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The truncation scheme dependence of the exact renormalization group equations is inves
tigated for scalar field theories in three dimensions. The exponents are numerically estimated 
to the next-to-leading order of the derivative expansion. It is found that the convergence 
property in various truncations in the number of powers of the fields is remarkably improved 

if the expansion is made around the minimum of the effective potential. It is also shown that 
this truncation scheme is suitable for evaluation of infrared effective potentials. The phys
ical interpretation of this improvement is discussed by considering O(N} symmetric scalar 
theories in the large N limit. 

§1. Introduction 

451 

It has been well known for more than two decades that the Wilson renormaliza

tion group (RG) offers practical tools as well as profound insights for investigation of 

non-perturbative phenomena in field theories. The continuum versions of the Wilson 

RG equation are called the exact renormalization group (ERG) equations, which are 

given in the form of non-linear functional differential equations. There have been 

proposed several formulations of the ERG, which are found to be mutually equiv

alent. These ERG equations give the change of the so-called Wilsonian effective 

actions 1) - 3) or 1PI cutoff effective actions 4),5) under scale variation leaving the 

low energy physics unaltered. The Wilsonian effective action may be regarded as a 

point in the infinite dimensional space of theories, or the space of coupling constants, 

and the ERG generates flows of the coupling constants in this space. 

However, in practical use, it is inevitable to approximate such an infinite dimen

sional theory space by a much smaller subspace in order to solve the ERG equations. 

Needless to say, the non-perturbative nature of the ERG should be maintained in 

this approximation. The method generally applied is the so-called derivative ex

pansion, which expands the interactions in powers of the derivatives and truncates 

the series at a certain order. 6) With this approximation the full equation is re

duced to coupled partial differential equations. Recently, the ERG in the derivative 

expansion approximation for scalar field theories has been extensively studied at 

the order of the derivative squared and has been found to offer fairly good non

perturbative results even quantitatively. 8) - 10) The lowest order of the derivative 

expansion, neglecting all corrections to derivative operators, is called the "local po

tential approximation" (LPA). 11),12) Although the wave function renormalization 
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and, therefore, the anomalous dimension is ignored in the LPA, the leading exponent 

l/ is known to be estimated rather well by using the ERG. However, the number of 

the couplings to be incorporated, or the number of the beta functions, is still infinite 

in the derivative expansion. If we consider application to more complicated systems 

it would be favorable to approximate it further by a finite number of couplings, as 

long as this is sufficiently effective. This method is advantageous not only because 

it simplifies the analysis but also because the effective couplings of physical interest 

are treated directly. Such an approximation is naively performed by truncated ex

pansion of the Wilsonian effective action, in turn, in powers of the fields. Actually it 

is found to work well practically without loss of the non-perturbative nature as long 

as we adopt a special expansion scheme, as is discussed later. 

One of the advantageous points of the ERG is certainly that it is able to allow for 

the systematic improvement of the approximations, as mentioned above. However, 

the improvement totally relies on the convergence of the results in non-perturbative 

analysis. We may approve the results obtained by the ERG only after confirming 

their sufficient convergence, since there is no small parameter which controls the 

approximation. It should be noted here that the commonly used expansion methods, 

e.g., the perturbation theory, 1/ N expansion and E-expansion etc., generally produce 

asymptotic series at best, in contrast to the convergence property exhibited by the 
ERG. 13) 

The main subject of this paper is the convergence of the expansion scheme in 

terms of the fields. It has been claimed that this convergence is rather poor, 14) 

or that the results cease to converge. 15) If such behavior appears commonly, it 

would be a fatal defect of the ERG approach.*) However, it has been realized that 

the expansion around the potential minimum drastically improves this convergence 

property. 16), 17) Indeed, it is good news for the ERG approach that we may obtain 

good convergence by adopting the appropriate truncation scheme. However, it has 

not yet been investigated in detail how effective this scheme is generally, nor has it 

been determined the origin of this improvement. 

