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RAPIDLY DECREASING FUNCTIONS 
IN REDUCED C* -ALGEBRAS OF GROUPS 

PAUL JOLISSAINT 

ABSTRACT. Let r be a group. We associate to any length-function L on r the 
space H'{' (r) of rapidly decreasing functions on r (with respect to L), which 
coincides with the space of smooth functions on the k-dimensional torus when 
r = Zk. We say that r has property (RD) if there exists a length-function 
L on r such that H,{,(r) is contained in the reduced C·-algebra C;(r) of 
r. We study the stability of property (RD) with respect to some constructions 
of groups such as subgroups, over-groups of finite index, semidirect and amal-
gamated products. Finally, we show that the following groups have property 
(RD): 

(1) Finitely generated groups of polynomial growth; 
(2) Discrete cocompact subgroups of the group of all isometries of any hy-

perbolic space. 

INTRODUCTION 

Consider the algebra C(Tk) of continuous functions on the k-dimensional 
torus, which is also the C* -algebra of the group Zk. It contains the dense 
subalgebra Coo(Tk) of smooth functions on Tk. Derivation is possible and 
useful on Coo(Tk) , but is not allowed on the whole of CCTk). Our aim is 
to develop a notion of smooth functions in the reduced C* -algebras of other 
groups. The idea is to consider the characterization of COO (Tk) by Fourier 
series: if f E C (Tk) and if J denotes its Fourier transform, which is a function 
on Zk, recall that f belongs to Coo(Tk) if and only if J is of rapid decay. 

Now, if r is any group and if L is a length-function on r, we denote 
by H~ (r) the space of rapidly decreasing functions on r with respect to L. 
Examples below show that H~ (r) is not always contained in the reduced C*-
algebra C; (r) of r. We say that r has property (RD) if there exists a length-
function L on r such that H~ (r) is contained in C; (r). Some aspects of 
property (RD) have been already studied in [Haa, FP, and Pi]. 

This paper is organized as follows: Chapter 1 contains elementary definitions 
and results concerning length-functions and property (RD). Proposition 1.2.6 
is the first important result since it gives a technical condition equivalent to 
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168 PAUL JOLISSAINT 

property (RD) which will be frequently used later: it is an adaptation of Lemmas 
1.3 and 1.4 of [Haa]. 

We study in Chapter 2 the stability of property (RD) with respect to some 
classical constructions of groups such as subgroups, over-groups of finite index, 
semi direct products and amalgamated products. In particular, the following 
theorem generalizes the case of nonabelian free groups of finite rank due to U. 
Haagerup [Haa]: 

Theorem A. If r l and r 2 have property (RD) then so does their free product 
r l * r 2 · 

Chapter 3 is devoted to examples of groups possessing property (RD). First, 
we deal with finitely generated amenable groups: 

Proposition B. Let r be a finitely generated group and let L denote the word 
length-function on r. 

( 1) If r is of polynomial growth then H'{' (r) is contained in II (r), and thus 
a fortiori in C,* (r) . 

(2) Ifr is amenable then r has property (RD) ifand only ifit is of polynomial 
growth. 

This result implies that SL(n, Z) does not have property (RD) when n 2: 3. 
In the second section of Chapter 3, we study property (RD) for discontinu-

ous groups of hyperbolic spaces (real, complex, quaternionic and exceptional). 
There, we choose a length-function defined as follows: let Xo be a point of 
the hyperbolic space, and define the length L(g) of the isometry g to be the 
distance between Xo and g(xo). We show 

Theorem C. If r is a cocompact discrete subgroup of the group of all isometries 
of a hyperbolic space, then H'; (r) is contained in C; (r) . 

Thus such a group has property (RD). Though H';(SL(2,Z)) is not con-
tained in C; (SL(2, Z)), a different argument shows that SL(2, Z) has property 
(RD) (Corollary 2.1.6). 

We end this paper with an Appendix in which we briefly study property (RD) 
for not necessarily discrete groups. We prove that such a group has property 
(RD) if it contains a discrete cocompact subgroup with property (RD). 

This work constitutes the first part of my doctoral thesis at the University of 
Geneva, carried out under the supervision of Pierre de la Harpe. I would like 
to thank him warmly as well as Georges Skandalis, Uffe Haagerup and Vaughan 
F. R. Jones for fruitful discussions and suggestions. 

1. RAPIDLY DECREASING FUNCTIONS AND PROPERTY (RD) 

Let r be a group. We refer to Chapter 7 of [Ped] for the notations concerning 
standard spaces and operators algebras associated to r. 
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1.1. Length-functions and rapidly decreasing functions. 

1.1.1. Definition. A length-function on a group r is a map L: r -+ R + satis-
fying: 

(i) L(gh) ~ L(g) + L(h), for all g, hEr; 
(ii) L(g) = L(g-I), for every g E r; 

(iii) L( 1) = 0, where 1 denotes the identity of r. 

If LI and L2 are length-functions on r, we say that L2 dominates LI if 
there exist a, b E R+ such that LI ~ aL2 + b. If LI dominates L2 and L2 
dominates Ll ' then LI and L2 are said to be equivalent. 

Let L be a length-function on rand r E R+ ; the crown of radius r is the 
set 

Cr,L = {g E r;r-1 < L(g) ~ r}, 
and Xr,L denotes the characteristic function of Cr,L' 

The ball of radius r is the set 
Br,L = {g E r;L(g) ~ r}. 

Note that Bo L is a subgroup of r which may have more than one element. 
1.1.2. Example. Suppose that r is finitely generated and let S be a finite set 
of generators of r. The algebraic length of g E r with respect to S is the least 
nonnegative integer n such that g can be written as a product of n elements 
of SUS-I. We denote this number by Igls and get a map from r to N which 
is a length-function. If S' is another finite generating set of r, it is readily 
verified that the length-functions associated to Sand S' are equivalent. Most 
of the time we will not specify any finite system of generators and will speak 
about the algebraic length-function on r. If ro is a subgroup of a finitely 
generated group r, the restriction to ro of the algebraic length-function on 
r is a length-function on ro' It is known that ro is not finitely generated in 
general. A simple example is given by the subgroup r of GL(2, R) generated 
by 

and its subgroup 
Z[I/2] . 

~ ) 
which is isomorphic to 

1.1.3. Example. Let X be a metric space with base point Xo E X and let r 
be a group of isometries on X. Define for every g E r 

L~o(g) = d(xo,g(xo))' 
Then L is a length-function on r since each g E r is an isometry. If Xl Xo 

is another point of X, L. and L satisfy the following inequalities for every 
·\0 XI 

g E r: 
L,o (g) - 2d(xo, Xl) ~ L'I (g) ~ L,o (g) + 2d(xo' Xl)' 

The proof of the following lemma is easy and consequently left to the reader. 
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1.1.4. Lemma. Let L be a length-function on a group f. 
(1) We have IL(g) - L(h)1 '5, L(gh) for every g, hE f. 
(2) If f is finitely generated then L is dominated by the algebraic length-

function. 
(3) (Peetre's inequality). If s is a real number, one has for all g, hE f 

(1 +L(gh))s '5, (1 +L(g))lsl(1 +L(h))s. 

( 4) If L' is a length-function dominated by L, there exists c E R + such that 
IBy,LI'5, IBey,vl for every r 2:: 1, where IBy,LI denotes the cardinal of By,L. 
1.1.5. Remark. The converse of assertion (4) in Lemma 1.1.4 is false in gen-
eral. In fact, if f = ZED Z and if LI and L2 are defined by 

L1(x ,y) = Ixl +log(1 + Iyi) 

and 
L2(x ,y) = LI (y ,x), 

then IBy,LII = IBY,Lzl is finite for every r 2:: 0, but LI does not dominate L2 
which does not dominate L 1 • 

Let us now give the main definition of this work: 

1.1.6. Definition. Let L be a length-function on f. 
(1) If s E R, the Sobolev space of order s (with respect to L) is the set 

H~ (f) of functions r; on f such that r; (1 + L)s belongs to P (f) . 
(2) The space of rapidly decreasing functions on f (with respect to L) is the 

set H';(f) = nSER H~(f). If s E Rand r;" E H~(f), set 

(r;I0 2,s,L = I:r;(g)C(g)(1 + L(g))2S 
gEr 

and 1Ir;1I 2,s,L = v(r;Ir;)2,s,L. 

