9985/2017/96(5)/054905(8) 054905-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.054905


ADAM BZDAK AND VOLKER KOCH PHYSICAL REVIEW C 96, 054905 (2017)

in configuration space. Also, one should note that this effect,
which, so far, is only observed for two-particle correlations,
may not be inconsistent with the negative value for the inte-
grated two-particle correlations extracted from the cumulant
measurements [40,43]. In general, the sign of an integrated
multiparticle correlation also is driven by a pedestal. For ex-
ample, in the case of two protons, c0

2 in Eq. (1) may depend on
the fluctuations of the volume or rather the number of wounded
nucleons [23,31,44,50] and is not necessarily related to a
possible repulsion or attraction in rapidity between protons.

Clearly the rapidity dependence of the proton correlations
need to be studied to gain further insight into the aforemen-
tioned sizable three-proton and strong four-proton correlations
observed at low energies. It is the purpose of this paper to start
exploring this issue. To this end we study the dependence
of the multiproton correlation functions on rapidity and, to
some extent, on the transverse momentum. We show that the
preliminary STAR Collaboration data [42] are consistent with
constant multiproton correlation functions and slightly favor
multiproton anticorrelations in rapidity. We also demonstrate
that these correlations can be constrained further by measuring
integrated reduced or normalized correlation functions as a
function of the rapidity window �y.

This paper is organized as follows. In the next section we
introduce the notation and discuss the behavior of cumulants
and correlation functions in the limits of small and large accep-
tances. Next we analyze the preliminary STAR Collaboration
data and extract some trends about the rapidity dependence
of three-proton and four-proton correlations. We also will
propose a means to extract more detailed information about
the multiparticle correlations. In the last section we conclude
with a discussion of the essential results.

II. NOTATION AND COMMENTS

In this paper we focus on protons only, and in the following
we denote the proton number by N and its deviation from
the mean by δN = N − 〈N〉. Here 〈N〉 is the mean number
of protons at a given centrality. The cumulants of the proton
distribution function as measured by the STAR Collaboration
are then given by

K1 ≡ 〈N〉; K2 ≡ 〈(δN)2〉; K3 ≡ 〈(δN )3〉;
K4 ≡ 〈(δN )4〉 − 3〈(δN)2〉2. (2)

As already eluded to in the Introduction, the cumulants can
be expressed in terms of the multiparticle integrated correlation
functions [40], which also are known as factorial cumulants
[39],

K2 = 〈N〉 + C2, (3)

K3 = 〈N〉 + 3C2 + C3, (4)

K4 = 〈N〉 + 7C2 + 6C3 + C4, (5)

where

C2 =
∫

dy1dy2C2(y1,y2)

=
∫

dy1dy2[ρ2(y1,y2) − ρ(y1)ρ(y2)], (6)

and similar for higher-order correlation functions. See, e.g.,
Ref. [51] for explicit definitions of the correlation functions
up to the sixth order. In Eq. (6) C2(y1,y2) is the two-particle
rapidity correlation function, ρ2(y1,y2) is the two-particle
rapidity density, and ρ(y) is the single-particle rapidity
distribution. The generalization of Eqs. (3)–(5) to two species
of particles can be found in the Appendix of Ref. [40]. Here
and in the following yi denotes rapidity or, in general, a set of
variables under consideration (yi,pt,i ,ϕi).

It is a convenient and common practice to define the reduced
correlation function,

cn(y1, . . . ,yn) = Cn(y1, . . . ,yn)

ρ(y1) · · · ρ(yn)
. (7)

The integral of the reduced correlation function over some
given acceptance range, we subsequently will call, for the lack
of a better term, “coupling,”

cn = Cn

〈N〉n =
∫

ρ(y1) · · · ρ(yn)cn(y1, . . . ,yn)dy1 · · · dyn∫
ρ(y1) · · · ρ(yn)dy1 · · · dyn

.