In this paper we discuss convergence properties in different expansions schemes 

by examining Z2 symmetric scalar theories in three dimensions. As the physical 

quantities, the critical exponents and also the infrared effective potentials, or the 

renormalized trajectories, are compared among the different schemes. It is found that 

the convergence property is significantly improved in the new truncation scheme. We 

will also discuss the physical reason of the improvement by studying O(N) symmetric 

scalar theories in the large N limit. I:<'rom this observation it is speculated that good 

convergence depends on how accurately the relevant operator is covered within the 

truncated subspace. 

0) The convergence of the derivative expansion in the non-perturbative calculation remains dif

ficult to see due to complication in the higher orders. Morris examined this problem perturbatively 

at two loops and found that the ERG with certain cutoff profiles indeed displays convergence. 8) 
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§2. Exact renormalization group equations 

First let us briefly review the formulations of the ERG with which we will analyze 

the scalar theories. The ERG equation widely studied recently is given by consider

ing renormalization of the so-called "cutoff effective action", r eff[4>]. 4), 5) The cutoff 

effective action is the 1PI part of the Wilsonian effective action, namely, the gener

ating functional of the connected and amputated cutoff Green functions. Therefore 

the ERG equation may be obtained by the Legendre transformation of the Polchinski 

equation for the Wilsonian effective action. 

In this formulation the cutoff is performed by introducing a proper smooth 

function in terms of the momentum q and the cutoff scale A; C(q, A), into the 

partition function as 

exp W[J] = J V4>exp { -~4>. C-
1 

.4>- 8[4>] + J. 4>} , (1) 

where dot (.) denotes matrix contraction in momentum space. From Eq. (1) we may 

obtain the variation of W with respect to the cutoff as 3) 

8W[J] = _~ {8W[J] . 8C-
1 

. 8W[J] (8C-
1 

. 8
2
W[J])} 

8A 2 8J 8A 8J +tr 8A 8J8J . 
(2) 

The ERG for the cutoff effective action reff is defined by the Legendre transformation: 

(3) 

By taking the canonical scaling under the shift of the cutoff scale into consideration, 

the ERG equation for reff in D dimensions may be written down as 6) 

(4) 

where t = In(Ao/ A), and d</> is the scaling dimension of the scalar field which is given 

by (D - 2 + fI)/2 with the anomalous dimension fl. The operator .18 counts the 

number of the derivatives, which is given explicitly by 

(5) 

Thus the ERG equation is defined depending on the cutoff functions. The physi

cal quantities such as the exponents are found to be independent of the cutoff scheme, 

as is expected. However, this does not hold once some approximations have been 

performed to these equations.*) In this paper we are going to examine the extreme 

0) In practice, as far as the scalar theories are concerned, this cutoff scheme dependence is found 

to be rather weak, and the exponent changes smoothly under variation of the cutoff profiles. 7),18) 
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cases, i.e. schemes with a very smooth cutoff and with the sharp cutoff limit. We 

adopt the cutoff function 

1 O(q, A) 
C(q, A) = q21 _ O(q, A)' (6) 

as the smooth one in the practical calculations, a La Ref. 6). The sharp cutoff version 

of the ERG will be discussed later. 

In the derivative expansion, the full ERG equation (4) is reduced to a set of 

partial differential equations by substituting the effective action re£f of the form 

(7) 

where V (¢; t) and K (¢; t) are cutoff-dependent functions. In the second order of the 

expansion we may take the variation of the first two terms only, av / at and aK / at. 

For the cutoff function given by (6), these ERG equations in three dimensions are 

found to be 

av = -~(1 + 1])¢V' + 3V _ 1 -1]/4 , 
at 2 ..JKJV" + 2..JK 

(8) 

aK 1 , (1]) (1 24KK" - 19(K')2 
at = -"2(1 + 1])¢K - 1]K + 1 - 4 48 K3/2(V" + 2..JK)3/2 

1 58 VIII K'..JK + 57(K')2 + (VIII)2 K 

48 K(V" + 2..JK)5/2 

5 (VIII)2K + 2VIII K'..JK + (K')2) 
+--'----'----;:::=----=----:--'--'---

12 ..JK(V" + 2..JK)1/2 ' 
(9) 

where the prime denotes differentiation with respect to ¢.6) The anomalous di

mension 1](t) is determined by imposing the renormalization condition for the wave 

function, K(¢ = 0; t) = 1. In the LPA we may solve only Eq. (8) with respect to the 

effective potential V(¢; t) by reducing K = 1 and, therefore, 1] = o. Actually these 

partial differential equations have been solved and found to give the exponents with 

fairly good accuracy. 8) - 10), 15) In the next section these equations are examined by 

expansion in powers of the fields. 