With the above inner product, H~ (f) is a Hilbert space, and H'; (r) is a 
Frechet space for the projective limit topology induced by the inclusions of 
H'; (f) in H~ (f) , for each s E R. When f is finitely generated, we denote by 
H S (f) and H oo (f) the above spaces associated to the algebraic length-function 
on f. We denote by (·I·)2,s and 11·11 2 ,s the corresponding inner product and 
norm. 

1.1.7. Remark. Let LI and L2 be two length-functions on f. If L2 domi-
nates LI then H~2 (f) is contained in HL (f) for every s 2:: o. In particular, 
if f is finitely generated then H oo (f) is contained in H'; (f) for every length-
function L on f. We finally remark that if L is a length-function on rand 
if s E R, then HZ s (f) is the dual of H~ (f) for the bilinear form 

(r; , 0 -+ I: r;(g)((g) . 
gEr 
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1.2. Property (RD). Let r be a group. The group algebra of r is denoted by 
cr and is the set of functions with finite support on r. We recall that cr 
acts faithfully by left convolution on 12 (r) and that the reduced C· -algebra of 
r, denoted by C;(r) , is the norm closure of cr in B(P(r)). Furthermore, 
every element a of C; (r) can be identified with the image of «51 by a, where 
«51 is the characteristic function of {I} in r. We shall thus consider C; (r) 
as a subspace of p(r). If rp E C;(r) , we denote by Ilrpll the norm of rp in 
C;(r) . 

1.2.1. Definition. A group r is said to have property (RD) if there exists a 
length-function L on r such that H'; (r) is contained in C; (r) . 
(1.2.2.) Remark. (1) By the closed graph theorem, r has property (RD) if 
and only if there exists a length-function L on r and two positive numbers c 
and s such that IIrpll :::; cllrpll2 s L for every rp E cr. 

(2) If r is finitely generat~d and possesses property (RD) then H oo (r) is 
contained in C; (r) by Remark 1.1.7. 

1.2.3. Example. (1) If r is the infinite cyclic group then it is easily verified 
that r has property (RD); we have for every rp E cr 

7C IIrpll :::; y'3l1rpI12,1 . 

(2) Let FN be the (nonabelian) free group of rank N ~ 2. Then FN has 
property (RD) since Lemma 1.5 of [Haa] gives the following inequality for each 
function rp with finite support on F N : 

More generally, we will show in Chapter 2 that a free product of two groups 
with property (RD) has itself property (RD). 

1.2.4. Lemma. If L is a length-function on r such that H'; (r) is contained 
in C;(r) , then there exist c and s in R+ such that one has for every t E R 
and rp, IfI E H'; (r) 

IIrp * 1f111 2 ,I,L:::; IlrpI12,s+III,LIIIfI1I2,I,L' 
In particular, H'; (r) is a convolution algebra. 
Proof. By Remark 1.2.2, there exist c ,s E R+ such that 

Ilrp * 1f11I2 :::; cllrpIl2,s,LIIIfII12, 
for rp, IfI E H'; (r). Let us define 

rpl(h) = Irp(h)l(l + L(h))111 

and 
IfII(h) = IIfI(h)l(1 + L(h)/ 
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for hEr. Then rp t and 'lit belong to H'{' (r) and they satisfy 

Ilrptllz,s,L = Ilrpllz,s+ltl,L and II 'lit liz = 11'IIllz,t,L' 
Then one gets, using Peetre's inequality of Lemma 1.1.4 

IIrp * 'IIlb,t,L:::; IIrpt * 'IItll z :::; cllrpllz,s+ltl,LII'IIllz,t,L Q.E.D. 

In fact, one of the most important motivations for the study of property (RD) 
is given by the following result of K -theory which shows that the sub algebra 
H'{' (r) is in some sense "large" in C; (r) . The result is due to A. Connes, and 
we give a proof of it in [13]. 

1.2.5. Theorem. If r has property (RD) and if L is a length-function such that 
H'{' (r) is contained in C; (r), then the inclusion of H'{' (r) in C; (r) induces 
an isomorphism from K;(H'{'(r)) onto K;(C;(r)) , for i = 0, 1. 

Now we establish some properties which are equivalent to property (RD). 
Let A(r) denote the Fourier algebra of r (cf. [Eyn and let B;Jr) be the set 
of coefficients of unitary representations of r which are weakly contained in 
the left regular one. B;. (r) is the dual space of C; (r) for the bilinear form 

(rp, 'II) = L rp(g)'II(g) 
gEr 

for rp E cr, 'II E B). (r). Since A(r) is constituted by the coefficients of the 
left regular representation, A(r) is a closed subspace of BJr) equipped with 
the dual norm. 

1.2.6. Proposition. Let L be a length-function on a group r. The following 
properties are equivalent: 

( 1 ) H'{' (r) is contained in C; (r) ; 
(2) there exists s > 0 such that B). (r) is continuously embedded in H;s (r) ; 
(3) there exists s > 0 such that A(r) is continuously embedded in H;s (r) ; 
(4) there exists c > 0 and r > 0 such that if k ,I, m belong to N, if rp 

and 'II belong to cr and are supported in Ck ,L and C[ ,L respectively, 
one has 

and II(rp * 'II)xm,Lll z = 0 for the other values of m. 
Proof. (1) => (2) By Remark 1.2.2, there exists s > 0 such that H~ (r) is con-
tinuously embedded in C; (r) . Thus, property (2) is obtained by duality. 

(2) => (3) is immediate. 
(3) => (1) Let us fix rp E cr, and ~, '1 E 12(r) such that 11~lIz :::; 1, 11'1l1z :::; 1. 

Let 'II be defined by 
* -I 'II(g) = (~* '1)(g ), for every g E r. 
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Then IfI E A(r) and IIIfIIIA(r) ~ Ilc;1I211'1112 ~ 1 (cf. [Ey]). It is readily verified 
that (rp * c;l'1) = (rp, 1fI), which gives 

I (rp * c;l'1) I ~ II rp 112 ,s ,L1l1fI1I2 ,-s ,L 

~ cllrpIl2,s,LIlIfIII A (r) 

~cllrpIl2sL' 

(1) '* (4) is immediate. 
(4) '* (1) Let rp, IfI E cr; suppose first that rp is supported on Ck L for 

some kEN. Put 1fI, = IfI . X, L for every lEN. One has by hypothesis' 

lI(rp * 1fI,)Xm LII2 ~ c(1 + knrp1l2111f1,112 if Ik -II ~ m ~ k + I 
and (rp * 1fI,) X m L = 0 otherwise. 

