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1 Introduction

This article is devoted to the study of the behavior of the solutions of an elliptic equation
with nonlinear boundary conditions of the type

{

−∆u + u = f(x, u), in Ωǫ

∂u
∂n

+ g(x, u) = 0, on ∂Ωǫ.
(1.1)

when the boundary of the domain varies very rapidly as a parameter ǫ → 0. We consider
a family of uniformly bounded smooth domains Ωǫ ⊂ IRN , 0 ≤ ǫ ≤ ǫ0, which satisfy both
Ωǫ → Ω ≡ Ω0 and ∂Ωǫ → ∂Ω in the sense of Hausdorff, that is dist(Ωǫ,Ω)+dist(∂Ωǫ, ∂Ω) → 0
as ǫ → 0, where dist is the symmetric Hausdorff distance of two sets in IRN ( dist(A,B) =
supx∈A infy∈B |x − y| + supy∈B infx∈A |x − y|). Observe that this setting does not allow the
possibility of perforated domains. We will look at this problem from the perturbation of
domain point of view and we refer to Ω as the unperturbed domain and Ωǫ as the perturbed
domains. We also assume that the nonlinearities f, g : U × IR → IR are continuous in
both variables and C2 in the second one where U is a fixed and smooth bounded domain
containing all Ω̄ǫ, for all 0 ≤ ǫ ≤ ǫ0.

Although the domains behave continuously as ǫ → 0, the way in which the boundary
∂Ωǫ approach ∂Ω may not be smooth. In particular, this setting includes the case where the
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boundary ∂Ωǫ presents a highly oscillatory behavior as ǫ → 0, as it is the case of boundary
homogenization problems. The interaction of a highly oscillatory behavior of the boundary
and the nonlinear boundary condition in equation (1.1) is the main objective of the present
work. The results of this paper and of the continuation of this one, see [3], where announced
in [2].

In the present paper we will consider a class of boundary perturbation which, roughly
speaking, is characterized by the fact that locally around each point x0 ∈ ∂Ω and for all

0 < r ≤ 1, we have
|∂Ωǫ ∩ B(x0, r)|

|∂Ω ∩B(x0, r)|
≤ C, for some constant C independent of x0, r and ǫ,

where we denote by | · | the (N − 1)-dimensional measure. Observe that this is the case for
instance if N = 2 and ∂Ω is written locally around certain point as the graph of a function
y = ϕ(x) and ∂Ωǫ is written locally around the same point as the graph of the function
y = ϕ(x)+ ǫ sin(xǫ−α) for some 0 ≤ α ≤ 1. Actually, the fact that α ≤ 1 guarantees that the
quotient above is bounded by a constant C. Moreover, if 0 < α < 1 then C can be chosen
arbitrarily close to 1 for ǫ small enough but if α = 1, then C is not close to 1 even for ǫ small.

In the subsequent paper, [3], we will treat the case where we allow
|∂Ωǫ ∩B(x0, r)|

|∂Ω ∩ B(x0, r)|
→ +∞,

which is the case of α > 1 in the example above.
As a matter of fact, the behavior of the quotient above as ǫ → 0 is of fundamental

importance when trying to understand the limit behavior of problem (1.1) when ǫ→ 0. We
will see that under certain conditions, the limiting equation of (1.1) is given by

{

−∆u + u = f(x, u), in Ω
∂u
∂n

+ γ(x)g(x, u) = 0, on ∂Ω.
(1.2)

where the function γ is related to the behavior of the quotient above and it satisfies γ ∈
L∞(∂Ω) and γ ≥ 1. The precise hypotheses on the domains and the exact definition of the
function γ are stated in hypotheses (H) and (F) in Section 2.

We will be able to prove a “convergence result”. Actually, we will show that the solutions
of (1.1) converge to the solutions of (1.2) in H1 and also in Cβ, for some β > 0. Moreover,
we will prove that the convergence of equilibria is also obtained in terms of the spectra of the
linearizations of the equations around the equilibria, that is, if u∗ǫ is a sequence of equilibria
of (1.1) which converge to u∗0, an equilibrium of (1.2), then the eigenvalues and eigenfunctions
of the linearization of (1.1) around u∗ǫ converge to the eigenvalues and eigenfunctions of the
linearization of (1.2) around u∗0. Also, we will prove a “uniqueness result”, in the sense that
for any hyperbolic equilibrium of the limiting problem (1.2), (hyperbolic in the sense that
the eigenvalues of the linearized operator of (1.2) around the equilibrium do not intersect the
imaginary axis), then there exists one and only one equilibrium of (1.1) in its neighborhood.
In particular, if all the equilibria of (1.2) are hyperbolic, then there exists only a finite number
of them and for all ǫ small enough, problem (1.1) has exactly the same number of equilibria
and they are close to the equilibria of (1.2). These results are stated in Theorem 2.4 and
Theorem 2.6 in Section 2.

The behavior of solutions of elliptic partial differential equations in the presence of bound-
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ary oscillations is a subject that has been addressed in the literature by different authors.
We would like to mention [18] for a general reference of homogenization, including boundary
homogenization. Also, the work [11] deals with boundary homogenization with different
boundary conditions and the coefficients appearing in the boundary condition depend also
on the parameter ǫ. In [16], the authors treat homogeneous Dirichlet boundary conditions
for the Poisson problem in the presence of boundary oscillations and they are able to obtain
good estimates on the asymptotic expansion of the solution in terms of the parameter ǫ.
We also refer to [17] for an interesting application to a climatization problem. The articles
mentioned above and most of the references in the literature address linear problems.