(8)

The cumulants Kn then may be expressed in terms of the
couplings cn,

K2 = 〈N〉 + 〈N〉2c2, (9)

K3 = 〈N〉 + 3〈N〉2c2 + 〈N〉3c3, (10)

K4 = 〈N〉 + 7〈N〉2c2 + 6〈N〉3c3 + 〈N〉4c4. (11)

Of course, mathematically, the cumulants K1 =
〈N〉, K2, K3, and K4 carry exactly the same information as
[C2,C3,C4] or [c2,c3,c4]. However, as already discussed in
Ref. [40], studying cumulants may not be the best way to
extract information about the dynamics of the system since:
(i) Cumulants mix the correlation functions of different orders,
and (ii) they might be dominated by a trivial term 〈N〉 even in
the presence of interesting dynamics.

One such example where the trivial term 〈N〉 dominates
and thus hides the interesting physics is the limit of small
acceptance as we will discuss next.

A. Effective Poisson limit

Before we discuss the rapidity and transverse momentum
dependence of the various cumulants and correlations, let us
briefly remind ourselves what happens if one considers the
limit of small or vanishing acceptance. Here, we will restrict
ourselves to correlations in rapidity, however, our arguments
will be general and apply to any variables. Suppose that
particles are measured in a rapidity interval y0 � y � y0 + �y
and that �y → 0. Let us first consider two-particle correla-
tions. For sufficiently small �y any reasonable correlation
function c2(y1,y2) may be approximated by a constant.2 As

2For the extreme case of c2(y1,y2) ∼ δ(y1 − y2), c2, given by
Eq. (8), depends on the acceptance window even for very small
rapidity intervals, and our argument does not apply. However, a
Dirac-δ correlation function is of no interest in any practical situation.
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a consequence, for sufficiently small �y, the coupling c2 is
independent of �y as can be seen from Eq. (8). In other words,
suppose that c2(y1,y2) � c0

2 for very small �y, then

c2 =
∫
�y

ρ(y1)ρ(y2)c2(y1,y2)dy1dy2∫
�y

ρ(y1)ρ(y2)dy1dy2
� c0

2. (12)

We emphasize that c0
2 may assume any value. However,

whatever the value of c0
2, in the limit of �y → 0, we have

〈N〉 → 0 and K2 � 〈N〉 [see Eq. (9)]. Exactly the same
argument holds for any Kn, and we obtain Kn � 〈N〉 and
consequently all cumulant ratios equal to unity Kn/Km � 1.

Therefore, even in the presence of sizable correlations, their
effects on the cumulants are suppressed for small acceptance.
Actually, as can be seen from Eqs. (9)–(11), it is the number
of particles which determines if the cumulants are dominated
by 〈N〉 and, thus, their ratios are close to unity. For example, if
〈N〉4c4 	 〈N〉, the fourth-order cumulant K4 is practically not
sensitive to four-proton correlations even if c4 is different from
zero and may carry some interesting information. Therefore,
even for large acceptance, the cumulants are close to the
Poisson limit if one is dealing with rare particles. This
may very well be the reason that for low energies the
STAR Collaboration observes a cumulant ratio of K4/K2 � 1
for antiprotons and it would be interesting to measure the
couplings cn for antiprotons in order to see if antiprotons
exhibit the same correlations as protons at low energies.

Clearly measuring cumulants and looking for the deviation
from the Poisson limit is not the most optimal way to extract
possible nontrivial correlations resulting from criticality, etc.
Instead, one either should directly measure the differential
multiparticle correlation [Eq. (7)] or, at the very least,
extract the couplings cn Eq. (8). Their dependence on the
acceptance does reflect a change in physics and is not simply
a consequence of a change in the number of particles.3

After having investigated the case of small acceptance let
us next turn to the opposite limit of (nearly) full acceptance.