Then one gets 

II( rp * IfI)Xm ,L 112 ~ 2: II( rp * 1fI')Xm ,L1I2 
'?O 

m+k 
~ c(1 + knrpll2 2: 1I1fI/1I2 

'=Im-kl 
2min(k ,m) 

~ c(1 + k)'lIrpll2 2: IIlfIm+k-/1I2 
'=0 

(
2 min(k .m) ) 1/2 

~ c(1 + k)'(2k + 1)1/2 I1rpIl2 ~. IIlfIm+k-/II; 

m?O 

,,; c:(1 + k)2'+111~1I; ~o cm~ ,m) II V'm+k-,II;) 
2 2,+2 2 2 

~ c2 (1 + k) IIrp1l2111f1112. 
Finally, if the support of rp is arbitrary, then rp = Lk>O rpk ' where rpk = 

rp . Xk L • One has -

IIrpll ~ 2: IIrpkll ~ c2 2:(1 + k)'+llIrpkIl2 
k?O k?O 

~ c3 (2: IIrpkll;(1 + k)2('+2)) 1/2 
k?O 

~ c4I1rpIl2,,+2,L' 
One can take s = r + 2. Q.E.D. 
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1.2.7. Remark. Let L be a length-function on r. If L is bounded then 
H'; (r) = 12 (r). And by [Raj], 12 (r) is an algebra if and only if r is finite. 
More generally, H'; (r) is not an algebra in general, even in the case of the 
algebraic length-function, as the following example shows: 

1.2.8. Example. Let C denote the infinite cyclic group written multiplica-
tively with identity 1 and generator a, and let A = Z[ C] with e j the char-
acteristic function of aj . Then C acts on A by xf(y) = f(x- 1y) , so that 
an(e) = ej+n · 

Let r = A ~ C be the associated semidirect product. r is generated by the 
finite set S = {(eo, 1) , (0 , a)}, though A is not finitely generated (compare 
with Example 1.1.2). From now on we will identify the element a of A with 
the element (a, 1) of r and we will denote by la Ir the length of (a, 1) with 
respect to S. If p is a positive integer, set 

Sp = {a E A ; a = t a je j , a j E {O, I}, ap = I} . 
)=0 

Let a be a positive real number and let us define the function rp on r by 

{ 0, if g ~ Up~1 Sp' 
rp(g) = p/2 

a , if g E Sp' 

1.2.9. Proposition. If 1/ J5 < a < 1/2 then rp E Hoc (r) but rp * rp does not 
belong to any space H S (r) ,s E R . 

Proof. If a = L~=o ajej belongs to Sp' then lair:::; 3p + 1 since 

(a , 1) = (eo' 1) ao (0 , a) (eo' 1 t (0 , a) ... (eo' 1) ap (0 , a) - p • 

If s ~ 0, then 
IIrpll~,s :::; 2)2al(3p + 1)2s < 00 

p~l 

since 0 < a < 1/2 and ISpl = 2P • This shows that rp belongs to Hoc(r). 
Let us now fix a positive integer p. If a E A is of the form 

p-l 

a = '"' ae . + 2e L ) ) p 
j=O 

with aj E {O, I} ,let I(a) denote the number of j belonging to {O, ... ,p - I} 
such that aj = 1 . One has for such an element a 

rp * rp(a) = L rp(b)rp(c). 
b ,cESp 

a=b+c 
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If l(a) = k, there are exactly 2k distinct pairs (b, c) in Sp x Sp satisfying 
a = b + c. It follows that (jJ * (jJ(a) = 2k cl for such an element a. Put 

{ 
p-I } 

Sp,k = a E A;a = I:ajGj + 2Gp ,aj E {a, l},l(a) = k . 
)=0 

The cardinal of Sp ,k is equal to m, and Sp ,k is contained in B3P+2 = {g E 
r;lgl:53p+2}. 

( I I -2s -2s )-2S C Let s ~ ° and a E Sp,k' One gets I + a r) ~ 3 (I + p . onse-
quently, 

as soon as a> 1/J5. Q.E.D. 

2. PROPERTY (RD) AND SOME CONSTRUCTIONS OF GROUPS 

2.1. Property (RD) and extensions. Let us first remark the following easy fact: 

2.1.1. Proposition. Let r be a group and let robe a subgroup of r. If r has 
property (RD) then so does ro' More precisely, if L is a length-function on r 
such that H';(r) is contained in C;(r) , then H;,;(ro) is contained in C;(ro)' 
where Lo is the restriction of L to r 0 . 

Now consider two groups G and r, and let E be an extension of G by r. 
Let I ---+ G ---+ E ~ r ---+ I be the corresponding exact sequence. Choose a set-
theoretic cross-section a: r ---+ E of 7r such that a( I) = I. This determines 
a function f: r x r ---+ G measuring the failure of a to be a homomorphism, 
namely f(y l , (2) = a(Y I )a(Y2)a(YI (2)-1 for all Y1 ' Y2 E r. In addition, let 
p(y) be the conjugation by a(y) in G: p(y)(g) = a(y)ga(y)-l. For a E r, 
let Ad(a) denote the inner automorphism of r associated to a. Then the 
functions f and p are related by 

(RI) p(P)p(y) = Ad(f(P, y»p(Py) 

and 

(R2) f(YI '(2)f(YI Y2' (3) = P(Yl)(f(Y2' (3»f(YI 'Y2 (3)' 

(See [Bro, p. 104].) 
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We shall identify E with G x r equipped with the product 

(gl' YI)(g2' 1'2) = (gIP(y l )(g2)f(YI' Y2), Y1Y2)· 

2.1.2. Lemma. Let E, G and r be as above. Suppose that there exist length-
functions Lo' LI and L on G, rand E respectively such that 

(i) H'l; (G) is contained in C; (G) and Hr;: (r) is contained in C; (r) ; 
(ii) there exist c and r in R. such that 

T 

Lo(g) + LI (Y) ::; c· L(g, y)r for every (g, y) E E. 

Then H';(E) is contamed in Cr*(E). 
Proof. Choose first two positive constants d and s such that 

and 
Ilqllll::; dllql I I12,s,L 1 for every qll E Cr. 

If ql and IfI belong to CE, one gets 

Ilql * ifill; 

= L 
(g ,f)EE (h ,P)EE 

2 

= LL LLqlp(h)lfIp,y(h-lg) 
;'Er gEG pEr hEG 

2 

= L LAG(qlp)lfIp,y 
yEr pEr 2 

where 

2 

-I -I -I -I -I 
IfIp ,y(g) = 1fI(f(P ,P) p(P )(g)f(P ,y), P y). 

It follows from the triangle inequality that 

IIql * ifill; ::; L (L Ilql p * IfIp ,),IIz) 2 
YEr pEr 

::; d 2 L (L II ql pl12 ,s ,Lo IllfIp )12) 2 
yEr PEr 

2 , ,2 2,2 ,2 
= d Ilql * IfI 112 ::; d Ilql 11 2 ,5 ,L1111fI liz 

where ql'(P) = Ilqlpllz,s,Lo and 1fI'(P) = (2:hEG IIfI(g, P)1 2)1/2; we have used 
1fI'(P-1y) = IllfIp )1 2 , 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RAPIDLY DECREASING FUNCTIONS IN REDUCED C -ALGEBRAS OF GROUPS '77 

Finally, condition (ii) implies that 

IlqJ * IfIlb :s: c'llqJlb,2rs,LIIIfII12' Q.E.D. 
We will first treat the case when G or r is finite. Let us give the following 

lemma which will also be used in the following paragraph: 

2.1.3. Lemma. Let E be a group, let G be a finite subgroup of E and L a 
length-function on E. Then there exists a length-function L' on E with the 
following properties: 

( 1) L' is equivalent to L and takes integer values; 
(2) L'(gxh) = L'(x) for all x E E and g ,h E G; 
(3) G = {x E E; L' (x) = O}. 

Proof. Let us define successively four length-functions L, ' L2 , L3 and L4 on 
E: 

L, (x) = { ~L(X)] + 1 

then L, satisfies condition (1). 
Now, the function L2 defined by 

ifL(x)=O, 
ifL(x)#O; 

L2(x) = l: LI (gxg -I) 
gEG 

is a length-function on E satisfying condition (1) and is such that L2(gx) = 
L2(xg) for all x E E and g E G. 

Set L3(x) = ming ,hEG L2(gxh) ; then L3 is a length-function on E satisfying 
conditions (1) and (2). 

Finally, if 
XE G, 
xfl-G, 

then L4 is a length-function on E, and L' = L3 + L4 satisfies conditions (1), 
(2) and (3), Q.E.D. 