When g ≡ 0, that is, we have a homogeneous Neumann boundary condition, the results
from [4] show that under the conditions on the perturbation of the present paper (actually
only condition (H) would be needed), the Neumann boundary condition is also preserved
in the limit, that is, we always have that the limit problem is ∆u + f(x, u) = 0 in Ω0 with
boundary condition ∂u

∂n
= 0.

In [12] the authors study linear and nonlinear problems but with a linear Robin boundary
conditions of the type ∂u

∂n
+ β0u = 0 with β0 > 0. That is, they assume g(x, u) = β0u. They

consider different classes of domain perturbations and the third type they study (Theorem
4.4 in [12]) is related to our present work. They show that the limit behaves like in the
present paper, that is, the limiting boundary condition is of the type ∂u

∂n
+ β0γu = 0 and γ

is related, as we mentioned above, to the limit of the relative surface measure of ∂Ωǫ with
respect to ∂Ω. With the techniques of [12] it is not possible to treat the situation of a general
nonlinear boundary condition of the type ∂u

∂n
+ g(x, u) = 0. This is mainly due because with

the hypotheses of the domain perturbation from [12] they need to use an inequality due to
Maz’ja, (see [15] and also Theorem 2.2 of [12]) which is only applicable when the boundary
condition is dissipative, like in the case β0 > 0. In our case, we have a little more restrictive
perturbations than their third case, but we allow more general boundary conditions, in
particular nonlinear ones with nondefined sign nor dissipative properties. Moreover, we also
obtain the convergence in stronger norms, like H1 and Hölder norms and we also are able to
show a uniqueness result, as we mentioned above.

In a different context although related to this article and to [3], the work [10] studies how
the non slip condition of the type u · n = 0 of a fluid passing through a wall with rugosity
converges to the condition u = 0 as the rugosity becomes finer and finer.

This paper is organized as follow: in Section 2, we define the domain perturbation we
will consider and state our main results (Theorem 2.4 and Theorem 2.6). In Section 3, we
make the considerations about the equations and develop the main functional techniques we
will use to prove the results. In Section 4 we consider some important technical results and
in Section 5 we prove the main results.

2 Setting of the problem and main results

We consider a family of smooth, bounded domains Ωǫ ⊂ RN , N ≥ 2, for 0 ≤ ǫ ≤ ǫ0, for some
ǫ0 > 0 fixed and we regard Ωǫ as a perturbation of the fixed domain Ω ≡ Ω0. We consider
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the following condition on the domain

(H) i) for all K ⊂ Ω, K compact, there exists ǫ(K) > 0 such that K ⊂ Ωǫ for 0 < ǫ < ǫ(K).

ii) There exists a finite open cover {Ui}m
i=0 of Ω such that U 0 ⊂ Ω, ∂Ω ⊂ ∪m

i=1Ui and
for each i = 1, . . . , m, there exists a Lipschitz diffeomorphism Φi : QN → Ui, where
QN = (−1, 1)N ⊂ RN , such that

Φi(QN−1 × (−1, 0)) = Ui ∩ Ω,

Φi(QN−1 × {0}) = Ui ∩ ∂Ω.

Moreover, we assume that Ωǫ ⊂ ∪m
i=0Ui ≡ U and for each i = 1, . . . , m there exists

Lipschitz functions ρi,ǫ : QN−1 → (−1, 1) such that Φ−1
i (Ui ∩ ∂Ωǫ) is the graph of ρi,ǫ.

This means Ui ∩ ∂Ωǫ = Φi({(x′, ρi,ǫ(x
′)), x′ ∈ QN−1}), where we denote (x1, . . . , xN−1)

by x′. We assume that ρi,ǫ → 0, when ǫ→ 0, i = 1, . . . , m, uniformly in QN−1.

Note that if Ω ⊂ Ωǫ, then condition (H) i) is satisfied.
We consider the following mappings:

Ti,ǫ : QN → QN ,

defined by

Ti,ǫ(x
′, s) =

{

(x′, s+ sρi,ǫ(x
′) + ρi,ǫ(x

′)), for s ∈ (−1, 0)
(x′, s− sρi,ǫ(x

′) + ρi,ǫ(x
′)), for s ∈ [0, 1).

Also,
Φi,ǫ := Φi ◦ Ti,ǫ : QN → Ui

and we also denote by
φi,ǫ : QN−1 → Ui ∩ Ωǫ

x′ → Φi,ǫ(x
′, 0)

(2.1)

and
φi,0 : QN−1 → Ui ∩ Ω

x′ → Φi(x
′, 0)

(2.2)

Notice that φi,ǫ and φi are local parameterization of ∂Ωǫ and ∂Ω, respectively. Furthermore,
observe that all the maps above are Lipschitz.

In the present paper, we consider the following hypothesis on the deformation of ∂Ωǫ:

(F) i) ‖∇ρi,ǫ‖L∞ ≤ C, with C independent of ǫ, i = 1, . . . , m, and

ii) For each i = 1, . . . , m, there exists a function γi ∈ L∞(QN−1) such that

Jφi,ǫ ≡ |
∂φi,ǫ

∂x1
∧ . . . ∧

∂φi,ǫ

∂xN−1
|

ǫ→0
−→ γi, w − L1(QN−1) (2.3)

4



i

i
i

U
U

i

i, ε

Φ Φ

i, εT

Ψ
i, ε

Φ

Q
N

Q
N

Ωε
Ω

Notice that, by definition,

Jφi,ǫ =

√

√

√

√

N
∑

j=1

(det(Jacφi,ǫ)j)2

and (Jacφi,ǫ)j is the jacobian matrix without the j-th row.

