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We investigate the spatiotemporal properties of a lattice of chaotic maps whose coupling connections are

rewired to random sites with probability p. Keeping p constant, we change the random links at different

frequencies in order to discern the effect �if any� of the time dependence of the links. We observe two different

regimes in this network: �i� when the network is rewired slowly, namely, when the random connections are

quite static, the dynamics of the network is spatiotemporally chaotic and �ii� when these random links are

switched around fast, namely, the network is rewired frequently, one obtains a spatiotemporal fixed point over

a large range of coupling strengths. We provide evidence of a sharp transition from a globally attracting

spatiotemporal fixed point to spatiotemporal chaos as the rewiring frequency is decreased. Thus, in addition to

geometrical properties such as the fraction of random links in the network, dynamical information on the time

dependence of these links is crucial in determining the spatiotemporal properties of complex dynamical

networks.
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I. INTRODUCTION

Coupled map lattices �CMLs� were introduced as a simple

model capturing essential features of nonlinear dynamics of

extended systems �1�. A very well-studied coupling form in

CMLs is nearest-neighbor coupling. While this regular net-

work is the chosen topology of innumerable studies, there

are strong reasons to revisit this fundamental issue in the

light of the fact that some degree of randomness in spatial

coupling can be closer to physical reality than strict nearest-

neighbor scenarios �2–4�. In fact many systems of biological,

technological, and physical significance are better described

by randomizing some fraction of the regular links. So here

we will study the spatiotemporal dynamics of CMLs with

some of its coupling connections rewired randomly �5,6�.
Now these random links in the network could be static or

dynamic. Static links imply that the connectivity is invariant

throughout the evolution of the system, i.e., the coupling

connections are constant in time. Dynamic links on the other

hand imply that the random links are switched around. So at

any instant of time, both kinds of rewiring have the same

fraction of random links. However, for static connections the

random links are unchanged in time, while for dynamic re-

wiring the random links are time varying. Dynamic rewiring

is relevant, for instance, in a network of neurons or a socio-

economic network, where the connectivity matrix can

change over time.

Here we study effects of rewiring the network with dif-

ferent frequencies, interpolating between fast dynamic rewir-

ing and static rewiring limits. So we investigate spatiotem-

poral effects of random rewiring, where the rewirings are

updated at the time scale of the nodal dynamics, to rewirings

that are much slower than the nodal dynamics and approach

the static limit. We will especially demonstrate how quick

changes in the connections enhances spatiotemporal regular-

ity, as compared with slow network changes.

The important point is that at any particular instant of

time the connectivity properties of the network with

quenched randomness looks identical to that of the dynami-

cally rewired network. However the crucial feature is the

change in the connections. Namely, while the average num-

ber and type of links remain the same, the dynamically re-

wired network evolves under rapidly changing local connec-

tivity environments. So simply knowing the rewiring fraction

p is not enough to capture the spatiotemporal dynamics of

large interactive systems. It is very crucial in some situations

to know whether the randomness in the coupling connections

of the network is quenched or dynamic. The purpose of this

study is to underscore this important issue that has not been

discussed adequately in the literature �7�.
In Sec. II we introduce our model and describe all the

parameters. In Sec. III we present our numerical results dem-

onstrating and characterizing the enhancement of stability

due to fast rewiring. Section IV introduces an approximate

analytical method to understand the basic mechanisms be-

hind the observed phenomena. Finally, we draw our conclu-

sions in Sec. V.

II. MODEL

We consider here a one-dimensional ring of coupled

strongly chaotic logistic maps. The sites are denoted by i

=1, . . . ,N, where N is the linear size of the lattice. On each

site is defined a continuous state variable denoted by xn�i�,
which corresponds to the physical variable of interest. The

evolution of this lattice, under standard nearest-neighbor in-

teractions, in discrete time n is given by

xn+1�i� = �1 − ��f�xn�i�� +
�

2
�xn�i + 1� + xn�i − 1�� . �1�

� is the strength of coupling. The local on-site map is chosen

to be the fully chaotic logistic map f�x�=4x�1−x�. This map
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has widespread relevance as a prototype of low-dimensional

chaos.