2.1.4. Proposition. Let E be an extension of G by r as above and suppose 
that G is finite. Then E has property (RD) if and only if r does. 
Proof. Suppose first that r has property (RD) and let LI be a length-function 
on r such that H'J: (r) is contained in C; (r). For each (g, y) E E set 
L(g,y)=L1(y)· 

Then L is a length-function on E satisfying the conditions of Lemma 2.1.2 
which implies that E has property (RD). Conversely, suppose that E has prop-
erty (RD) and let L be a length-function on E such that 

(a) H';(E) is contained in C;(E); 
(b) LIG=O (see Lemma 2.1.3). 
Set L, (y) = maxgEG L(g, y). Thanks to condition (b), LI is a length-

function on r. If qJ and IfI belong to cr, define functions qJ' and 1fI' on E 
by 

qJ' (g, y) = qJ(y) and 1fI' (g, y) = IfI(Y)· 
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One gets 
2 1 , ,2 

1I{O * 1f1112 = IGI31i{O * {O 112 
2 < c , 2 , 2 

- IGI31i{O 11 2,s,LIIIfII12 
2 c 2 2 

~ TGT Ii {011 2,s,LIiIfl1i2 
for suitable positive constants c and s. Q.E.D. 
2.1.5. Proposition. Let E be a group and let Eo be a subgroup offinite iildex 
of E. If Eo has property (RD) then so does E. 

Proof. Define G = nxEE xEox -I ; it is a normal subgroup of finite index of 
E and it is contained in Eo. It follows from Proposition 2.1.1 that G has 
property (RD). Let then Lo be a length-function on G such that H'i;(G) is 
contained in C; (G). Set r = E / G and define 

k(g, y) = max Lo(p(P)(g)f(P ,y)) for every (g, y) E E. 
pEr 

Using relations (Rl) and (R2) of the beginning of the chapter, it is easily 
shown that 

k((gl' YI)(g2' Y2)) ~ k(gl' Y1) + k(g2' y2), 
• • 1 

and klG ::::: Lo. Set L = k + k, where k(x) = k(x- ). Then L is a length-
function on E satisfying the conditions of Lemma 2.1.1. Q.E.D. 
2.1.6. Corollary. If r is a finitely generated discrete subgroup of SL(2, R) such 
that SL(2, R)/r is not compact, then r has property (RD). 
Proof. By Lemma 8, p. 154 of [Sel], r contains a torsion-free subgroup ro of 
finite index. Then the surface SO(2)\SL(2, R)/ro is noncompact, namely open, 
and its fundamental group ro is a free group. By Example 1.2.3(2), ro has 
property (RD) and by Proposition 2.1.5, r has property (RD), too. Q.E.D. 
2.1. 7. Remark. Let E be a group and let G be a subgroup of finite index of 
E provided with a length-function Lo. There is generally no length-function 
L on E whose restriction to G coincides with Lo. In fact, take G = F2 ' the 
free group on the two generators x and y, and let a be the automorphism of 
G defined by 

a(x) = xy, -I a(y)=y . 
Then a 2 = 1. Let r = {I, a} and let E = G )<I r be the corresponding 
semidirect product. Suppose that there is a length-function L on E whose 
restriction to G coincides with the natural algebraic length-function on G. We 
would get for each mEN 

2m = la(xm)1 = L(a(xm ) , 1) = L((1 ,a)(xm , 1)(1 ,a)) 

~ 2L( I ,a) + Ix m I = 2L( I , a) + m , 
which gives a contradiction. 
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Finally we consider extensions of finitely generated groups by finitely gener-
ated ones. 

Suppose that G and r are finitely generated and let S = S-I and 1: = 1:-1 

be finite systems of generators of G and r respectively. It is easily shown that 
the finite set T = {(s, 1) ; s E S} U {( 1, r); r E 1:} generates E. 

2.1.8. Definition. (1) Let 0: E Aut( G). The amplitude of 0: (with respect to 
S) is the number 

a(o:) = max 100(s)l. 
sES 

(2) A map 8: r ---- Aut( G) has polynomial amplitude if there exist positive 
constants c and r such that 

a(8(y)):::; c(1 + Iyl)' for every y E r. 
(3) A map f: r x r ---- G has polynomial growth if there exist positive 

constants c' and r' such that 

for all y" Y2 E r. 
2.1. 9. Proposition. Suppose that G and r are finitely generated and that they 
have property (RD). Let E be an extension of G by r and suppose that there 
is a pair of associated functions (p, f) such that p has polynomial amplitude 
and f has polynomial growth. Then E has property (RD). 
Proof. It suffices to show that the algebraic length-functions on G, E and r 
satisfy the conditions of Lemma 2.1.1. There exist positive constants c and r 
such that 

a(p(y)) :::; c(1 + Iyl)' 
and 

for all y, YI ' Y2 E r. 
Let then (g, y) E E and suppose that I(g, y)1 = n > O. Then there exist 

(gl ' YI)' ... , (gn' Yn) E T U T- I such that 

(g, y) ~ U (gj , Yj ) ~ (U p(Pj-l )(gj )f(P,-1 ' y) , P.) 

where Po = 1 and Pk = YI'''Yk for k > O. 
Thus 

n 
Igl:::; 2:)a(p(Pj _ I ))lgj l + If(Pj _ l , y)1) 

j=1 

< ,,+1 'I( )1'+1 _cn =c g,y 

and IYI :::; n = I(g, Y)I. Q.E.D. 
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2.1.10. Corollary. Suppose that 0: is an action of r on G of polynomial am-
plitude. If rand G have property (RD) then so does the semidirect product 
GX"r. 
2.1.11. Example. Let FI and F2 be the free groups of rank 1 and 2 respec-
tively. If x and yare the natural generators of F2 , let FI act on F2 in the 
following way: 

-I o:(x) = xyx and o:(y) = x. 
It is easily verified that 0: has polynomial amplitude and consequently F2 xQ FI 
has property (RD). But this group is a normal subgroup of finite index of the 
braid group B3 (see [BZ, Chapter 10]). Therefore B3 possesses property (RD), 
too. 
2.2. Property (RD) and amalgamated products. Let r l , r 2 and A be groups 
such that 

(1) rj admits the presentation (~jIR), for j = 1,2; 
(2) there exists an injective homomorphism fj from A to rj , for j = 

1,2. 

We recall that the amalgamated product of r l and r 2 over A is the group 
admitting the following presentation: 

(~I U ~21RI U R 2 , 1; (a) = J;(a) for every a E A). 
It is denoted by r l * A r 2 . (See [LS].) 

Choose a set Sj of representatives of left A-cosets in rj . Then every element 
g of r l * A r 2 can be uniquely written as a reduced word g = Sl ... Ska, where 
Sj E Sij\{I}, a E A and ij f= ij+1 for every j = 1, ... ,k - 1. 

Let k and I be nonnegative integers; put 
Ak = {g E r l * A r 2 ; g = Sl ... ska as a reduced word} 

and 
Ek I(g) = {(hi ,h2) E Ak x Al ;hlh2 = g}, 

where g is an element of r l * A r 2 • 

The following lemma is taken from [Pi, Lemma 3.1]: 
2.2.1. Lemma. Let k, I ,m and q be nonnegative integers such that m = 
k + I - q, and let g an element of Am' If g = SI ... sma is its reduced form, 
one has 

(1) If q = 2p is even, set gl = SI' "sk_p and g2 = Sk_p+I" ,sma. Then 
Ek I(g) = (hi' h2) E Ak x AI; there exists W E A such that hi = gl wand , p 

h2 = w- lg2}· 
(2) If q = 2p + 1 is odd, set gl = SI ... Sk_p_1 and g2 = sk_p+1 ... sma. Then 

Ek,l(g) = {(hi ,h2) E Ak x AI; there exist WE Ap and VI ,v2 E AI such that 
hi = glvlw, h2 = w- IV2g2 and V IV2 = Sk_p}' 

The rest of this paragraph will be devoted to the proof of the following the-
orem: 
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2.2.2. Theorem. The amalgamated product r l * A r 2 has property (RD) in the 
following cases: 

( 1 ) r I and r 2 have property (RD) and A is finite; 
(2) A has property (RD) and is central and offinite index in r l and r 2 . 

2.2.3. Corollary. (1) If r l and r 2 possess property (RD), then the free product 
r l * r 2 has property (RD) too. 

(2) Let p and q be positive integers such that (p, q) = 1. Then the group 
r = (x ,ylxP = yq) has property (RD). 