In the case of the sharp cutoff scheme, we examine the Wegner-Houghton (WH) 

equation 1) instead of Eq. (4) with the sharp cutoff limit. The WH equation is for

mulated so that the fields are integrated gradually from the modes with higher mo

mentum by introducing the sharp cutoff into the path integral measure. Indeed, the 

ERG equation for the 1PI effective action as well as the Polchinski equation 3) turns 

out to be equivalent to the WH equation in the sharp cutoff limit. 19), 18) However, 

the ERG equation is known to exhibit non-analytic dependence on the momentum 

in this limit. Therefore we examine the sharp cutoff scheme only in the LPA. The 

WH equation in the LPA is given simply by 

(10) 
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Rapidly Converging Truncation Scheme of the Exact Renormalization Group 455 

in three dimensions. 11),12) 

These partial differential equations, of course, may be solved directly. However, 

this would not be practical for more complicated systems. Indeed, it turns out 

to be much more economical to solve them by reducing them to coupled ordinary 

differential equations. Besides, if we are interested in the effective coupling constants 

of the theories, e.g. masses, self-interactions, gauge couplings and so on, it is natural 

to solve the ERG equations for these coupling constants by expanding the effective 

action into a sum of operators. Note that Eqs. (4) and (10) given in the two different 

cutoff schemes do not produce the same results for physical quantities even if both 

are analyzed in the LPA. Rather, in this paper we are interested in the convergence 

properties of the solutions of the equations obtained by truncation of their power 

expansion in each case. In the next section the convergence behavior is explicitly 

examined. 

§3. Truncation in the comoving frame 

First let us examine the ERG equation (10) for the Z2 symmetric scalar theory. 

If we approximate the effective potential V (¢i t) by a finite order power series in 

terms of the Z2 invariant variable p = ¢2/2 (Scheme I), 

(11) 

then we obtain M ordinary differential equations for the running couplings an .*) 

We may suppose naively that the results obtained with these truncated equations 

converge to the solutions of the partial differential equation (10) as the order of the 

truncation M is increased. However, this is not the case. In Fig. 1 the truncation 

dependence of the leading exponent 1/ is shown. It is seen that the solutions cease 

to converge beyond a certain order and finally to oscillate with 4-fold periodicity 

around the expected value from the partial differential equation (10). Actually, the 

non-trivial fixed point itself is also found to oscillate similarly in the truncated ap

proximation. Morris pointed out in Ref. 15) that this oscillatory behavior is related to 

the singularity of the fixed point solution of Eq. (10) in the complex plane. The singu

larities P* = Ip*leiO
• closest to the origin are located at (lp*l, 0*) = (0.123, ±0.514rr). 

The existence of these singularities implies that the coefficients of the fixed point 

solution expanded in powers around the origin appear with 4-fold oscillation and 

that the convergence radius of the expansion series is given by 0.123. From these 

observations Morris has explained the behavior of the truncated solutions in Scheme 

I and that the leading exponent cannot converge to a definite value with precision 

beyond an error of 0.008. 

This undesirable behavior, however, is drastically improved if we expand the 

.) The M coupled beta functions lead us to M distinct fixed point solutions, all of which but 

two (the trivial fixed point and the so-called Wilson-Fisher fixed point) should be fake in this 

approximation. However, we may easily identify the true fixed point among these solutions by 

looking at their stability against the truncation. 
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potential around its minimum. The effective potential may be approximated in turn 

by (Scheme II) 

M b (t) 
V(p; t) = L ~(p - po(t))n, 

n=2 n. 
(12) 

where Po is the potential minimum. Therefore here the term linear in p- Po is absent. 