Remark 2.1. Observe that from (F)i) we get that Jφi,ǫ is a bounded sequence in L∞(QN−1).
From this and with the aid of (2.3), we obtain that Jφi,ǫ → γi, w-Lq(QN−1) for all 1 ≤ q <∞.

This assertion follows from the following observation: if U is a bounded domain and if
fǫ ∈ L∞(U), f ∈ L∞(U) satisfy that fǫ → f w-L1(U) and ‖fǫ‖L∞(U) ≤ K, then fǫ → f
w-Lq(U), for all 1 ≤ q < ∞. In fact, let 1 < p < ∞ and ψ ∈ Lp(U), then, by density of
C∞

0 (U) in Lp(U), given β > 0 there exists ψβ ∈ C∞
0 (S) such that ‖ψ− ψβ‖Lp(U) ≤ β. Then,

|

∫

U

(fǫ − f)ψ| ≤

∫

U

|fǫ − f ||ψ − ψβ | + |

∫

U

(fǫ − f)ψβ|.

Using the fact ‖fǫ‖L∞(U) ≤ K, we get

∫

U

|fǫ − f ||ψ − ψβ | ≤ 2K|U |
1
p′ β.

Since fǫ converges to f weakly in L1(U), then |
∫

U
(fǫ − f)ψβ| goes to zero when ǫ → 0

Therefore, limǫ→0 |
∫

U
(fǫ − f)ψ| = 0, for all ψ ∈ Lp(U), that means fǫ → f w-Lq(U) for

1 ≤ q <∞.

Now, we define a function γ : ∂Ω → R which will measure the limit of the deformation
of ∂Ωǫ relatively to ∂Ω.
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Definition 2.2. We define the function γ as

γ(x) =
γi(y)

JΦi(y)
, where y = Φ−1

i (x) ∈ QN−1, and x ∈ Ui ∩ ∂Ω

We observe that the function γi is defined using the sequence φi,ǫ. In consequence, γ
could depend on the choice of φi,ǫ and also on the choice of the charts Ui and the maps Φi.
We will prove below that γ is well defined and unique for the family Ωǫ and Ω.

Example 2.3. We would like to consider a basic example where we can calculate explicitly
the function γ. Let us assume N = 2 and let Ω0 ∩ Q2 = {(x1, x2) : −1 < x2 < 0}, so that
∂Ω0 ∩ Q2 = {(x1, 0) : −1 ≤ x1 ≤ 1}. Assume also that ∂Ωǫ ∩ Q2 = {(x1, ρǫ(x1)) : −1 <
x1 < 1} and ρǫ(x1) = ǫ sin(x1/ǫ

α)ϕ(x1), for some smooth function ϕ of compact support in
(−1, 1) and with α > 0.

If 0 < α ≤ 1, then both hypotheses (H) and (F) are satisfied. Moreover, if α < 1 we

have γ ≡ 1 and if α = 1, we have γ(x) =
1

2π

∫ 2π

0

√

1 + (ϕ(x) cos(z))2dz

With respect to the equations, we will be interested in studying the behavior of the
solutions of the elliptic equation (1.1) where, as we mentioned in the introduction, the
nonlinearities f : U × IR → IR, g : U × IR → IR are continuous in both variables and C2 in
the second one and U is a bounded domain containing Ω̄ǫ, for all 0 ≤ ǫ ≤ ǫ0.

For 0 < ǫ ≤ ǫ0, We will denote by Eǫ = {uǫ ∈ H1(Ωǫ) : uǫ is a solution of (1.1)},
Eǫ,R = {uǫ ∈ Eǫ : ‖uǫ‖L∞(Ωǫ) ≤ R} and Eǫ,R− = {uǫ ∈ Eǫ : ‖uǫ‖L∞(Ωǫ) < R}

Since we will need to compare functions defined in Ωǫ with functions defined in the
unperturbed domain Ω0, we consider the operator Eǫ : H1(Ω) → H1(Ωǫ), which is defined
as Eǫ = Rǫ ◦ E, where E : H1(Ω) → H1(IRN) is an extension operator constructed in
the usual way and Rǫ is the restriction operator from functions defined in IRN to functions
defined in Ωǫ. Observe that we also have Eǫ : Lp(Ω) → Lp(Ωǫ), Eǫ : W 1,p(Ω) → W 1,p(Ωǫ),
for all 1 ≤ p ≤ ∞, Eǫ : Cα(Ω̄) → Cα(Ω̄ǫ), for 0 ≤ α < 1 and that in each case we have
‖Eǫu‖Xǫ

→ ‖u‖X0 where Xǫ = H1(Ωǫ), L
p(Ωǫ), W

1,p(Ωǫ), C
α(Ω̄ǫ), ǫ ≥ 0.

Our main results are stated in the following theorems.