In both cases of Theorem 2.2.2, we have first to define a suitable length-
function L on r l * A r 2 : 

( 1) If r I and r 2 have property (RD) and if A is finite, choose a length-
function L j on fj such that 

(i) L j takes integer values; 
(ii) Lj(agjb) = Lj(g) for all gj E rj and a, bE A; 

(iii) {gj E rj ; Lj(g) = O} = A ; 
(iv) H Loo (r .) is contained in C* (r .) . 

J } r } 

The existence of such a length-function is proved in Lemma 2.1.3. 
If g E r l * A r 2 , let g = Sl ... sma be the corresponding reduced word, with 

Sj E Sj} \ {I}. Set 
L(g) = Lj( (Sl) + ... + LjJsm) . 

It is easy to verify that L is a length-function on r l * A r 2 • 

(2) If A has property (RD) and is central and of finite index in r l and r 2 , 

choose first a length-function La on A having the following properties: 
(i) La takes integer values; 

(ii) HLOO(A) is contained in C*(A); o r 
(iii) for every element a E U~=I {a E A; there exist s, t, u E Sj with st = 

ua}, one has La(a) ::; 1. 
The existence of La is ensured by the same arguments as in Lemma 2.1.3. 
Set then for each g E r l * A f2 

K(g) = m + La(a) 

where g = Sl ... sma is the reduced word associated to g. Using Lemma 2.2.1, 
it is easily shown that K(gh) ::; K(g) + K(h) for all g, hE r l * A r 2 • Finally, 
define L = K + k. Then L is a length-function on fl *A f2 such that its 
restriction L j to fj satisfies H;:(r) c C;(r). 

Here is the crucial step in the proof of Theorem 2.2.2; it is an adaptation of 
Lemma 1.3 of [Haa]: 

2.2.4. Lemma. Suppose that f l , r 2 and A satisfy one of the conditions of 
Theorem 2.2.2. Then there exist c and r > 0 such that: if k , I , mEN satisfy 
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Ik - II ~ m ~ k + I, if rp and IjI E cr l * A r 2 are supported in Ak and AI 
respectively, one has 

II(rp * IjI)XAm 112 ~ cllrpI12,r,Lllljllb, 
where L is the length-Junction defined above. 
ProoJ. The proof is decomposed into two parts corresponding to the conditions 
of Theorem 2.2.2. 

First part. Case 1.1. Suppose that m = k + I - 2p. Using Lemma 2.2.1 and 
similar arguments as in the proof of Lemma 1.3 of [Haa), one verifies that 

where N = IAI. 
Case 1.2. Suppose now that m = k + I - 1. If g = Sl ... sma belongs to Am' 
set gl = SI .. 'Sk_1 and g2 = Sk+1 .. ,sma. By Lemma 2.2.1, 

since EI I(sk) = {(VI ,v2) E Al x AI; VIV2 = Sk}' Let ik E {I ,2} be such that 
sk Erik and set rpgl,b(V) = rp(glvb) and IjIb-l,g2(V) = ljI(b- Ivg2) for every 
V E r. . Then one gets 

Ik 

Finally 

rp * ljI(g) = L(ATik (rpgl ,b)ljIb- 1 ,g)(sk)' 
bEA 

lI(rp * IjI)XA,J; ~ c~ (m;x L Ilrpgl,bll;,r,LJ) 
(gl ,bJEAk-1 xA 

. ( L IIljIb- l ,g2 11;) 
(g2 ,bJEA'_1 xA 

2 2 2 2 
~cIN IIrpl1 2rL llljllb, 

where r > 0 is large enough to ensure that H'l:; (r) is contained in C; (r) for 
j = 1,2. 

Case 1.3. Suppose finally that m = k + I - 2p - 1 with p 2: 1 . Define 

{ ( 2) 1/2 
rpl (u) = ~WEAp Irp(uw)1 if u E Ak_p ' 

o if u ~ Ak _ p ' 

{ 
( I 2) 1/2 

IjII (u) = ~WEAp IIjI(W- v)1 if v E A /_p ' 

o if v ~ A k _ p ' 
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Then lIP * ",(g)1 ~ IPI * "'I (g) for each g E Am and 111P 1 11 2,r,L ~ NlllPlb,r,L' 
and II "'d12 ~ Nil ",112. One gets 

using the result established in Case 1.2. 

Second part. Suppose now that A has property (RD) and is central and of finite 
index in r l and r 2 • 

Let A~ denote the set of elements g = SI·· ·sp' where Sj E Si j \{I} and 
ij ¥- ij +1 for j ~ p - 1. If J is a function on r l * A r 2 and if g E r l * A r 2 , 

set Jg(a) = J(ga) for every a EA. 

Case 2.1. Suppose that m = k + I - 2p. If g E Am ' it can be uniquely written 
as g = gl g2a with (gl' g2 ' a) E ALp x A,_p x A, and we have by Lemma 2.2.1 

IP * ",(g) = L (AjlPg1W ) "'w-Ig)(a) . 
WEA~ 

It gives 

II(IP * "')XA", II; ~ c; ( L IIlPg1wll;,r,LO) 
(gl ,W)EALpXA~ 

2 2 2 
~ c3111P112,r,LII",112, 

since each element h E A, can be uniquely written as h = w -I h' a with 
(w ,h' ,a) E A~ x A~_p x A. 

Case 2.2. Consider finally the case where m = k + I - 2p - 1 and let g E Am ' 
with g=glsk_pg2a where (gl,sk_p,g2,a)EALp_1 xA~xA~_p_1 xA. Set 
A(Sk_p) = {(u l ' u2) E A~ x A~; (u l U2)-1 sk_p E A}. Then Lemma 2.2.1 allows 
us to decompose Ek ,(g) as follows: 

u 
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One gets 

o where M = IAII. Q.E.D. 

Proof of Theorem 2.2.2. It suffices to show that the pair (r I * A r 2 ' L) satisfies 
property (4) of Proposition 1.2.6. Consider nonnegative integers k, I and m 
such that I k -II :::; m :::; k + I , and let 'P, IfI be elements of cr I * A r 2 supported 
in CkJ and C"L respectively. Accordingly to the definition of L (in both 

k cases), one has Ck ,L C Uj=o Aj . 
k , 

It follows that 'P = Ej=o 'P j and IfI = Ei=o lfIi' where 'Pj = 'P • XAJ and 
lfIi = IfI . XA; • 

Let us first fix j E {O, ... ,k}. Lemma 2.2.4 gives 

Consequently, 

m 2min(j ,p) 

:::; 2(j + l)c;II'Pjll;,r,L ~ ~ IIlfIj+P-ill; 
p=o i=O 

222 
:::; C2 II'P)12 ,r+I,LII 1fI1/z· 

k 

II('P * IfI)Xm ,LII2 :::; ~ II('Pj * IfI)Xm ,LII2 
j=O 

k 

:::; c2111f1112 ~ II'P j ll2,r+I,L 
j=O 

:::; c311'PII2,r+2,LlllfIl/z. Q.E.D. 
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3. EXAMPLES 

We present two families of examples: groups of polynomial growth on one 
hand, and discontinuous groups of hyperbolic isometries on the other hand. 

3.1. Groups of polynomial growth. In the whole paragraph, r is a finitely gen-
erated group equipped with its algebraic length-function. 

3.1.1. Definition. (1) r is of polynomial growth if there exist c and r E R + 
such that IBk I ::; c( 1 + k)' for every k 2: O. 

(2) If L is a length-function on r, then r is said to be of exponential growth 
with respect to L if there exist u> 0 and v > 1 such that IBk LI 2: u· v k for 
every k 2: 0 . ' 

(3) r is of exponential growth if it is of exponential growth with respect to 
its algebraic length-function. 

3.1.2. Remark. (1) By means of Lemma 1.1.4, (2) and (4), r is of polynomial 
growth as soon as there exists a length-function L on rand c, r > 0 such that 

IBk,LI ::; c(1 + k)', for every k 2: O. 