Indeed, as is seen in Fig. 1 (see also Fig. 4), the results for the exponent calculated 

in this scheme converge very rapidly to 0.689459056±2, which is consistent with the 

results obtained by analysis of the partial differential equation (10), 0.689459056. 

(The latter will be reported elsewhere.) Thus we may say that the expansion scheme 

II is a quite effective method in obtaining an accurate answer in a fairly small

dimensional subspace. The fixed point potential obtained with this method (Scheme 

II) is also shown in Fig. 2 (right). It is rather surprising that the potential of the 

fixed point solution can be obtained within a certain range of the field variable p 

quite well with such a simple analysis. 

0.80 
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0.74 ... 
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8. 0.70 >< 
CD 

en 0.68 
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as 0.66 
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..J 

0.64 

0.62 

0.60 

0.58 
5 

~Schemel 

_Scheme II 
•....• Scheme III (0.04) 

--... Scheme III (minimum) 
........ Scheme III (0.06) 

.-.. Scheme III (0.08) 
~ Nm Scheme III (0.1) 

- - - Scheme III (0.12) 
--- - . World standard value 

10 15 

Order of the truncation 

20 

Fig. L The truncation dependence of the leading exponent evaluated using various truncation 

schemes. The solutions not displayed (M = 3 of Scheme III (0.08), M = 3,4 of Scheme III (0.1) 

and M = 3,4,5 of Scheme III (0.12)) lie outside the range on the vertical axis. The values in 

the parentheses in the legend correspond to the expansion point Po in Scheme III. The term 

"minimum" means the minimum of the fixed point potential in each truncation. 
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Rapidly Converging Truncation Scheme of the Exact Renormalization Group 457 

However, the series of the solution obtained in truncated approximation of 

Scheme II does not converge perfectly. We examined the leading exponent v in this 

analysis up to the 60th order of truncation. The logarithmic plot of the obtained 

coefficients Po and bn of the fixed point solution and the leading exponent against the 

order of truncation is shown up to 60th in Figs. 3 and 4, respectively. It is seen that 

the truncation dependence does not disappear completely, and the results display 

oscillatory behavior with 3-fold approximate periodicity, as is shown in Figs. 3 and 

4. These types of behavior can be clearly understood by considering the singularities 

of the untruncated fixed point solution. 20) Since the minimum of the fixed point 

potential is at Po = 0.0471, we have Ip* - pol = 0.134 and arg(p* - po) = 0.647f. 
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Fig. 2. The truncation dependences of the fixed point potential evaluated using Schemes I and II 

are shown to the left and right in the figure, respectively. The integers in the figures denote the 

orders of the truncation. 
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Fig. 3. The large order behavior of the coefficients bn and the potential minimum po evaluated 

using Scheme II. The vertical axis of the left figure denotes In(lbi - (bi) 11011 + l)sign(bi - (bi)). 
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Fig. 4. The large order behavior of the leading exponent evaluated using Schemes II and III. The 

vertical axis of the left figure denotes In(11/ - (1/) 11010 + l)sign(1/ - (1/)). 

This angle is close to 271"/3, which tells us that the truncated solution in Scheme II 

oscillates with 3-fold periodicity. Also, the expansion should have a finite conver

gence radius of 0.134. Therefore the boundary of the convergence radius appears 

around P = 0.181. This is indeed seen in Fig. 2 (right). Although Scheme II extends 

the convergence radius slightly, the convergence of the leading exponent is much 

improved up to the error 10-9
, as is seen in Fig. 4 (left).*) 

Such truncation dependence in the two schemes is seen in the ERG equations 

with smooth cutoff, (8) and (9), as well. In Fig. 5 the leading exponent obtained by 

Schemes I and II in the LPA is shown. We find that Scheme II is again clearly supe

rior to Scheme I, while the oscillation, even in Scheme I, is significantly attenuated 

in the smooth cutoff scheme. The value to which the leading exponent converges is 