Theorem 2.4. Assume (H) and (F) are satisfied. Let u∗ǫ , 0 < ǫ ≤ ǫ0, be a family of
solutions of problem (1.1) satisfying ‖u∗ǫ‖L∞(Ωǫ) ≤ R for some constant R > 0 independent
of ǫ, that is u∗ǫ ∈ Eǫ,R. We have the following:
i) There exists a subsequence, still denoted by u∗ǫ , and a function u∗0 ∈ E0,R, that is u∗0 ∈ H1(Ω)
with ‖u∗0‖L∞(Ω) ≤ R, solution of problem (1.2) with the property that ‖u∗ǫ − Eǫu

∗
0‖H1(Ωǫ) +

‖u∗ǫ − Eǫu
∗
0‖Cβ(Ω̄ǫ) → 0 as ǫ→ 0, for some 0 < β ≤ 1.

ii) If the equilibrium point u∗0 is hyperbolic, in the sense that λ = 0 is not an eigenvalue
of the linearized problem of (1.2) around u∗0 (see problem (2.7) below), then, there exists
δ > 0 small such that problem (1.1) has one and only one solution u∗ǫ ∈ Eǫ,R− satisfying
‖u∗ǫ − Eǫu

∗
0‖H1(Ωǫ) ≤ δ for ǫ small enough.
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Remark 2.5. Since in Theorem 2.4 we are concerned with solutions satisfying a uniform
bound of the type ‖uǫ‖L∞(Ωǫ) ≤ R, we may modify the nonlinearities f and g outside the
region |u| ≤ R without modifying any of these solutions. Hence, we may perform a cut-off
in the nonlinearities f and g in such a way that

|f(x, u)| + |∂uf(x, u)| + |∂uuf(x, u)| ≤ C, x ∈ U, u ∈ R (2.4)

|g(x, u)|+ |∂ug(x, u)| + |∂uug(x, u)| ≤ C, x ∈ U, u ∈ R (2.5)

Also, we will be able to prove the spectral convergence of the linearizations around
the equilibrium points. Observe that if u∗ǫ is a solution of (1.1) then, the spectra of the
linearization of (1.1) around u∗ǫ is given by the eigenvalue problem

{

−∆w + w − ∂uf(x, u∗ǫ)w = λw in Ωǫ,
∂w
∂n

+ ∂ug(x, u
∗
ǫ)w = 0 on ∂Ωǫ.

(2.6)

Similarly, if u∗0 is a solution of (1.2), then the spectra of its linearization is given by the
eigenvalue problem

{

−∆w + w − ∂uf(x, u∗0)w = λw in Ω,
∂w
∂n

+ γ∂ug(x, u
∗
0)w = 0 on ∂Ω.

(2.7)

Notice that both problems, (2.6) and (2.7), are selfadjoint and of compact resolvent.
Hence, the eigenvalues of (2.6) are given by a sequence {λǫ

n}
∞
n=1, ordered and counting their

multiplicity, with λǫ
n → +∞ as n → +∞. Similarly the eigenvalues of (2.7) are also given

by a sequence {λ0
n}

∞
n=1 with λ0

n → +∞.

Theorem 2.6. With the notations above and in the conditions of Theorem 2.4, if u∗ǫ ∈ Eǫ,R

for 0 ≤ ǫ ≤ ǫ0 and ‖u∗ǫ − Eǫu
∗
0‖H1(Ωǫ) → 0, then the eigenvalues and eigenfunctions of

(2.6) converge to the eigenvalues and eigenfunctions of (2.7). That is, for each fixed n ∈ N,
λǫ

n → λ0
n, as ǫ→ 0. Moreover, if we denote by {ϕǫ

n}
∞
n=1 a set of orthonormal eigenfunctions

associated to {λǫ
n}

∞
n=1, then for each sequence ǫk → 0 there is another subsequence, that we

still denote by ǫk, and a set of orthonormal eigenfunctions {ϕ0
n}

∞
n=1 associated to {λ0

n}
∞
n=1,

such that, for all n ∈ N, we have ‖ϕǫk
n − Eǫϕ

0
n‖H1(Ωǫk

) → 0 as ǫk → 0.

Remark 2.7. i) The convergence of the eigenfunctions in Theorem 2.6 can be expressed
in terms of the convergence of the eigenspaces, in the sense that if n ∈ N is such that
λ0

n < λ0
n+1, and if we denote by W ǫ

n the linear subspace spanned by the first n eigenfunctions,
that is W ǫ

n = [ϕǫ
1, . . . , ϕ

ǫ
n] ⊂ H1(Ωǫ) 0 ≤ ǫ ≤ ǫ0, then the distance between W ǫ

n and EǫW
0
n

approaches 0 as ǫ→ 0.
Notice also that if λ0

n is a simple eigenvalue, then λǫ
n is also simple for ǫ small enough

and, via subsequences, we always have that ϕǫk
n → ϕ0

n or ϕǫk
n → −ϕ0

n as ǫ→ 0.

ii) Theorem 2.6 has important implications for understanding the behavior of the dynamics
of the associated parabolic equations. If we regard (1.1) and (1.2) as the stationary equations
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of the parabolic evolutionary equations










ut − ∆u+ u = f(x, u) in Ωǫ,
∂u
∂n

+ g(x, u) = 0 on ∂Ωǫ,

u(x, 0) = u0(x) ∈ H1(Ωǫ)

(2.8)

and










ut − ∆u+ u = f(x, u) in Ω,
∂u
∂n

+ γg(x, u) = 0 in ∂Ω,

u(x, 0) = u0(x) ∈ H1(Ω)

(2.9)

respectively, then, among other things, Theorem 2.6 is saying that if u∗0 is a linearly asymp-
totically stable equilibrium point of (2.9) and u∗ǫ are the equilibria obtained in Theorem 2.4,
then u∗ǫ are also linearly asymptotically stable. Also, if u∗0 is a hyperbolic equilibrium then, the
linear unstable manifold associated to u∗ǫ converge to the linear unstable manifold associated
to u∗0.