(2) If r is of exponential growth, then it is of exponential growth with 
respect to any length-function on r. 

3.1.3. Example. If r is the abelian free group of rank N 2: 1 and if its alge-
braic length-function is defined with respect to the canonical set of generators 
of r, then we have for each kEN 

IBLI = t2/(~) (7), 
1=0 

by Proposition 3.6 of [Wo]. Thus r is clearly of polynomial growth since there 
exist C1,C2 > 0 such that c1kN::; IBkl::; c2k N for every k 2: 1. However, 
in case r = Z, let L: Z -+ R + be the length-function defined by L( n) = 
log( 1 + I n I). Then r is of exponential growth with respect to L. 

3.1.4. Example. Let F N be the nonabelian free group of rank N 2: 2 , equipped 
with its natural length-function. Then FN is of exponential growth since we 
have for every k 2: 0 

k-l 
ICkl = 2N(2N - 1) , 

where 
Ck = {g E FN ; Igl = k}. 

3.1.5. Remark. (1) If r is almost nilpotent (i.e. if it contains a nilpotent sub-
group of finite index) then it is of polynomial growth [Wo]. Conversely, a 
deep theorem of M. Gromov [Gro] asserts that every finitely generated group 
of polynomial growth is almost nilpotent. 

(2) In [Gri], R. Grigorchuk exhibits finitely generated groups which are 
neither of polynomial nor of exponential growth. 
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We are going to present some characterizations of groups of polynomial 
growth in terms of the spaces H S (r) and H oo (r). Let us introduce first the 
following coefficients: 

e(r) = inf{r ~ 0; there exists c > 0 with IBkl $ ck' ,k E N} 

and 
e' (r) = inf{r > 0; there exists c > 0 with ICkl $ ck' ,k E N}. 

Note that r is of polynomial growth if and only if e(r) is finite. 
The proof of the following lemma is easy and left to the reader: 

3.1.6. Lemma. The coefficient e(r) does not depend on the algebraic length-
function. Moreover, e(r) and e' (r) possess the following properties: 

(i) e(r) = lim sup loglBnl and e'(r) = lim sup loglCnl . n logn n logn' 
(ii) e' (r) $ e(r) $ e' (r) + 1 . 

Let us now recall briefly the notion of a nuclear space (cf. [Sch or Tr]). 
Let E and F be Banach spaces. A linear mapping u from E to F is 

nuclear if there exist bounded sequences (x~)n>1 C E' , the dual space of E, 
and (Yn)n~1 c F, as well as a summable sequence (cn)n~1 C C such that 

u(x) = LCn(x~ ,x)Yn 
n~1 

for every x E E . 
If E is a locally convex space and if p is a continuous seminorm on E, set 

Np = {x E E ;p(x) = O}. Then Np is a closed subspace of E and p induces 
a norm on the quotient space Ep. Let Ep denote the completion of Ep. If q 
is a continuous seminorm on E satisfying q ~ p , the identity on E induces a 
continuous linear mapping jq,p from Eq to Ep. We say that E is nuclear if 
for every continuous seminorm p on E, there exists a continuous seminorm 
q ~ p such that j q,p is nuclear [Tr, Definition 50.1]. 

3.1.7. Theorem. If r is a finitely generated group, the following properties are 
equivalent: 

( 1) r is of polynomial growth; 
(2) Hoo(r) is contained in ll(r); 
(3) there exists p E (1,2) such that H oo (r) is contained in IP (r) ; 
( 4) there exists c > 0 such that for every pair (s, s') which satisfies s' < s - c , 

the inclusion of H S (r) in H S ' (r) is of Hilbert-Schmidt class; 
(5) Hoo(r) is nuclear. 
Moreover, if one of the above conditions is fulfilled, then the inclusions in (2) 

and (3) are continuous, and one can take c = 1 (e' (r) + 1) in (4). 
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Proof. (1)::;. (2) By hypothesis, there exist c and r > 0 such that I C k I :$ 
c(1 + k)' for each kEN. Set s = 1 + r/2. If rp E HS(r) , one has 

IIrpill = E (E Irp(g)l) :$ E (E Irp(g)12) 1/21Ci/2 
k~O gECk k~O gECk 

( )
IP 

:$ Cl/2 E E Irp(g)12(1 + k)' 
k~O gECk 

:$ c' (E { E Irp(g)12(1 + Igl),+2}) 1/2 
k~O gECk 

= c'IIrpll2,s' 

which shows that H S (r) is contained in /1 (r) . 
(2) ::;. (3) is immediate. 
(3) ::;. (1) If r is not of polynomial growth then e' (r) = 00 by Lemma 3.1.6. 

Consequently, 
logiC I 

sup I n = 00 for every k ~ 1 . 
n~k ogn 

Thus, one can find a strictly increasing sequence (nk)k~1 in N such that 
k ICnk I ~ (nk ) for every k ~ 1 . 

Let P E (1 ,2) and set 
~ Xnk 

IfI = ~ IC Illp· 
k~1 nk 

It is readily verified that IIIfIII 2,s is finite for every positive real number s, 
but that II IfI lip = 00 . 

(1)::;. (4) If sand s' satisfy s-s' > (e'(r) + 1)/2, let 8> 0 be small enough 
in order that 

s - s' > (e' (r) + 1 + 8)/2. 
Then there exists a e > 0 such that 

ICkl :$ ae(1 + k)e'H 
for every k ~ 0 . 

Set o~S) = (1 + Igl) -s 0 g , for g E r, where 0 g is the characteristic function 
of {g}. 

The family (O~S))gEr is the canonical basis of Hs(r). 

If J is the injection of H S (r) into H S ' (r) , one gets 

IIJII~s = E IIJ(o~S))II;,s' = E ICkl(1 + k)2(S'-S) 
gEr k~O 

:$ ae E(1 + k)2(S'-S)+e'H < 00 

k~O 

because 2(s' - s) + e'(r) + 8 < -1. 
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(4) => (5) If p is a continuous seminorm on HOO(r) , one can find c and 
S' > 0 such that p(rp) ~ cllrpll2,s' for every rp E HOO(I). Since the composition 
of two Hilbert-Schmidt mappings is nuclear, using (4), there exists s > S' such 
that the inclusion of H S (I) in H S ' (I) is nuclear. Then the mapping induced 
by the identity from HS(I) to H<Xi(r)p is nuclear. 

(5) => (1) If H oo (I) is nuclear, there is an s > 0 such that the inclusion Jo 
of HS(I) into HO(I) = p(1) is nuclear. In particular, Jo is Hilbert-Schmidt 
and the series 

L lIJo(o~S))II~ = L ICkl(l + k)-2s 
gEf k~O 

converges, which shows that r is of polynomial growth. Q.E.D. 

3.1.8. Corollary. If r is amenable then r has property (RD) if and only if r 
is of polynomial growth. 
Proof. If r is of polynomial growth then it has property (RD) by Theorem 
3.1.7(2). 

If r is not of polynomial growth, there exists 'II E H oo (r) which takes 
nonnegative values, such that 'II f!. II (I). As r is amenable, one has for every 
function rp E II (I) ,with rp(g) ~ 0 for every g E r 

where t is the trivial representation of r. It follows that r cannot have 
property (RD). Q.E.D. 

3.1.9. Corollary. Consider an integer n ~ 3. Then SL(n, Z) does not possess 
property (RD). 
Proof. Let 0: denote the matrix (T:) (which belongs to SL(2, Z)) and let 
r = Z2 X Z be the corresponding semi direct product. r is embedded in 

It 

the standard semidirect product Z2 )<I SL(2, Z) , which may be identified with 
the subgroup of SL( 3, Z) constituted by matrices of the form (~~), where 
U E Z2 and A E SL(2, Z). Thus r is a subgroup of SL(n, Z) for n ~ 3. By 
Proposition 2.1.1, it suffices to verify that r does not have property (RD). But 
r is solvable and of exponential growth (cf. J. Tits, Appendix to [Gro, Lemma 
3]). By the above corollary, r does not have property (RD). Q.E.D. 