0.660. **) In the second order of the derivative expansion we examined the truncation 

dependence of the leading exponent and also of the anomalous dimension in Scheme 

II. ***) In this analysis the function K(p; t) is also expanded around Po and is trun

cated at the same order as V(p; t). The results are shown in Figs. 5 and 6. The 

values so obtained are 1/ = 0.617476 and 1] = 0.05425. The world standard values are 

1/ = 0.6310 and 1] = 0.0375 from the E-expansion. 21
) It is worth while to mention 

that the leading exponent indeed approaches the world standard value when going 

up to the next-to-Ieading order of the derivative expansion. 

In general dl dt in the ERG defines a vector field of RG flow on the theory space 

and is given in the coordinate system {9i} by 

(13) 

.) It is noted that in the analysis of Eq. (10) the minimum expansion in terms of the variable ¢ 

becomes worse than Scheme I due to the smaller convergence radius . 

.. ) The partial ERG equations given by (8) and (9) are examined in great detail in Refs. 8) and 

9). Our results are consistent with those of that analysis . 

... ) The exponents could not even be evaluated in Scheme I. 
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0.70 

c 

I 
:, 0.65 

c 

] 
0.60 

- LPA (Scheme I) 
~ LPA (Scheme II) 

- Next to LPA (Scheme II) 

-- World stendard value 

0.55 L-..--:5~~~~--::10:--~~~~~ 

Order of the truncation 

Fig. 5. The leading exponent evaluated using 

Scheme II. 

c 
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Order of the truncation 

Fig. 6. The anomalous dimension evaluated 

using Scheme II. 

where we have introduced the generalized beta functions (3i(g) = dgifdt. Corre

spondingly, the variation of the effective action S may be written as 

(14) 

where ~i (g) = as / agi are the base vectors. In Scheme II the base vectors are 

dependent on the position in the theory space, while they are fixed in Scheme I. 

We refer to these coordinate systems as the "co moving frame" and "fixed frame" , 
respectively. 13) 

Note that Schemes I and II with same maximum powers M employ the same 

subspace of the polynomials. We project the flow in the full theory space on the 

subspace and evaluate the beta functions for the projected flow. The projection 

depends on the choice of the coordinates, or on the manner of expansion. In fact, 

the beta functions in the truncation Schemes I and II are evaluated for different 

projections. This causes deviation of the results between the two schemes discussed 

here. 

From the preceding argument it may be expected that more accurate convergence 

is achieved if we expand at a point with a larger convergence radius. In order to 

see this, we examine another type of truncation, similar to Scheme I, but with the 

expansion point shifted from the origin by some fixed values Po (Scheme III): 

~ cn(t) ( n 
V(p;t) = ~ -, p - Po) . 

n=l n. 
(15) 

This scheme is an example of the· fixed frame. The leading exponent obtained in 

this approximation is also shown in Fig. 1 and in Fig. 4 (right). Here we employ 

Eq. (10). It is reasonable that the value will converge to a definite value with 

high precision if the expansion point Po is far from singularities. Indeed, we can 
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obtain a convergent value of leading exponent with precision on the order of 10-16
, 

0.68945905616213484±1, by choosing Po = 0.08. However, in order to obtain a highly 

accurate value, we need a very large order of truncation. 

One should employ a truncation method which provides a result with sufficient 

convergence and precision even with a small order of truncation. As is seen in the 

next section, in the large N limit, Scheme II is found to give us the exact solution. 

Apart from this extreme case of large N theory, however, it is significant for the 

practical analysis of complicated systems to be converging with small order of trun

cation, because it is in general difficult to evaluate at the large order of truncation. 

It is seen from Fig. 1 that we should set the value of Po to the minimum of the 

fixed point potential if we demand better convergence at small order of truncation. 