We study the above system with its coupling connections

rewired randomly in varying degrees. Namely, a fraction p of

randomly chosen sites in the lattice will be connected to 2

other random sites, instead of their nearest neighbors. That

is, a fraction p of nearest-neighbor links are replaced by

random links. The case of p=0 corresponds to the usual

nearest-neighbor interaction, i.e., a regular network, while

p=1, corresponds to a completely random coupling, i.e., a

random network.

In this work, we introduce a time scale for the random

rewiring. We rewire the network after r dynamical updates of

the nodal maps, namely the rewiring time period of the net-

work is r. Thus a new connectivity matrix is formed, with the

same fraction p of random links, every r time steps. Alter-

nately, we can consider that the random links persist for r

time dynamical updates of the local maps.

We investigate the asymptotic dynamics of this network,

evolving from random initial conditions of x�i�, when the

following parameters are varied: �i� fraction of random links

p, �ii� coupling strength �, and �iii� the time period for

switching the random links r which gives all the cases from

very fast rewiring for low r to very slow rewiring for high r.

III. RESULTS

First, we study the stability of the spatiotemporal fixed

point, namely, the state where all elements are steady at x*,

i.e., xn�i�=x* for all i and n �after transience�. Here x*

=3 /4 is the fixed point solution of the local map, which is

strongly unstable for the isolated map.

Figure 1 displays the state of a representative site in the

lattice, as the rewiring time period r is varied. It is evident

that there exists a sharp transition, as the rewiring time pe-

riod r increases, from simple spatiotemporal order, a fixed

point, to spatiotemporal chaos.

We denote as rc the largest rewiring time period that al-

lows the spatiotemporal fixed point to be stable. For the pa-

rameters chosen in Fig. 1, we find that rc=33. For slower

rewiring r�rc, the system becomes essentially chaotic. So

networks rewired at time scales comparable to the nodal dy-

namics yield spatiotemporal order, while slow changing net-

works and static networks are spatiotemporally chaotic.

Next we analyze the state of a representative site in the

lattice, as the coupling strength � is varied, for two different

values of r �fast and slow, respectively� �Fig. 2�. It is evident

that the system is stabilized at a fixed point for a much larger

range of coupling strengths for faster network rewiring, com-

pared to slower ones.

Figure 3 displays the state of a representative site in the

lattice, as the fraction of random links p is varied, again for

two different values of r. Again it is clear that the system is

stabilized at a fixed point for a much larger range of p for

faster network rewiring.

Now we study the critical value of r above which there is

no spatiotemporal regularity. Recall that for all r�rc the

system stabilizes to a spatiotemporal fixed point, while for

r�rc this simple spatiotemporal order is lost. So rc indicates

how slowly the connections can be rewired in order to still

achieve spatiotemporal regularity. We analyze rc as a func-

tion of both the fraction of random links p and the coupling

strength � �Fig. 4�.
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FIG. 1. Bifurcation diagram displaying the dynamics of a rep-

resentative site vs rewiring period r for �=0.85, p=0.65. Here N

=50.
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FIG. 2. Bifurcation diagram displaying the dynamics of a rep-

resentative site vs coupling strength �, for the rewiring time periods

r=100 �top� and 1 �bottom�. Here the rewiring probability p=0.65.
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From Fig. 4 it is evident, especially, while there is no

spatiotemporal regularity beyond r=4 for �=0.72, we have

spatiotemporal order for rewiring as slow as r=500 when �
=0.92. So rc increases significantly with increasing coupling

strengths. Namely, for strongly coupled systems the network

need not be rewired that frequently, in order to obtain a spa-

tiotemporal steady state. So there is a sharp transition in the

� space, from a situation where spatiotemporal order is ob-

tained only in networks dynamically rewired at the timescale

of the local dynamics, to a situation where spatiotemporal

order emerges even in �almost� static networks.

IV. ANALYSIS

We now analyze system �1� to account for the much en-

hanced stability of the homogeneous phase under fast chang-

ing random connections. The only possible solution for a

spatiotemporally synchronized state here is the one where all

xn�i�=x* and x*= f�x*� is the fixed point solution of the local

map. For the case of the logistic map x*=4x*�1−x*�=3 /4.

To calculate the stability of the lattice with all sites at x*,

we construct an average probabilistic evolution rule for the

sites, which becomes a sort of mean-field version of the dy-

namics. In our formulation, the average influence of the ran-
dom connections on the evolution of the local maps is given

by peff, and the influence of the nearest neighbors is given by

�1− peff�. So peff provides the “weight” for the random time-

varying coupling and �1− peff� provides the “weight” for the

regular static coupling. Clearly peff is determined by the re-

wiring probability p and the rewiring time period r.