3 Solutions as fixed points and E-convergence

The solutions of (1.1) and (1.2) will be obtained as fixed points of appropriate nonlinear
maps defined in the spaces H1(Ωǫ) and H1(Ω), respectively. This maps are constructed in
Subsection 3.1. Moreover, since these maps are defined in different spaces, we will need a tool
to compare functions, operators, etc., which are defined in different spaces. Moreover, we
will need a precise definition of weak and strong convergence of functions defined in different
spaces and to develop certain analytical results to be able to deal with this situation. The
appropriate notion for this is the concept of E-convergence and a key ingredient for this
will be the use of the extension operator Eǫ : H1(Ω) → H1(Ωǫ) defined in Section 2. The
definition and basic properties of E-convergence will be done in Subsection 3.2.

3.1 Fixed points

For 0 < ǫ ≤ ǫ0, consider the linear operator Aǫ : D(Aǫ) ⊂ L2(Ωǫ) → L2(Ωǫ) defined by
Aǫuǫ = −∆uǫ + uǫ with domain D(Aǫ) = {uǫ ∈ H2(Ωǫ) : ∂uǫ

∂n
= 0}. Let us denote by

E0
ǫ = L2(Ωǫ), E

1
ǫ = D(Aǫ) and consider the scale of Hilbert spaces {(Eα

ǫ , A
α
ǫ ), α ∈ R}

constructed by complex interpolation, see [1], which coincide, since we are in a Hilbert
setting, with the standard fractional power spaces of the operator Aǫ. Also, Eα

ǫ →֒ H2α
ǫ .

This scale can also be extended to spaces of negative exponents by taking E−α
ǫ = (Eα

ǫ )′, for

α > 0, and E
− 1

2
ǫ = H−1(Ωǫ). Considering the realizations of Aǫ in this scale, the operator

Aǫ,− 1
2
∈ L(E

1
2
ǫ , E

− 1
2

ǫ ), is given by

〈A
ǫ,−

1
2
uǫ, φǫ〉 =

∫

Ωǫ

∇uǫ∇φǫ + uǫφǫ,
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for φǫ ∈ H1(Ωǫ). With some abuse of notation we will identify all different realizations of
this operators and we will write them all as Aǫ.

With this considerations, we write (1.1) in an abstract form as

Aǫuǫ = hǫ(uǫ) (3.1)

where hǫ : H1(Ωǫ) → H−α(Ωǫ) with 1
2
< α < 1, defined by

〈hǫ(uǫ), φǫ〉 =

∫

Ωǫ

f(x, uǫ)φǫ −

∫

∂Ωǫ

g(x, uǫ)φǫ, φǫ ∈ Hα(Ωǫ). (3.2)

In particular, uǫ is a solution of (1.1) if and only if uǫ satisfies uǫ = A−1
ǫ hǫ(uǫ), that is,

uǫ is a fixed point of the nonlinear map A−1
ǫ ◦ hǫ : H1(Ωǫ) → H1(Ωǫ).

In a very similar way, the solutions of the limiting equation (1.2) can be written as fixed
points of the map A−1

0 ◦ h : H1(Ω) → H1(Ω) where A0 : D(A0) ⊂ L2(Ω) → L2(Ω) the linear
operator defined by A0u = −∆u+ u, with domain D(A0) = {u ∈ H2(Ω) : u = 0 in ∂Ω} and
h : H1(Ω) → H−α(Ω), with 1

2
< α < 1, defined by

〈h(u), φ〉 =

∫

Ω

f(x, u)φ−

∫

∂Ω

γg(x, u)φ, φ ∈ Hα(Ω). (3.3)

3.2 E-convergence

In this subsection we are going to develop the basic tools which will be used to compare
the solutions of two problems defined in different spaces. We will not develop the complete
theory and will only mention the results that apply directly to our case. We refer to [9] for
the general theory and to [5] for a concrete application to a domain perturbation problem,
different from the present one.

In our setting we will have a family of Hilbert spaces, Hǫ, 0 < ǫ ≤ ǫ0 and we will also
have a “limiting” Hilbert space H . We denote by (·, ·)ǫ the inner product in Hǫ, and by (·, ·)
the inner product in H . For instance, we may consider Hǫ = H1(Ωǫ) and H = H1(Ω).

We consider Eǫ : H → Hǫ a family of linear continuous operators , such that

‖Eǫu‖Hǫ
→ ‖u‖H, when ǫ→ 0

Our basic notion of convergence and weak convergence is stated in the following defini-
tions.

Definition 3.1. A sequence of elements {uǫ}, uǫ ∈ Hǫ, ǫ > 0, is said to be E-convergent to

u ∈ H if ‖uǫ − Eǫu‖Hǫ
→ 0 as ǫ→ 0. We write this as uǫ

E
−→u.

Definition 3.2. A sequence of elements {uǫ}, uǫ ∈ Hǫ, ǫ > 0, is said to be E-weakly conver-
gent to u ∈ H if for any sequence wǫ E-convergent to w implies (wǫ, uǫ)ǫ → (w, u), when

ǫ→ 0. We denote by uǫ

E
−⇀u.

9



Some important properties of this convergence are stated in the following results.

Proposition 3.3. If ‖uǫ‖Hǫ
≤ K, u ∈ H and for all w ∈ H, (Eǫw, uǫ)ǫ → (w, u) when

ǫ→ 0, then uǫ

E
−⇀u.