3.2. Discontinuous subgroups of hyperbolic isometries. In this paragraph, X is 
a complete noncom pact Riemannian manifold with bounded strictly negative 
sectional curvature K. More precisely, there exist KI < K2 < 0 such that 
KI ~ K(x) ~ K2 for every x E X (cf. [BGS, KI]). 

For example, the hyperbolic spaces Hn(R) , Hn(q, Hn(K) and H2(O) sat-
isfy the above conditions [Mo, Chapter 19] where K is the field of quaternions 
and where 0 denotes Cayley numbers. 
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Now we describe simply connected Riemannian spaces with constant negative 
sectional curvature [Kl, 1.11.8]: Let p > 0 and n ~ 2; set fBpn = {x E Rn; 
Ixl < p} _ Then fBpn is a Riemannian space with sectional curvature K = p-2 
with respect to the metric 

ds _ 21dxl 
- l-lxI 2 j p2-

Let us consider a geodesic triangle in fBpn with angles a, P and y, let a 
(resp. b, c ) be the length of the opposite side of a (resp. p, y ). Then (a, p , y) 
and (a,b,c) satisfy the sine rule [Kl, 2.7.5] 

sina sinp sin y 
-,.--:---:---:--:- = = sinh(aj p) sinh(bj p) sinh(cj p) . 

Let r be a discontinuous group of isometries of X and let 0 be a point of 
X. Set L(g) = d(O, g(O)) for every g E r. As it is remarked in Lemma 1.1.4, 
L is a length-function on r satisfying for every x E X 

d(x, g(x)) - 2d(O, x) So L(g) So d(x, g(x)) + 2d(0 ,x). 

Though L depends on the chosen point 0, the spaces H~ (r) and H'{' (r) 
do not. 

Here is the main result of the paragraph: 

3.2.1. Theorem. If r is cocompact (i.e. X jr is compact), then r has property 
(RD). More precisely, there exists a positive constant c which depends only on 
the action of r on X such that IIqlll So cllqlll2 2 L for every finitely supported 
function qI on r. ' , 

Note that, by Theorem 6.15 of [Rag], such a group is always finitely presented. 
Thus Hoc (r) is contained in C; (r). When r is finitely generated but not 
cocompact, we do not know whether Hoc (r) is contained in C; (r) except in 
dimension 2 (Corollary 2.1.6). However, H'{'(r) is not contained in C;(r) in 
general: a simple example is supplied with the action of r = {( A 7) E M2 (R) ; 
m E Z} by homographic transformations on the Poincare half-plane H2 = {z E 
C; Im( z) > O}. In this case, one can set 

L(g) = dU, gU)) for g E r. 
If g = (A '~ ) , one has 

210g(1 + 1m!) - 210g2 So L(g) So 210g(1 + 1m!) 

since the distance between two points z and w in H2 is given by 

( Iz-WI+IZ-WI) 
d(z, w) = log I I I I' z-w - z-w 

Note that r is of exponential growth with respect to L. 
Set 

if m So 0, 
if m > O. 
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One verifies easily that IfI belongs to He; (r) , but that 

( ( 1 2q + 1 )) 2 > -2/3 
1fI*1fI 0 1 _c·q 

for every q ~ 1 . Thus IfI * IfI does not belong to 12 (r) . Finally, r is a subgroup 
of SL(2, Z) which implies that He; (SL(2, Z)) is not a convolution algebra and 
consequently not contained in C; (SL(2 ,Z)) . 

Let us now give the proof of Theorem 3.2.1. From now on we suppose that 
Xjr is compact and, without loss of generality, that the stabilizer of 0 in r is 
trivial. There is thus a r5 > 0 such that 

d(u(O) , v (0)) ~ 2r5 

for each pair of distinct elements u and v of r. Since the length-function L 
is henceforth fixed, we write 

Cr = {g E r; r - 1 < L(g) ~ r}, 

and Xr the characteristic function of Cr. Set also 

Cr a = {g E r; r - a ~ L(g) ~ r + a}, 

if r and a belong to R+. 

3.2.2. Lemma. Let c, k ,I and p be nonnegative real numbers such that p ~ 
min(k, I). Consider in X a triangle whose vertices x ,y and z satisfy 

d(x,y)=k+I-2p-c, d(x,z)=k and d(y,z)=l. 

Let x' denote the unique point on the geodesic segment [x ,y] which satisfies 
d(x ,x') = k - p. 

Then there exists a> 0 independent of k, I and p such that p ~ d(x' ,z) ~ 
p+a. 
Proof. The sectional curvature K of X satisfies K ~ - P -2 for some positive 
p. Consider then a triangle in 9Jpn with vertices x p ,y p , z p' and let x~ E 
[x p ,y p] with the following properties: 

(I) d(xp,yp)=k+I-2p-c, d(xp,x~)=k-p and d(x~,zp)=d(x',z); 
(2) the angle e at x~ between [x~, x p] and [x~, z p] is equal to the angle 

at x' between [x', x] and [x', z] . 
We adopt the following notations: 

k' =d(xp'zp)' !' =d(yp'zp)' r=d(x',z) =d(x~,zp); 

a is the angle at x p between [x p ,y p] and [x p , z p]; P is the angle at y p 
between [YP,xp] and [YP,zp]; Y1 and Y2 are the angles at zp between [zp,xp] 
and [z p' x~] and between [z p ,x~] and [z p' yp] respectively. 
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() 

FIGURE 1 

By the sine rule in fB; one gets 

sinh (~) = s~na . sinh (k') p sm () p 

= . sina . sin(~1 + Y2) • sinh (k') 
sm(Y I + Y2) sm () P 

( sin Y sin Y) sin ( kj;) sinh ( % ) 
= _._1 cos Y + cos Y _._2 . -.....:....:.+-----'.~ 

sm () 2 1 sm () sinh ( k+l-p2P-C) 

sinh((k - p)/ p) sinh(/' / p) + sinh(k' / p) sinh((/ - p - c)/ p)) 
:S sinh((k + I - 2p - c)/ p) 

since 
sin Y1 _ sinh((k - p)/ p) d sin Y2 sinh((l- p - c)/ p) 
sin () - sin(k' / p) an sin () = sinh(/' / p) 

By comparison of the sinh function with the exponential one, one has 
e'/p < c eP/ p 

- 1 

because the inequality K :S - P -2 implies k' :S k and I' :S I [KJ, 2.7.6]. Thus, 
r :S p+a where a> 0 and independent of k, I and p. Moreover, r+k-p :::: k 
and then r:::: p . Q.E.D. 

3.2.3. Lemma. Let a and b be positive constants. There exists a positive 
number N, depending only on a, b and on the action of r on X, with the 
following property: For every pair of nonnegative real numbers k and I and for 
each g E Ck+l , one has 

I {h E C k ,a ; h - 1 g E CI ,b} I :S N . 

Proof. Let (g, h) E Chi X C k ,a be such that h- I g E CI,b' Let us consider the 
geodesic triangle in X with vertices 0, g(O) and h(O). If x E X is the unique 
point on [0, g(O)] such that d(O, x) = k, Lemma 3.2.2 (with p = 0) ensures 
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the existence of a positive constant A, independent of k, I ,g and h, such 
that d(x, h(O)) ::; A. This implies that the ball B(h(O) , c5) with center h(O) 
and radius c5 is contained in B(x, A + c5). Since the different balls B(h(O) , c5) 
are disjoint, and since the sectional curvature is bounded below, the number of 
h 's in Ck ,a such that h -I g E CI,b is bounded by a constant independent of 
k ,I and g. Q.E.D. 