If the highly accurate precision is not required, or if it is difficult to analyze with a 

large order of truncation, the truncated approximation of Scheme II is sufficiently 

workable owing to its simplicity. The fact that Scheme III with Po set to the mini

mum of the fixed point potential also gives good convergence in the small subspace 

implies that the improvement of the approximation originates in the choice of the 

base vectors ~i around the fixed point. This seems reasonable, since the exponent 

is determined solely by the structure of the ERG equation around the non-trivial 

fixed point. Needless to say, the truncated approximation of the comoving frame is 

much more advantageous in practical analysis than that of the fixed frame, since the 

position of the minimum of the fixed point potential cannot be known a priori. 

§4. Large N limit 

If we extend the observation examined in the previous section to 0 (N) symmetric 

scalar theories in three dimensions, then the approximation in Scheme II is found to 

show stronger convergence as N increases, while the exponents obtained in Scheme 

I become more fluctuating. 14), 17) Moreover, the truncation dependence turns out 

to disappear completely in the large N limit, as discussed in Ref. 13). Therefore we 

discuss the physical reason behind this remarkable improvement of convergence by 

considering O(N) models in the large N limit. 

The LPA WH equation in D dimensions is reduced in the large N limit to 

av AD at = DV + (2 - D)pVp + T ln(1 + Vp), (16) 

where p denotes L,':=1 (qP)2 /2, Vp denotes the differentiation of V with respect to 

p and AD is the surface of the D-dimensional unit sphere divided by (27f)D. Here 

we have rescaled p and V properly by N before taking the limit. It is known that 

Eq. (16) gives the exact effective potential in the large N limit. If we expand Eq. (16) 

in Scheme II, the resulting differential equations, 
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(17) 

are found to be analytically soluble order by order. This means that the entire flow 

diagram in the theory space can be exactly determined within any finite dimensional 

subspaces. We refer to such a special truncation scheme as the "perfect coordi

nates" . 13) Generally, it would be difficult to find out such coordinates that enable 

us to solve the ERG equations exactly. However, Scheme II turns out to be an ex

ample of perfect coordinates in the large N limit. Such a remarkable simplification 

does not occur in Scheme I. 

Due to the perfectness of the coordinates employed, the exact values for the 

exponents can be obtained. The exponents are given by the eigenvalues of the 

matrix nij = 8f3d8bj evaluated at the non-trivial fixed point: 

o 
D-4 

24 (4 - D)2 
AD 6-D 

0 

0 

D-6 ) 
... 

(18) 

Thus the exponents are exactly determined from the eigenvalues, or the diagonal 

elements of this matrix, and l/ = 1/ (D - 2). Also the corresponding eigenvectors 

of this matrix give us the so-called relevant and the irrelevant operators. The most 

characteristic feature of the ERG equations in Scheme II is that the relevant coupling 

precisely coincides with Po and is not influenced by the truncation. We can say that 

this is the direct reason why the leading exponent is calculated in a truncation

independent way. 

Thus the relevant operator corresponding to the coupling Po has been found 

to be given by V;. In addition to the relevant operator, all eigen-operators can 

be derived exactly from Eq. (16) as follows. Suppose V*(p) is the non-trivial fixed 

point solution of the ERG equation and consider an infinitesimal deviation from this; 

V (p; t) = V* (p) + 8V (p; t). Then we obtain the eigenvalue equation with respect to 

8Vas 
V* 

D8V - 2~8Vp = .MV. (19) 
V;p 

By solving this equation, all of the eigenvectors are found to be given by 

D->' 

8V(p; t) ex (Vp*(p))-2 . (20) 

If we demand the analyticity of 8V, then the eigenvalues are determined to be ..\ 

= D - 2, D - 4, D - 6"", as expected. 

Moreover, it turns out to be possible to reformulate the ERG so that the effective 

potential V(p; t) is expanded into a power series of the (ir)relevant operators (Vp)n. 

For this purpose, let us first introduce two auxiliary fields X and 1] to the theory, 

z = J 1J¢a1Jx1J1]exp {- J dDx [~(81i¢a)2 + X (~(¢a)2 - N1]) + NV(1])]}. 