In terms of peff the averaged evolution equation of a site i

then reads

xn+1�i� = �1 − ��f�xn�i�� + �1 − peff�
�

2
�xn�i + 1� + xn�i − 1��

+ peff

�

2
�xn��� + xn���� , �2�

where � and � are two random numbers between 1 and N.

Now in order to calculate the stability of the synchronized

spatiotemporal fixed point, we linearize Eq. �2�. Replacing

xn�j�=x*+hn�j�, and expanding to first order gives

hn+1�j� = �1 − ��f��x*�hn�j� + �1 − peff�

�
�

2
�hn�j + 1� + hn�j − 1�� + peff

�

2
�hn��� + hn���� .

�3�

As a first approximation one can consider the sum over the
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FIG. 3. Bifurcation diagram displaying the dynamics of a rep-

resentative site vs fraction of random links p, for rewiring time

period �top� r=100 and �bottom� r=1. Here the coupling strength

�=0.85.

FIG. 4. �Color online� Density plot of rc in the �-p plane, where

rc is the largest rewiring time period which still yields spatiotem-

poral fixed points. The blue �dark gray� end of the spectrum corre-

sponds to rc=1, namely, the case where very fast rewiring is re-

quired in order to obtain a spatiotemporal fixed point. The red �light

gray� end of the spectrum corresponds to rc=1000, namely, the case

where very slow rewiring is sufficient to obtain a spatiotemporal

fixed point. The intermediate scenarios �namely 1�rc�1000� cor-

respond to the colors �gray shades� in between, with increasingly

static networks approaching the red end �light gray� of the color bar

�grayscale�. The white region covers the set of �-p values which do

not yield spatiotemporal order even at the fastest physically signifi-

cant rewiring rate, namely, for no value of r�r�1� does one obtain

a fixed point here. Observe that the transition from small rc �blue/

dark gray� to very large rc �red/light gray� is sharp.
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fluctuations of the uncorrelated random neighbors to be

equal to zero. This gives the approximate evolution equation

hn+1�j� = �1 − ��f��x*�hn�j� + �1 − peff�

�
�

2
�hn�j + 1� + hn�j − 1�� . �4�

This approximation is clearly more valid for small peff.

For stability considerations one can diagonalize the above

expression using a Fourier transform �hn�j�
=�q�n�q�exp�ijq�, where q is the wave number and j is the

site index�, which finally leads us to the following growth

equation:

�n+1�q�

�n�q�
= f��x*��1 − �� + ��1 − peff�cos q �5�

with q going from 0 to 	. The condition for stability depends

on the nature of the local map f�x� through the term f��x�.

Considering the fully chaotic logistic map with f��x*�=−2,

one finds that the growth coefficient that appears in this for-

mula is smaller than one in magnitude if and only if

1

1 + peff

� � � 1. �6�

This inequality implies that the coupling strength �* after

which the spatiotemporal fixed point is stabilized, is given by

�* =
1

1 + peff

�7�

and the range of the spatiotemporal fixed point R is

R = 1 − �* =
peff

1 + peff

. �8�

For small peff �peff
1� the standard expansion yields

R � peff. �9�

Now, since peff is the effective probability that a coupling

link is random, peff should be directly proportional to the

probability of random rewiring p. In addition, the probability

of having a random connection is an increasing function of

rewiring frequency f , where f =r−1.

So we can start with the ansatz that peff=pg�f�, where the

function g, for consistency with the fully dynamic and static

limits, should have value 1 when f =1 and value 0 when f

=0. So g�f� can be assumed to be power law, giving the

ansatz

peff = pf�. �10�

Figure 5 displays the dependence of the numerically ob-

tained values of the range of the spatiotemporal fixed point R

on f . Fitting this to Eq. �10� yields ��0.42.

In conclusion, our numerics appear to be consistent with

the ansatz that the effective “strength” of the random links is

given by pf�, where p is the fraction of random links in the

system at any instant of time and f is the frequency of ran-

dom rewiring. Some effects due to fluctuations are lost, but

as a first approximation we have found this approach quali-

tatively correct, and quantitatively close to the numerical re-

sults as well �5�.