B. Full acceptance

Let us next study what happens in the situation when all
baryons, including the spectators, are detected. In this case
(again, we consider low energies and neglect antibaryons) N =
〈N〉 = B, where B is the total baryon number of the entire
system. Therefore, δN = 0 and obviously Kn = 0 for n � 2.
Using Eqs. (3)–(5) and (9)–(11) we obtain

C2 = −B, C3 = 2B, C4 = −6B, (13)

and

c2 = − 1

B
, c3 = 2

B2
, c4 = − 6

B3
. (14)

We note that this is a general result and it is insensitive to the
presence of any dynamics other than global baryon number
conservation.

3An additional advantage of the couplings is that they are indepen-
dent of the efficiency of the detector as long as the efficiency follows
a binomial distribution and is phase-space independent [24,30,41].

Finally let us note that K3/K2 → −1 and K4/K2 → 1
when we approach the limit of full acceptance. To see this
let us consider a region in phase space, denoted by (a), and
the remaining phase space, or complement, which we denote
by (b). Since the baryon number is conserved, having N(a)

baryons in region (a) implies N(b) = B − N(a) baryons in the
complement (b). Since δB = 0 we have

δN(b) = δ(B − N(a)) = −δN(a), (15)

and consequently,

Kn,(a) = Kn,(b), n = 2,4,6, . . . ,

Kn,(a) = −Kn,(b), n = 3,5,7, . . . . (16)

Here Kn,(a) is the cumulant measured in region (a), and Kn,(b)

is the cumulant in a remaining part of the full phase-space (b).
This is a rather nontrivial and general consequence of baryon
conservation. A more rigorous derivation is presented in the
Appendix.

In the previous subsection we argued that for very small
acceptance the cumulant ratio goes to 1 and thus the cumulant
ratio for the full acceptance goes to −1 for K3/K2 and to 1 for
K4/K2. The integrated correlation functions and the couplings,
on the other hand, do not show such a symmetry between a
given region of phase space and its compliment. This is shown
in detail in the Appendix but can already be inferred from
the fact that in the limit of full acceptance the couplings are
determined entirely by the total baryon number B. In the limit
of vanishing acceptance, however, other physics also affects
the value of the couplings as discussed in Sec. II A.

Having discussed the limits of small and full acceptances
we now turn to the rapidity dependence of the cumulants and
correlation functions.

III. RESULTS

In this section we discuss in detail the rapidity and, to some
extent, the transverse momentum dependence of multiproton
cumulants and correlation functions. First, we will explore
the limit of rapidity and transverse momentum-independent
correlations. Next we will discuss to which extent the present
preliminary STAR Collaboration data allow us to set limits on
the rapidity dependence of the underlying correlations.

A. Constant correlation

Let us start with the simplest assumption, namely, that the
reduced correlation function does not depend on rapidity and
transverse momentum, i.e.,

cn(y1,pt1, . . . ,yn,ptn) = const = c0
n. (17)

This rather extreme assumption, however, is, as we will show
below, consistent with the preliminary STAR Collaboration
data at 7.7 GeV (see also Ref. [40]). In addition, in this case
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FIG. 1. The cumulant ratio K4/K2 in central 0–5% Au +
Au collisions at

√
s = 7.7 GeV as a function of the number of

measured protons 〈N〉 for different acceptance windows in rapidity
and transverse momentum (in units of GeV). For all data points
pt > 0.4 GeV. The black solid line represents a prediction based
on a constant correlation function, see Eq. (17). The shaded band is
driven mostly by the large experimental uncertainty of K4. Based on
the preliminary STAR Collaboration data [42].

the couplings cn do not depend on rapidity and transverse
momentum either as can be seen from Eq. (8),

cn = c0
n. (18)

The multiparticle integrated correlation functions Cn =
〈N〉ncn and cumulants Kn, in turn, depend on the acceptance
only through their dependence on the number of protons 〈N〉,
see Eqs. (9)–(11). Therefore, in Fig. 1 we plot K4/K2 as
measured by the STAR Collaboration as a function of 〈N〉
for different rapidity and transverse momentum intervals.