Proof. Let wǫ
E

−→w. Then, (wǫ, uǫ)ǫ = (wǫ − Eǫw, uǫ)ǫ − (Eǫw, uǫ)ǫ → (w, u).

Proposition 3.4. If uǫ

E
−⇀u and lim supǫ→0 ‖uǫ‖ǫ ≤ ‖u‖ then uǫ

E
−→u.

Proof. Since 0 ≤ ‖uǫ −Eǫu‖2
Hǫ

= ‖uǫ‖2
Hǫ

− 2(uǫ, Eǫu)ǫ + ‖Eǫu‖2
Hǫ

we get the result.

We will need a notion of compactness and of convergence of operators which are defined
in different spaces. These notions are stated in the following.

Definition 3.5. A sequence of elements {un}, un ∈ Hǫn
, n ∈ N, is said to be E-precompact if

for any subsequence {un′} there exist a subsequence {un′′} and u ∈ H such that un′′

E
−→u, as

n′′ → ∞. A family {uǫ}, ǫ ∈ (0, 1] is said pre-compact if each sequence {uǫn
}, with ǫn → 0,

is pre-compact.

Definition 3.6. We say that a family of operators Tǫ : Hǫ → Hǫ, ǫ ∈ (0, 1], E-converges to

T : H → H as ǫ→ 0, if Tǫuǫ
E

−→Tu, whenever uǫ
E

−→u ∈ H. We denote this by Tǫ
EE
−→T .

Finally, we have the following important notion on compact convergence of operators.

Definition 3.7. We say that a family of compact operators Tǫ : Hǫ → Hǫ, ǫ ∈ (0, 1] converges
compactly to a compact T : H → H if for any family uǫ with ‖uǫ‖ǫ bounded, the family {Tǫuǫ}

is E-precompact and Tǫ
EE
−→T . We write Tǫ

CC
−→T .

An important result on convergence of fixed points is the following:

Theorem 3.8. Let Tǫ : Hǫ → Hǫ be a family of compact operators such that Tǫ
CC
−→T . Let uǫ

be a fixed point of Tǫ such that ‖uǫ‖Hǫ
is uniformly bounded. Then, there exists a subsequence

uǫk
and u ∈ H with u = Tu such that uǫk

E
−→u.

Proof. Since ‖uǫ‖Hǫ
is uniformly bounded, by Definition 3.7, Tǫuǫ is E-precompact. Thus,

there is a sequence uǫk
, and an element u ∈ H such that Tǫk

uǫk

E
−→u. Hence, uǫk

= Tǫk
uǫk

E
−→u

and by compact convergence, Tǫk
uǫk

E
−→Tu. That is, u = Tu.

In the case where the operators involved are linear, we have some important results.

Lemma 3.9. Assume that Tǫ ∈ L(Hǫ) converges compactly to T ∈ L(H) as ǫ→ 0. Then,
i) ‖Tǫ‖L(Hǫ) ≤ C for some constant C, independent of ǫ.
ii) Assume that N (I + T ) = {0} then, there exists an ǫ0 > 0 and M > 0 such that

‖(I + Tǫ)
−1‖L(Hǫ) ≤M, ∀ǫ ∈ [0, ǫ0]. (3.4)
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Proof. This result is exactly Lemma 4.7 in [5]. For the sake of completeness and since the
proof is short, we include it here.

i) If the norms are not bounded, then we can choose a sequence of ǫn → 0 and uǫn
∈ Hǫn

with ‖uǫn
‖Hǫn

= 1 such that ‖Tǫn
uǫn

‖ → +∞. But this is in contradiction with the compact
convergence of Tǫ given in Definition 3.7.

ii) Since Tǫ is compact for every ǫ ∈ [0, 1], the estimate (3.4) is equivalent to say that

‖(I + Tǫ)uǫ‖Hǫ
>

1

M
, ∀ǫ ∈ [0, ǫ0] and ∀uǫ ∈ Hǫ with ‖uǫ‖ = 1.

Suppose that this is not true; that is, suppose that there is a sequence {un}, with un ∈ Uǫn
,

‖un‖ = 1 and ǫn → 0 such that ‖(I + Tǫn
)un‖ → 0. Since {Tǫn

un} has a convergent
subsequence, which we again denote by {Tǫn

un}, to u, ‖u‖ = 1, then un + Tǫn
un → 0 and

un → −u. This implies that (I + T )u = 0 contradicting our hypothesis.

In many instances, the operators Tǫ will be inverses of certain differential operators Aǫ.
Therefore, let us assume that we have operators Aǫ : D(Aǫ) ⊂ Hǫ → Hǫ, with well defined
inverses and denote by Tǫ = A−1

ǫ : Hǫ → Hǫ.

One important implication of the compact convergence of linear operators is the con-
vergence of the spectra and of the spectral projections. Since the operators involved are
compact, then the spectrum is discrete and the convergence of the spectra will mean the
pointwise convergence of the eigenvalues. For the convergence of the spectral projections
we need a concept of convergence of linear spaces. Hence, we will say that a family of sub-

spaces Wǫ ⊂ Hǫ E-converges to W0 ⊂ H and we will write it as Wǫ
E

−→W0, if distHǫ
(BWǫ

,
EǫBW0) → 0 as ǫ→ 0, where BW is the unit ball of the space W and distHǫ

is the symmetric
Hausdorff distance of two sets in Hǫ.