(21) 
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In the large N limit, the path integral of these auxiliary fields is evaluated by the 

saddle point method. Then the effective potential V(i]; t) is given by solving the 

coupled equations 

1 
V(i]; t) = 2trln( -0 + X) + X(i] - T/) + V(T/), 

1 1 
T/ = i] + -2 tr , 

-O+X 

oV(T/) 
x= fhl' 

(22) 

(23) 

(24) 

where i] denotes (jJ2 /2N. Then we change the variable i] to X through the Legendre 

transformation: 

_ oV(i]; t) 
X = Oi] , 

U(X; t) = -xi] + V(i]; t). 

Therefore the WH equation for U(X; t) is simply given by 

AU AD 
7ft = DU - 2XUx + T ln(l + x)· 

(25) 

(26) 

(27) 

It is readily seen that this equation is indeed identical to Eq. (16) owing to the saddle 

point equation. 

This form of the ERG equation, in turn, is exactly solved by expanding U into 

an ordinary Taylor series of X as 

1 
U(X; t) = ao(t) + al(t)x + 2a2(t)X2 + "', (28) 

where al is just the potential minimum parametrized previously by Po. The relevant 

operator is found to be X itself, which has dimension D - 2 at the fixed point. The 

irrelevant operators are also simply given by X2
, X3

, •• '. Thus we can reformulate 

the large N model in terms of the purely (ir)relevant operators by introducing a 

new variable, which is a composite operator of the original scalar fields. On the 

renormalized trajectory, we may ignore these irrelevant operators. Once they are 

eliminated, the theory turns out to be identical to the non-linear a model. 

What do these relations found in the large N limit imply for the finite N cases? 

It would be natural to suppose from the above observation that good convergence 

in Scheme II for a finite N may be explained similarly. Actually, if we compare 

the forms of the eigenvectors of the matrix f] in Schemes I and II, then we will 

see a clear difference. That is, the eigenvectors are approximated well by the first 

several components in Scheme II, while this is not the case in Scheme 1. Thus we 

may deduce that Scheme II is able to capture the relevant operator in the small 

dimensional subspace and, therefore, to make the truncation dependence diminish 

rapidly. In practice, it is not hard to extend the formulation of ERG so as to 

incorporate the auxiliary field to finite N cases. The results of numerical analyses of 

such ERG equations will be reported elsewhere. To summarize, the physical reason 

for the good convergence in the comoving frame is speculated to be that the leading 

operator defined in this scheme covers the relevant operator quite well. 
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§5. Infrared effective potentials 

It is significant to observe the truncation dependence of not only the exponents 

but also other physical quantities in various approximation schemes. We here discuss 

the infrared effective potentials for the scalar theory by using the LPA WH equation 

(10). The infrared effective potentials enable us to calculate physical quantities such 

as the effective mass and the effective couplings at a low energy scale. The low energy 

physics is completely described by the one dimensional renormalized trajectory of the 

relevant operator extending from the non-trivial fixed point on the critical surface. 

The renormalized trajectory is divided into two parts in the symmetric phase and 

in the symmetry broken phase. We evaluate the infrared effective potentials by 

tracing the running coupling constants on the renormalized trajectory. As the cutoff 

is lowered, the minimum of the effective potential in the symmetric phase shrinks, 

while it grows in the broken phase. 
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t { 0.40 
0.10 
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Fig. 7. The truncation dependence of the infrared effective potential in the symmetric and the 

symmetry broken phases evaluated using Scheme I. 
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Fig. 8. The truncation dependence of the infrared effective potential in the symmetric and the 

symmetry broken phases evaluated using Scheme II. 
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The renormalized trajectories obtained using different truncation approxima

tions do not coincide. We should be careful when examining the renormalized tra

jectory. We need to impose a common appropriate renormalization condition to 

compare the infrared effective potentials evaluated in the various approximation 

schemes. Actually, we evaluate the infrared potentials by employing the point on 

the renormalized trajectory satisfying the following renormalization condition; the 

gradient at the origin of the potential is equal to 0.1 in the symmetric phase and the 

field value at the minimum of the potential is equal to 0.1 in the broken phase. The 

effective potentials obtained in Schemes I and II are shown in Figs. 7 and 8, respec

tively. Note that the absolute height of the potential is adjusted so as to vanish at 

the origin, since it is not taken into account correctly in the ERG equation.*) 

As a result, the truncated approximation in the comoving frame leads to good 

convergence for the effective potential in both phases as well as for the exponent. 