Now we expose the main technical result for the proof of Theorem 3.2.1 (by 
Proposition 1.2.6); it is a generalization of Lemma 1.3 of [Haa]: 

3.2.4. Proposition. There exists a positive constant c, depending only on the 
action of r on X, with the following property: If k, I, mEN satisfy Ik -II ::; 
m ::; k + I, if rp , '" E cr are supported in Ck and CI respectively, then 

II(rp * ",)xm I12 ::; cllrpIl211",11 2 • 

Proof. We distinguish two cases: (i) m = k + I , and (ii) Ik - II ::; m < k + I . 
Let us first show the following more general assertion: 

(A) If a and b are positive constants, there exists a positive number c', 
depending only on a, b and on the action of r on X, with the following 
property: If k', I' E R+, if rp', ",' E cr are supported in Ck , ,a and CI , ,b 

respectively, then 
lI(rp' * ",')Xk'+I,1I 2 ::; c'lIrp'1I211",'1I2· 

In fact, using Lemma 3.2.3, there exists N > 0 such that for every g E 

Ck'+I' , the number of h's in Ck, ,a such that h- I g E CI, ,b is bounded by N. 
Then, using the Cauchy-Schwarz inequality, we get 

hence 

, (" ( " I 2 I 2) ) lI(rp * "')Xk'+I,1I 2 ::; N gEt+/,' I (h
1

,h
2
)Et.a XC/,.b Irp (hl)1 I", (h2)1 

\ h1h2ECk ,+/, 

. '2 I 2 ::; Nllrp 11 211", 11 2, 
Thus, Case (i) is a direct consequence of (A), with a = b = 1 . 
Suppose now that Ik - II ::; m < k + I; then m = k + I - 2p for some 

half-integer p ::; min(k ,I). Let g E Cm . 

Let X'(g) be the unique point of [O,g(O)] such that d(O,x'(g)) = k -po 
Since X /r is compact, there exists r > 0 such that the distance from x' (g) to 
the orbit of 0 is at most equal to r. There then exists u g E r which satisfies 
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\ 
\ 
\ 
\ 
\ 
\ 
~ Ug(O) 

0 X'(g) g(O) 

FIGURE 2 

d(ug(O),x'(g» :::; r. Set Vg = U;I g. Then g is written in "reduced form" 
g = U g v g since the following inequalities hold: 

k - p - r :::; L(ug ) :::; k - p - r 

and 
/- p - r - 1 :::; L(vg) :::; /- p + r. 

Thanks to Lemma 3.2.2, if (hi' h2) E Ck x C, and hi h2 = g, then 
-I p-a:::;L(ug hl):::;p+a 

where a > 0 depends only on the action of r on X. Then we get that if 
g E Cm can be written as g = hi h2 with (hi' h2) E Ck x C" there exists 
necessarily WE Cp,a such that hi = ugw and h2 = w-Ivg . Set 

rp (u) = { ( I: Irp(UW)1 2) 1/2 if k - p - r :::; L(u) :::; k - p + r, 
p wECp •a 

o otherwise, 
and 

~p(v) ~ { oCt;, I~(w -'V)I') '/' if / - p - r :::; L(v) :::; / - p + r, 

otherwise. 
One has 

2 

lI(rp * If/)xmll; = I: I: rp(ugw)lf/(w-Ivg) 
gECm WECp,a 
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using Assertion (A), where N(a,r) and N(a,r+ I) come from Lemma 3.2.3. 
Q.E.D. 

Finally, using the same arguments as in Lemma 4 of [Fl, p. 213], we can 
adapt our proof of Theorem 3.2.1 and get 

3.2.5. Proposition. If r is a geometrically finite Kleinian group without para-
bolic elements, then there exists a positive constant c depending only on the 
action of r on H 3(R) such that IIqJll ~ cllqJI1 2 2 L for every finitely supported 
function rp on r. 

ApPENDIX. PROPERTY (RD) FOR LOCALLY COMPACT GROUPS 

Let G be a locally compact second countable group. Let Cc(G) denote 
the space of compactly supported continuous functions on G and L~c(G) the 
space of (classes of) measurable functions which are square-summable on every 
compact subset of G. 

If s is a real number and if L is a continuous length-function on G, the 
space H~(G) is the set of (classes of) functions qJ E L~c(G) such that 

IlqJI1 2,s,L = (fa IqJ(g)12(1 + L(g))2s d g ) 1/2 

is finite. 
The space of rapidly decreasing functions on G (with respect to L) is the 

intersection of the spaces H~ (G). We denote it by H'; (G). It is a Frechet 
space for the topology induced by the family of norms (11'1I 2,s,L)sER' 

A.I. Definition. G is said to have property (RD) if there exist a continuous 
length-function L on G and c and s > 0 such that IIA(rp)11 ~ cllqJI1 2,s,L for 
every function qJ E Cc (G) . 

A.2. Proposition. If G has property (RD) and if L is a continuous length-
function on G which satisfies the conditions of Definition A.I, then H'; (G) is 
an involutive algebra (with respect to natural convolution and involution) which 
is identified by the left regular representation with a dense subalgebra of C; (G) . 

The proof of Proposition A.2 is the same as that of Lemma 1.2.4. 
We are going to show 

A.3. Proposition. Let G be a second countable locally compact unimodular 
group and let L be a continuous length-function on G. Suppose that G contains 
a discrete cocompact subgroup r such that HLoo (n is contained in C* (n, where o r 
La is the restriction of L to r. Then G has property (RD). 

A.4. Corollary. If G is a connected noncompact semisimple Lie group of real 
rank one andfinite center, then G possesses property (RD). (Compare with [He].) 
Proof of Corollary. Let K be a maximal compact subgroup of G and L a 
K -invariant length-function on G coming from a Riemannian metric on the 
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homogeneous space G / K , i.e. L(g) = d(xo' g(xo)) for every g E G, where 
Xo E G / K. If r is a cocompact subgroup of G then He;: (r) is contained in 
C; (r) by Theorem 3.2.1. Q.E.D. 
Proof of Proposition A.3. If X = r\G denotes the set of right cosets of G 
modulo r then X is compact and possesses a G-invariant probability measure 
J.l. By Theorem 8.11 of [Var], there exists a regular Borel section a for X; 
more precisely, '(J is a Borel mapping from X to G satisfying 

( 1) 1C 0 a = id x ,where 1C is the canonical projection of G onto X; 
(2) a(X) is relatively compact. 

Note that the map rp -+ JxC~{Er rp(ya(x)))dJ.l(x) , defined on Cc(G) , is a Haar 
measure on G. 

By hypothesis, there exist c and s > 0 such that 

11ft *f2 11 2 ::; cllf1Ib,s,LJf2 11 2 
for all 1;,1; E Cr. 

Let rp, IfI be elements of Cc( G). We have 

IIA(rp)lfIlI; = j (~ j {~rp(pa(Y))IfI(a(y)-lp-Iya(x))} dJ.l(Y) 2) dJ.l(X) 
x fEr x pEr 

::; j (~j {~rp(pa(Y))IfI(a(y)-lp-IYa(x)) 2 dJ.l(Y)) dJ.l(x) 
x YEr x pEr 

= j j (~ ~ rpy(P)lfIy,)p-I y) 2) dJ.l(Y) dJ.l(X) 
x x I'Er pEr 

= Ix Ix IIAr( rpy) IfIv,x II; dJ.l(Y) d J.l(x) 

::; c2 Ix Ix IIrpyil;,s,LOIl lfIy ,xII; dJ.l(Y) dJ.l(x) 

where rpy(Y) = rp(ya(y)) and lfIy,)Y) = lfI(a(y)-lya(x)) for every y E r. 
Thus we get 

IIA(rp)IfIII;::; c2 Ix IIrpyll;,S,Lo (Ix IIlfIy,xll; dJ.l(X)) dJ.l(Y) 

,; c'II\'III; Ix (~I~(ya(Y))I'(1 + L(Y))" ) dp(y) 

2 2 2 2 
::; c M IIrpIl2,s,LIl1fl1b, 

where M = sUPXEX(l + L(a(x)))s is finite since a(X) is relatively compact 
and L is continuous. Q.E.D. 

We do not know whether the converse of Proposition A.3 holds. 
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