We can show,

Proposition 3.10. If Aǫ : D(Aǫ) ⊂ Hǫ → Hǫ is a closed operator, with compact resolvent
and 0 ∈ ρ(Aǫ) and A0 : D(A0) ⊂ H → H is also closed, with compact resolvent and

0 ∈ ρ(A), then if A−1
ǫ

CC
−→A−1

0 , then the eigenvalues and eigenfunctions of Aǫ converge to the
eigenvalues and eigenfunctions of A0. That is, if B̄(λ0, ρ0) ⊂ C lies in the resolvent set of
A0, then, there exists ǫ0 = ǫ0(λ0, ρ0), such that the ball is also contained in the resolvent set
of Aǫ for all 0 < ǫ ≤ ǫ0. Moreover, if λ0 ∈ σ(A0), B̄(λ0, ρ0) ∩ σ(A0) = {λ0} and W0 is
the generalized eigenspace associated to λ0, then there exists ǫ0 = ǫ0(λ0, ρ0) > such that for
0 < ǫ ≤ ǫ0, B(λ0, ρ0) ∩ σ(Aǫ) = {λǫ

1, . . . , λ
ǫ
k(ǫ)} and if Wǫ =span{W ǫ

1 , . . . ,W
ǫ
k(ǫ)}, where W ǫ

j

is the generalized eigenspace associated λǫ
j, then dim(Wǫ)=dim(W0) and Wǫ

E
−→W0.

Proof. For a proof of this result we refer to Lemma 4.8, Lemma 4.9 and Theorem 4.10 in
[5].
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4 Some technical results

In this section we will prove several important technical results that will be needed in the
proof of the main result.

We start analyzing extension operators from Ωǫ to R
N , Sobolev embeddings and Trace

theorems. We will pay special attention to their dependence on the parameter ǫ. As a general
remark, observe that Ωǫ ∩ Ui is a Lipschitz deformation of the fixed domain QN−1 × (−1, 0)
and the Lipschitz norm of the transformation is uniformly controlled in ǫ, as ǫ → 0, by
hypothesis (F) i). This fact will allow us to obtain uniform estimates of constants of Sobolev
embeddings and trace theorems.

Let us start with the following useful result.

Lemma 4.1. Consider Sǫ a family of Lipschitz bounded domains in RN for 0 ≤ ǫ ≤ ǫ0.
Assume there exists a family of Lipschitz, one-to-one mappings Hǫ from S0 onto Sǫ such that
its inverse H−1

ǫ is Lipschitz, satisfying ‖DHǫ‖L∞(S0)N×N ≤ K and ‖DH−1
ǫ ‖L∞(Sǫ)N×N ≤ K,

with K independent of ǫ. Then, if we denote by X(V ) = Lp(V ) or W 1,p(V ) or Cα(V ), with
1 ≤ p ≤ ∞ and 0 ≤ α < 1 and V an open set or RN , then, u ∈ X(Sǫ) if and only if
u ◦Hǫ ∈ X(S0). Moreover, there exist C, D positive constants independent of ǫ such that

C‖u ◦Hǫ‖X(S0) ≤ ‖u‖X(Sǫ) ≤ D‖u ◦Hǫ‖X(S0). (4.1)

Moreover, if u ∈W 1,p(Sǫ),

C‖u ◦Hǫ‖Lq(∂S0) ≤ ‖u‖Lq(∂Sǫ) ≤ D‖u ◦Hǫ‖Lq(∂S0), 1 ≤ q ≤
Np− p

N − p
(4.2)

Proof. Let us work out first the proof for the case X = W 1,p. For ǫ fixed, it is known (see
[8]) that u ∈ W 1,p(Sǫ) iff u ◦ Hǫ ∈ W 1,p(S0). We prove C‖u ◦Hǫ‖W 1,p(S0) ≤ ‖u‖W 1,p(Sǫ). In
fact, since

∂

∂yj
(u ◦Hǫ)(y) =

N
∑

l=1

∂u

∂xl
(Hǫ(y))

∂(Hǫ)l

∂yj
(y),

and using ‖DHǫ‖L∞(S)N×N ≤ K and ‖DH−1
ǫ ‖L∞(Sǫ)N×N ≤ K, we get

‖((
∂u

∂xl
) ◦Hǫ)

∂(Hǫ)l

∂yj
‖Lp(S) ≤ M‖

∂u

∂xl
‖Lp(Sǫ),

and
‖u ◦Hǫ‖Lp(S) ≤M‖u‖Lp(Sǫ)

then ‖u ◦Hǫ‖W 1,p(S) ≤ C̃‖u‖W 1,p(Sǫ). The other inequality is obtained similarly.
For the Hölder norm, notice that

‖u ◦Hǫ‖Cβ(S0) = ‖u ◦Hǫ‖L∞(S0) + sup
x,y∈S0,x 6=y

|u ◦Hǫ(x) − u ◦Hǫ(y)|

|x− y|β
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= ‖u‖L∞(Sǫ) + sup
x,y∈S0,x 6=y

|u ◦Hǫ(x) − u ◦Hǫ(y)|

|Hǫ(x) −Hǫ(y)|β
|Hǫ(x) −Hǫ(y)|β

|x− y|β

≤ ‖u‖L∞(Sǫ) + sup
z,w∈Sǫ,z 6=w

|u(z) − u(w)|

|z − w|β
sup

x,y∈Sǫ,x 6=y

|Hǫ(x) −Hǫ(y)|β

|x− y|β

≤ ‖u‖L∞(Sǫ) + sup
x,w∈Sǫ,z 6=w

|u(z) − u(w)|

|z − w|β
Kβ ≤ max{1, Kβ}‖u‖Cβ(Sǫ).