The black solid line in Fig. 1 represents a prediction
based on a constant correlation function. In this calculation
we have three unknown parameters c0

2, c0
3, and c0

4. Since
these numbers do not depend on acceptance, we determine
them from the preliminary data for |y| < 0.5 (�y = 1) and
0.4 < pt < 2 GeV, that is, from the maximal acceptance
currently available. Here we use Eqs. (9)–(11) and the values
for 〈N〉, K2, K3, and K4 shown in Ref. [42].4 To determine
〈N〉 at a given acceptance region we assume the single-proton
rapidity distribution to be flat as a function of rapidity, i.e.,
〈N〉 = 〈N�y=1〉�y, and, for the transverse momentum single-
proton distribution, we take ρ(pt ) ∼ pt exp(−mt/T ) with
T = 0.27 GeV and mt = (m2 + p2

t )1/2 with m = 0.94 GeV.
Both these assumptions are well supported by experimental
data [52,53]. Having c0

n, we can predict the cumulants
or the correlation functions for any acceptance charac-

4We determine c0
n from the proton cumulants but compare to y and

pt dependences of the net-proton cumulants, which are the only data
currently available. Although at 7.7 GeV the number of antiprotons is
practically negligible, it results in a slight disagreement of the black
solid line with the blue star in Fig. 1.

terized by 〈N〉 whether in transverse momentum or in
rapidity.5

Interestingly we find that, except for one point at |y| < 0.5
and 0.4 < pt < 1.2 GeV, all the points follow within the
admittedly large experimental error bars one universal curve
consistent with a constant correlation function. The fact that the
rapidity dependence of the cumulant ratio K4/K2 is consistent
with long-range rapidity correlations already has been found
in Ref. [40]. That the transverse momentum dependence is
also consistent with long-range correlations is new. If correct,
it would, for example, imply that the cumulant ratio K4/K2

has roughly the same value (close to unity) for a transverse
momentum range of 0.8 GeV < pt < 2 GeV as the value
for the range of 0.4 GeV < pt < 0.8 GeV since, in both pt

windows, 〈N〉 is approximately the same. The result for the
pt range of 0.4 GeV < pt < 0.8 GeV has been published by
the STAR Collaboration in Ref. [5].

Of course, the error bars in the preliminary STAR Col-
laboration data are rather sizable and, therefore, a mild
dependence of the correlation function on rapidity (and
transverse momentum) cannot be ruled out. In addition, as
already mentioned in the Introduction, the preliminary, explicit
measurement of the two-proton correlation function [45,46]
does exhibit an increase with increasing rapidity difference of
a proton pair y1 − y2. To explore this further we next will allow
for some mild rapidity dependence of the correlation function.

B. Rapidity-dependent correlation

In the previous subsection we demonstrated that the STAR
Collaboration data for K4/K2 at 7.7 GeV are consistent with
a constant multiproton correlation function. Here we study
how sensitive the cumulant ratios and correlations are to a
certain (weak) rapidity dependence. To this end we consider
the leading correction to a constant correlation function, which
should be even in yi − yk . Thus we explore the following
Ansätze for the reduced correlation functions,

c2(y1,y2) = c0
2 + γ2(y1 − y2)2,

c3(y1,y2,y3) = c0
3 + γ3

1
3 [(y1 − y2)2 + (y1 − y3)2

+ (y2 − y3)2],

c4(y1,y2,y3,y4) = c0
4 + γ4

1
6 [(y1 − y2)2 + (y1 − y3)2

+ (y1 − y4)2 + (y2 − y3)2

+ (y2 − y4)2 + (y3 − y4)2], (19)

where γn measures the deviation from cn(y1, . . . ,yn) = const.
Note that we have constructed the correlation function such
that positive values of γn result in growing correlations with
rapidity separation between particles. We further note that the
above form for the two-proton reduced correlation function
c2(y1,y2) is supported by the preliminary STAR Collaboration
data [45,46] where γ2 > 0, that is, two protons do not want

