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Rapid denoising of pyrosequencing amplicon data: exploiting 
the rank-abundance distribution
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Abstract

We developed a fast method for denoising pyrosequencing for community 16S rRNA analysis. 

We observe a 2–4 fold reduction in the number of observed OTUs (operational taxonomic units) 

comparing denoised with non-denoised data. ~50,000 sequences can be denoised on a laptop 

within an hour, two orders of magnitude faster than published techniques. We demonstrate the 

effects of denoising on alpha and beta diversity of large 16S rRNA datasets.
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Pyrosequencing1 has revolutionized microbial community analysis by allowing the 

simultaneous assessment of hundreds of microbial communities in multiplex with sufficient 

depth to resolve meaningful biological patterns2. These techniques have been used to gain 

striking new insight into microbial processes on scales ranging from continents3 to within an 

individual’s body4.

Although powerful new analysis tools such as GAST5, Mothur6, and QIIME7 greatly 

streamline the process of interpreting microbial community information obtained by 

pyrosequencing, especially similarities and differences among communities, substantial 

questions remain about the suitability of pyrosequencing to address questions concerning 

alpha diversity, the amount of diversity within each individual community and non-

phylogenetic beta-diversity measures (phylogenetic beta-diversity measures such as 

UniFrac, which measure similarities between different communities, are relatively robust to 

these issues8). In particular, noise introduced during pyrosequencing and the PCR 

amplification stage can inflate estimates of the number of OTUs (chosen at the 97% identity 

level) in a given habitat by orders of magnitude9, 10. The current state-of-the-art is to reduce 
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noise by clustering the flowgrams (patterns of intensities in each read) before conversion to 

sequences to eliminate issues due to homopolymer read errors10, yet this approach is 

exceedingly computationally expensive and beyond the reach of most individual 

investigators who do not have access to large-scale computing facilities.

Methods

Inability to accurately determine which sequences are present in a sample, and hence the 

abundances of rare taxa, greatly inhibits our ability to infer important ecological parameters 

such as rank-abundance curves, yet ironically the portion of the rank-abundance curve that 

can be inferred, i.e. of the common taxa, provides a solution to the conundrum of the 

expense of denoising. Empirical rank-abundance curves, especially from human-associated 

samples, tend to be dominated by a relatively small number of abundant taxa. Given this 

feature of actual microbial communities, performing all-on-all comparisons for clustering is 

exceedingly inefficient: instead, a subset of reads suffices to identify the common OTUs, 

which can then be iteratively removed by recruitment to an existing cluster. Consequently, 

we can rapidly determine the OTUs that are most likely to be abundant, concentrate initially 

on comparing reads to the small number of abundant OTUs (removing matches from the 

analysis), and then cluster only the leftover reads representing more divergent sequences.

We can thus reduce the total number of sequence comparisons using empirical features of 

the abundance distribution of real datasets as follows. First, we devised a fast pre-filter, 

removing reads that are strict prefixes of other reads, and compute an initial sequence 

distribution. We then sort the prefix clusters in descending order of abundance, and use this 

initial distribution to cluster similar reads, comparing each additional unclustered read to the 

most abundant clusters first because we expect the abundant clusters to yield a larger 

number of erroneous near-matching reads due to their numerical dominance alone. For a 

more detailed description of the algorithm, see Supplementary Methods. A similar method 

of pre-clustering on the sequence level and subsequent sequence clustering along the 

abundance distribution has been proposed recently11.

The method introduced here is a major improvement over previous flowgram-based 

denoising routines10 in terms of compute resources, yet retains the advantage that singletons 

are not discarded entirely, allowing exploration of the rare biosphere12. Previously, a mid-

size 24-core cluster was needed to analyze a small dataset of around 40,000 sequences in 

around 10 hours. Our method allows the same dataset to be denoised in less than an hour on 

a single laptop computer (Table S1). We can also denoise full 454 runs with 500,000 

sequences on a mid-size cluster in 1 day. We can thus address questions in community 

ecology that were previously intractable.

Applying these new methods to the most comprehensive survey of human-associated body 

habitats yet performed4, we find that denoising produces a substantial decrease in the 

diversity both at the OTU level and in terms of the phylogenetic diversity (the total branch 

length associated with each sample on a phylogenetic tree14). However, the results from the 

non-denoised (but filtered) and denoised data are highly correlated (r2 = 0.97, P <10−300 for 

phylogenetic diversity), suggesting that relative results concerning diversity within each 

Reeder and Knight Page 2

Nat Methods. Author manuscript; available in PMC 2011 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample are robust to the types of errors introduced by pyrosequencing (Fig. 1a–f). 

Interestingly, in spite of this high correlation, denoising changes the relative order of OTU 

richness of individual body habitats. Although the gut exhibits the highest OTU richness 

without denoising, it falls back into the middle ranks after denoising. This holds true for 

both Chao1 estimates and the phylogenetic diversity (Fig. 1a,d and 1b,e). The drastic 

reduction after denoising might be an effect of the sequence composition of the dominant 

OTUs in the gut (see Supplementary Methods for a more detailed discussion).

Similarly, when clustering the samples using UniFrac, the non-denoised and denoised reads 

produce very similar patterns (Fig. 1g–h), reinforcing the point that errors introduced into 

each sample by noise or chimeras have little effect on beta diversity because they inflate the 

distances among all samples rather than introducing artifactual similarities between specific 

pairs of samples15.

We conclude that the availability of these new methods will make more accurate 

assessments of alpha diversity available to a wide range of researchers (especially in 

conjunction with improved chimera-checking methods such as ChimeraSlayer, http://

microbiomeutil.sourceforge.net/), and will greatly improve our understanding of microbial 

communities in habitats with scales ranging from global to extremely personal. The 

efficiency of the new techniques and the fact that they can change conclusions about the 

relative diversity in different habitats suggests that they should be applied routinely in all 

pyrosequencing studies where estimates of diversity within each sample are the goal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparisons of non-denoised data (a–c) to denoised data (d–f) for alpha diversity for the 

Body Habitat study, and comparisons of beta diversity (g–h). Rarefaction plots of the “Body 

Habitat” study4 show a 3 to 4 fold decrease in the Chao1 estimate when comparing non-

denoised (a) to denoised (b) data. Interestingly, denoising changes the relative order of OTU 

richness of individual body habitats: the gut exhibits the highest OTU richness without 

denoising, but falls back into the middle ranks after denoising. This holds true for both 

Chao1 estimates and phylogenetic diversity (PD). c) Scatter plots of alpha diversity metrics 

per sample show a high correlation overall, but a significant deviation from the average for 

gut and the oral cavity. (EAC = external auditory canal). g) Procrustes analysis of denoised 

and filtered unweighted UniFrac principal coordinates analysis (PCoA). Bars connect 

identical samples in the plot with the red side of the bar pointing towards the denoised data. 

There is no qualitative difference between denoised and filtered in the overall clustering, yet 

on a smaller scale we observe that the denoised samples are oriented more to the center than 

the filtered ones. This shows that denoising removes some of the artificial distance between 

samples introduced by false OTUs. h) Unweighted UniFrac distances for all pairs of samples 

for the denoised and filtered data set are highly correlated (r2=0.96). From the regression, it 

is clear that for similar samples noise has a greater effect than it has for dissimilar samples. 

The color bar gives the number of pairwise comparisons at a particular point.
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