V. CONCLUSIONS

We have investigated spatiotemporal properties of a lat-

tice of coupled strongly chaotic maps whose coupling con-

nections are rewired to random sites with probability p.

Keeping p constant, we change the random links at different

frequencies, in order to discern the effect �if any� of the time

dependence of the links.

Our main findings are when the network is rewired

slowly, namely, when the random connections are quite

static, the dynamics of the network is spatiotemporally cha-

otic. However, when these random links are switched around

fast, namely, the network is rewired frequently, one obtains a

spatiotemporal fixed point over a large range of coupling

strengths.

We provide evidence of a sharp transition from a globally

attracting spatiotemporal fixed point to spatiotemporal chaos

as the rewiring frequency is decreased. So the system be-

haves effectively as a static network with quenched random-

ness after a certain critical rewiring time period.

We also analyzed the stability of the spatiotemporal fixed

point of this network of strongly chaotic maps. Our analysis

is consistent with the ansatz that the effective “strength” of

the random coupling is given by pf�, where p is the fraction

of random links in the system at any instant of time and f is

the frequency of random rewiring. In summary, in addition to

geometrical properties such as the fraction of random links in

the network at any instant of time, dynamical information on

the time dependence of these links is crucial in determining

the spatiotemporal properties of complex dynamical net-

works.
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FIG. 5. R / p vs f , where R is the range of the spatiotemporal

fixed point, p is the rewiring probability, and f =1 /r is the rewiring

frequency. Here p=0.05.

MONDAL, SINHA, AND KURTHS PHYSICAL REVIEW E 78, 066209 �2008�

066209-4



ACKNOWLEDGMENTS

A.M. and J.K. would like to thank the Federal Ministry of

Education and Research of the Federal Republic of Germany
for financially supporting parts of this work through the re-
search project GoFORSYS.

�1� Theory and Applications of Coupled Map Lattices, edited by

K. Kaneko �Wiley, New York, 1993�, and references therein.

�2� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440

�1998�.

�3� A.-L. Barabasi, Linked: The New Science of Networks �Persus

Publishing, Boston, 2002�; T. Gross and B. Blasius, J. R. Soc.,

Interface 5, 259 �2008�.

�4� G. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscil-

latory Networks �Springer, Berlin, 2007�.

�5� S. Sinha, Phys. Rev. E 66, 016209 �2002�.

�6� P. M. Gade and C.-K. Hu, Phys. Rev. E 62, 6409 �2000�; Z.

Gao, B. Hu, and G. Hu, ibid. 65, 016209 �2001�; M. Barahona

and L. M. Pecora, Phys. Rev. Lett. 89, 054101 �2002�; J. Jost

and M. P. Joy, Phys. Rev. E 65, 016201 �2001�; M. G.

Cosenza and K. Tucci, ibid., 65, 036223 �2002�; P. R. A. Cam-

pos, V. M. de Oliveira and F. G. Brady Moreira, ibid. 67,

026104 �2003�; P. M. Gade and S. Sinha, Int. J. Bifurcation

Chaos Appl. Sci. Eng. 16, 2767 �2006�; Maruthi Pradeep

Kanth Jampa, A. R. Sonawane, P. M. Gade, and S. Sinha,

Phys. Rev. E 75, 026215 �2007�; F. Radicchi and H. Meyer-

Ortmanns, ibid. 74, 026203 �2006�; T. Gross, Carlos J. Dom-

mar D’Lima, and B. Blasius, Phys. Rev. Lett. 96, 208701

�2006�; S. Rajesh, S. Sinha, and S. Sinha, Phys. Rev. E 75,

011906 �2007�.

�7� There have been very few studies focussing on time-varying

links. Some of these are I. Belykh, V. Belykh, and M. Hasler,

Physica D 195, 188 �2004�; R. E. Amritkar and C. K. Hu,

Chaos 16, 015117 �2006�; C. Zhou, and J. Kurths, Phys. Rev.

Lett., 96, 164102 �2006�; M. Chen, Y. Shang, Y. Zou, and J.

Kurths, Phys. Rev. E 77, 027101 �2008�; A. Arenas, A. Diaz-

Guilera, J. Kurths, Y. Moreno, and C. Zhou �to be published�.

RAPIDLY SWITCHED RANDOM LINKS ENHANCE… PHYSICAL REVIEW E 78, 066209 �2008�

066209-5