5Based on the preliminary STAR Collaboration data for the
cumulants [42] we obtain c0

2 ≈ −1.1 × 10−3, c0
3 ≈ −1.7 × 10−4, and

c0
4 ≈ 7.3 × 10−5.
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to occupy the same rapidity. Our simple formulas for c3

and c4 are not supported by any known data, however, we
believe they should serve as a reasonable representation for the
correlation if the distance in rapidity between protons is not
too long. Within the region of validity of our simple Ansatz,
the coefficients γn have a clear physical interpretation, and
here we will constrain their values or at least their signs. To
this end we will use the preliminary STAR Collabaoration
data for K3/K2 and K4/K2. Although, as already pointed out,
the rapidity dependence of these cumulant ratios is consistent
with constant correlations, we will see that the data allow for
excluding certain values for γn and possibly even determine
their sign.

Taking the above relations and integrating in Eq. (8) over
|yi | < �y/2 we obtain for the couplings,

cn(�y) = Cn

〈N〉n = c0
n + γn

1

6
(�y)2. (20)

The couplings cn(�y), which depend on the region of
acceptance �y (|yi | < �y/2), should not be confused with
the reduced correlation function cn(y1, . . . ,yn), which depends
on the rapidities of the individual particles. As before, for a
given γn the constant term c0

n is extracted from the STAR
Collaboration data at �y = 1 (|y| < 0.5) and 0.4 < pt <
2 GeV. Consequently, c0

n will depend on the choice of γn.
In Fig. 2 we show K3/K2 for different values of γ3 in panel

(a) and γ2 in panel (b). We observe that, as already discussed
before, the preliminary STAR Collaboration data are consistent
with a constant correlation function in rapidity (γ2 = γ3 = 0).
However, a small positive value of γ2 ∼ 10−2 or γ3 ∼ 10−3

would actually improve the agreement slightly. The negative
values for γ2 and γ3, on the other hand, appear to be disfavored
so are large positive values. The same is true for the comparison
with the K4/K2 cumulant ratio, which we show in Fig. 3.
Again, the data are consistent with constant rapidity correlation
functions or perhaps slightly positive values for γ2, γ3, or γ4,
whereas negative values for γn seem to be disfavored.6

Also, the overall picture of slightly “repulsive” corrections
to the constant correlation functions, i.e., γn � 0 is consistent
with the preliminary STAR Collaboration data on the two-
proton rapidity correlation function, which, as discussed in the
Introduction, indicates a peculiar repulsion between protons
in rapidity. As these new STAR Collaboration measurements
only address two-proton correlations, the most direct test
would be a comparison of the rapidity dependence of the
second-order cumulant or integrated correlation. This is shown
in Fig. 4. Unfortunately, at present there are no data available
for rapidity intervals other than �y = 1, and since this point
is used for the determination of the overall constant c0

2, no
constraint can be made at this time. However, we wish to
emphasize the strong dependence compared to the size of the
error bar. Indeed, the increase in the correlation exhibited in
the preliminary STAR Collaboration data for the differential
correlation functions [45,46] is consistent with γ2 ∼ 2 × 10−2,

6Specifically we find the following values for c0
n and γn for the

blue lines in Figs. 2 and 3: γ2 = 10−2, c0
2 ≈ −2.8 × 10−3, γ3 =

10−3, c0
3 ≈ −3.4 × 10−4, and γ4 = 2 × 10−4, c0

4 ≈ 3.9 × 10−5.