It is remarkable property of the comoving frame that it remains so effective after 

truncation, even away from criticality, and moreover, that this occurs irrespective of 

the phases. This result would imply that the relevant operator ruling the renormal

ized trajectory can be approximated well enough in the small dimensional subspace 

truncated in the comoving frame. 

§6. Summary and discussion 

We considered the convergence properties of physical quantities evaluated using 

the ERG in various truncated approximation schemes in operator expansions. The 

Z2 symmetric scalar theory in three dimensions was numerically analyzed, and the 

approximated solutions for the exponents and the infrared effective potentials were 

compared in the various schemes. In particular we focused on studies of the difference 

between the truncation schemes in the expansion at the field origin (Scheme I) and 

at the minimum of the effective potential (Scheme II). 

It was found that Scheme II displays a remarkably strong convergence property 

with respect to the order of truncation as far as the quantities we examined are 

concerned; the leading exponent, the anomalous dimension and the infrared effective 

potentials. Although it is seen that the exponent obtained in Scheme II also ceases 

to converge eventually at a certain large order, the width of fluctuation is very small, 

and we can obtain the value with great accuracy. 

Indeed we may examine the partial differential equations derived in the derivative 

expansion scheme directly for such a simple model. However, such analyses would 

become difficult for more complicated systems, e.g., triviality mass bound for the 

Higgs particle in the standard model, non-perturbative analysis of dynamical chiral 

symmetry breaking of strongly coupled fermions, etc. 22) - 25) Therefore we would like 

to stress here that the operator expansion scheme is desired if it gives a converging 

value effectively enough. Actually, Scheme II is found to satisfy such a practical 

*) In the analysis in terms of Scheme II, the minimum of the potential moves from the positive 

region (p > 0) to the negative region (p < 0) in the symmetric phase. Therefore one should switch 

the evaluation of the potential using Scheme II to Scheme I at the point where the minimum of the 

potential passes the origin p = O. 
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demand for scalar theories. It will be necessary to examine the presence of such 

a good approximation scheme for the non-perturbative analysis of various models. 

Naturally, it would be desirable to seek general methods to offer us such effective 

schemes. Such problems in the ERG approach deserve further study. 

We also discussed the physical reason for this rapid convergence in the comoving 

frame by considering O(N) symmetric scalar theories in the large N limit. It was 

shown that the exponents are derived exactly by operator expansion in the comoving 

frame. Not only the exponents but also each RG flow of the coupling is exactly 

derived in every finite order of truncation. Moreover, all ofthe (ir)relevant operators 

at the non-trivial fixed point have been given exactly and are found to be highly 

complicated composite operators in terms of the original scalar fields. We found that 

the coupling Po, the potential minimum, defined in the comoving frame corresponds 

to the exact relevant operator. If such structure remains in the finite N cases in 

an approximate sense, it could be regarded as the physical reason for the good 

convergence of Scheme II. Indeed, the relevant operator is found to be described 

well within the subspace of the first several operators in Scheme II. 

The ERG equation in terms of the composite operators has been proposed. This 

is equivalent to the ERG equation for scalar theories in the large N limit. The 

reformulation is achieved by introducing a composite field to the original theory. In

terestingly, this operator turns out to be the exact "relevant" operator after evolution 

to infrared. Other irrelevant operators are also simply given by the products of this 

composite. Namely, the naive polynomial expansion leads to the perfect coordinates 

in turn. Thus this offers an example in which the good expansion scheme in the 

operators is revealed through a proper change of field variables. A numerical study 

of the ERG in terms of the composite operators in finite N cases will be reported 

elsewhere. Indeed, such a variable change incorporating composite operators has 

been found to be significant in the RG analysis of the dynamical chiral symmetry 

breaking. 25) 
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