FIG. 2. The cumulant ratio K3/K2 in central Au + Au collisions
at

√
s = 7.7 GeV as a function of the rapidity acceptance �y, |y| <

�y/2 for (a) γ2 = 0 and different values of γ3 from Eq. (19) and
(b) γ3 = 0 and different values of γ2. Based on the preliminary STAR
Collaboration data [42].

which would correspond to the red dashed curve in Fig. 4.
Given the size of the error bar at �y = 1, it should be possible
to discriminate from a constant correlation function, shown by
the green solid line. Needless to say, such a measurement of
the rapidity dependence of K2/K1 would be very valuable to
ensure the consistency of the cumulant measurement with that
of the differential correlation function.7

Of course it would be even more valuable to have infor-
mation about the differential three-particle and four-particle
correlation functions. Therefore, we propose, as a first step,
to measure the rapidity dependence of the couplings cn(�y).
This will allow for a direct determination of the coefficients
γn as we demonstrate in Fig. 5 where we plot cn(�y)/c0

n − 1
for γ2 = 10−2, γ3 = 10−3, and γ4 = 2 × 10−4. We note that
cn(�y) is rather sensitive to γn.

7We note that the preliminary measurements of c2(y1,y2) and Kn

use different centrality selections, which do affect the values of c0
n

and possibly γn. Therefore, a direct comparison of the values for γ2

needs to be performed with some care.
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FIG. 3. The cumulant ratio K4/K2 in central Au + Au collisions at
√

s = 7.7 GeV as a function of the rapidity acceptance �y, |y| < �y/2
for (a) different values of γ4, (b) γ3, and (c) γ2 from Eq. (19). Based on the preliminary STAR Collaboration data [42].

In principle it would also be interesting to measure cn(�y)
for higher n, such as n = 5 and 6. In this case,

c5(y1, . . . ,y5) = c0
5 + γ5

1
10

5∑
i,k=1; i<k

(yi − yk)2,

c6(y1, . . . ,y6) = c0
6 + γ6

1
15

6∑
i,k=1; i<k

(yi − yk)2, (21)

and cn(�y) is given by Eq. (20).

FIG. 4. The cumulant ratio K2/K1 in central Au + Au collisions
at

√
s = 7.7 GeV as a function of the rapidity acceptance �y, |y| <

�y/2 for different values of γ2. Based on the preliminary STAR
Collaboration data [42].

IV. DISCUSSION AND CONCLUSIONS

Before we conclude let us discuss the main findings of this
paper.

(1) The preliminary data for the proton cumulant ratio
K4/K2 obtained by the STAR Collaboration at

√
s =

7.7 GeV are consistent with long-range correlations in

FIG. 5. The ratio of the couplings cn(�y)/c0
n − 1, see Eqs. (8)

and (20) for γ2 = 10−2, γ3 = 10−3 and γ4 = 2 × 10−4. �y denotes
the size of the rapidity window |y| < �y/2, which the reduced
correlation functions are integrated over.
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both rapidity and transverse momentum. As a result
the cumulants effectively depend only on the number
of protons 〈N〉 in the acceptance. Therefore, we predict
that new measurements with increased acceptance will
lead to even larger values for K4/K2. Naturally this
increase will be limited eventually by global charge
conservation as discussed in Ref. [22], and the Ansatz
for the correlation function Eq. (17) will have its
limitation for large �y. Consequently our present
prediction for large �y > 1 needs to be taken with
a grain of salt.

(2) Allowing for small deviation from a constant value
we find that a slightly repulsive rapidity dependence
is favored by the data. By repulsive we mean that the
correlation function increases with increasing rapidity
separation between protons. Or in other words, we find
that γn > 0 in Eq. (19) is favored. Perhaps this may be
the first evidence for repulsive three-proton and four-
proton correlations.

(3) Clearly, as demonstrated in Fig. 5, a measurement of the
couplings as a function of the rapidity and transverse
momentum windows would be very valuable to shed
more light on the ranges and detailed shapes of the
correlation functions.

(4) Finally we want to reiterate that the fact that cumulant
ratios for small acceptance or, more precisely for a
small number of particles, are close to unity does not
necessarily imply the absence of correlations. This
is demonstrated in Fig. 1 where we actually assume
a constant correlation. In addition, this may also be
the reason that antiprotons show a cumulant ratio of
K4/K2 � 1 at low energies, whereas the protons show
a significant deviation from unity.
We further demonstrated that global baryon conserva-
tion fully determines the cumulant ratios, integrated
correlation functions, and couplings close to the full
acceptance regardless of any additional dynamics. In
addition we showed that, as a result of baryon number
conservation, the cumulants in a given phase-space
window and their complements are closely related, see
Eq. (16) and the Appendix.

To summarize, we have studied the rapidity dependence
of cumulants, integrated correlation functions, and couplings
based on the presently available preliminary STAR Collabo-
ration data [42]. Although we found that, within the present
experimental errors the data are consistent with rapidity in-
dependent correlations, a slightly repulsive component seems
to be favored. This would be consistent with the preliminary
measurement of two-particle differential proton correlations
by the STAR Collaboration [45,46]. To gain further insight, in
particular, into the three-proton and four-proton correlations,
we proposed to measure the dependence of the couplings as a
function of the rapidity window.
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APPENDIX: FULL ACCEPTANCE

Suppose we divide the full phase space into the two not
necessarily equal-sized regions denoted by the subscripts (a)
and (b). Let P(a)(N(a)) be the probability to observe N(a)

baryons in the phase-space region (a). The probability to have
N(b) baryons in the remaining part of the entire phase-space
P(b)(N(b)) is given by P(b)(N(b)) = P(a)(N(a)) = P(a)(B − N(b))
since N(a) = B − N(b), where B is the conserved number of
baryons. Here we assume that we can ignore antibaryons.
The cumulant generating function for the phase-space region
(a), h(a)(t) is given by

h(a)(t) = log

⎡
⎣∑

N(a)

P(a)(N(a))e
N(a)t

⎤
⎦

= log

⎡
⎣∑

N(b)

P(a)(B − N(b))e
(B−N(b))t

⎤
⎦

= log

⎡
⎣∑

N(b)

P(b)(N(b))e
(B−N(b))t

⎤
⎦

= h(b)(−t) + Bt, (A1)

where h(b)(t) is the cumulant generating function for phase-
space region (b). The cumulants in the two regions (a) and (b)
are given by the derivatives at t = 0,

Kn,(a) = dn

dtn
h(a)(t)

∣∣∣∣
t=0

, Kn,(b) = dn

dtn
h(b)(t)

∣∣∣∣
t=0

. (A2)

Thus we get for n = 1,

〈N(a)〉 = K1,(a) = B − K1,(b) = B − 〈N(b)〉, (A3)

and for n � 2,

Kn,(a) = (−1)nKn,(b). (A4)

Given this relation between the cumulants of the two regions
and using Eqs. (2)–(5) we also can find the relation between
the integrated correlation functions Cn,(a) and Cn,(b) in regions
(a) and (b), respectively,

C2,(a) = −B + 2〈N(b)〉 + C2,(b),

C3,(a) = 2B − 6〈N(b)〉 − 6C2,(b) − C3,(b), (A5)

C4,(a) = −6B + 24〈N(b)〉 + 36C2,(b) + 12C3,(b) + C4,(b).

Clearly, the integrated correlation functions do not show
any symmetry between the two complementary regions of
the phase space. The same is also true for the couplings cn.
In the limit where 〈N(a)〉 → B and thus 〈N(b)〉 → 0 we find,
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following the above equations, that C2,(a) → −B, C3,(a) →
2B, and C4,(a) → −6B. In this case, the couplings become
c2,(a) → − 1

B
, c3,(a) → 2

B2 , and c4,(a) → − 6
B3 and again are

determined entirely by the total baryon number B. For the

complementary region (b), on the other hand, we have the
limit of 〈Nb〉 → 0 in which case as discussed in Sec. II A,
dynamics beyond baryon number conservation also affects the
couplings.
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