And the other inequality follows in a similar way. Also, the inequality of the trace is obtained
in an analogous way.

Remark 4.2. As an important example of mappings satisfying the hypotheses of Lemma 4.1
we mention the family of maps

Φi,ǫ : Q−
N → Ui ∩ Ωǫ,

where we denote by Q−
N = QN−1 × (−1, 0) ⊂ QN and we assume hypotheses (H) and (F) i)

are both satisfied.

Now, we show:

Proposition 4.3. Let Ωǫ be a family of domains satisfying conditions (H) and (F) i). Then
for each ǫ and 1 ≤ p ≤ ∞, there is a continuous extension operator PΩǫ

: L1(Ωǫ) → L1(RN),
such that with the notation of X(V ) from Lemma 4.1, then PΩǫ

transforms X(Ωǫ) into
X(RN) and

‖PΩǫ
‖L(X(Ωǫ),X(RN )) ≤ K, for 0 < ǫ ≤ ǫ0.

Moreover, the way in which the extension operator PΩǫ
is constructed, we have PΩǫ

uǫ ≡ 0
outside U ≡ ∪n

i=1Ui

Proof. Let {χi}m
i=0 be a partition of unity subordinated to {Ui}m

i=0 and let u ∈ L1(Ωǫ). We
write u =

∑m
i=0 ui, where ui = χiu.

For i = 0, define

ū0 =

{

u0(x), x ∈ Ωǫ,
0, x ∈ RN \ Ωǫ.

Since χ0 ∈ C∞
0 (Ω), if u ∈ X(Ωǫ), then ū0 ∈ X(RN) and ‖ū0‖X(RN ) ≤ c1‖u‖X(Ωǫ).

For i = 1, . . . , m, denote by vi : Q−
N → R the mapping vi(y) = u(Φi,ǫ(y)). By Lemma

4.1 and Remark 4.2, we have that vi ∈ X(Q−
N) and ‖vi‖X(Q−

N
) ≤ c2‖u‖X(Ui∩Ωǫ), with c2

independent of ǫ.
Define v∗i ∈ X(QN) by

v∗i =

{

vi(x), x ∈ Q−
N

vi(−x), x ∈ Q+
N

Thus, ‖v∗i ‖X(QN ) ≤ 2‖vi‖X(Q−

N
). where Q+

N = QN−1 × (0, 1). Then, consider wi : Ui → R

given by wi(z) = v∗i (Φ
−1
i,ǫ (z)). By Lemma 4.1 and Remark 4.2, we have that wi ∈ X(Ui) and

‖wi‖X(Ui) ≤ c3‖v∗i ‖X(QN ), with c3 independent of ǫ. Furthermore, wi|Ui∩Ωǫ
= u|Ui∩Ωǫ
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Finally, if we define

ūi =

{

χiwi(x), x ∈ Ui,
0, x ∈ RN \ Ui,

we get ūi ∈ X(RN) and ‖ūi‖X(RN ) ≤ c4‖wi‖X(Ui). Observe that ūi|Ωǫ
= ui. Therefore, define

PΩǫ
(u) =

∑m
i=0 ūi. Since the constants c1, c2, c3 and c4 are independent of ǫ we get the first

part of the result.

To show that PΩǫ
u ≡ 0 outside U , we just observe that supp(ūi) ⊂ Ui.

Remark 4.4. The construction of the operators PΩǫ
will permit us to construct a whole

family of operators, PΩǫ,V : X(Ωǫ) → X(V ), defined by PΩǫ,V = RV ◦ PΩǫ
, where RV is

the restriction operator to the open set V . With this notation PΩǫ
= PΩǫ,RN . We also have

‖PΩǫ,V ‖L(X(Ωǫ),X(V )) ≤ C, independent of ǫ.

With the result on the extension operators we can analyze the Sobolev imbeddings.

Proposition 4.5. Let Ωǫ, 0 ≤ ǫ < ǫ0, be a family of domains satisfying conditions (H) and
(F) i). Then, the constants of the continuous imbedding W 1,p(Ωǫ) →֒ Lq(Ωǫ), for 1 ≤ p < N
and 1 ≤ q ≤ Np

N−p
or W 1,p(Ωǫ) →֒ Cα(Ω̄ǫ), for p > N and 0 < α < 1 − N

p
, is uniformly

bounded in ǫ.

Proof. The result is trivially satisfied for 1 ≤ q ≤ p, since the constants of the embeddings
W 1,p(Ωǫ) →֒ Lp(Ωǫ) →֒ Lq(Ωǫ) are all bounded uniformly in ǫ.

For 1 ≤ p < N and p < q ≤ Np
N−p

we consider u ∈ W 1,p(Ωǫ) and by Proposition 4.3,

PΩǫ
(u) ∈W 1,p(RN) →֒ Lq(RN) for p ≤ q ≤ Np

N−p
. Then

‖u‖Lq(Ωǫ) ≤ ‖PΩǫ
(u)‖Lq(RN ) ≤ k1‖PΩǫ

(u)‖W 1,p(RN ) ≤ k2‖u‖W 1,p(Ωǫ)

which proves the result in this case. For the case p > N we proceed in a similar way.

With similar arguments as in the proof of Proposition 4.3, we obtain a result on trace
operators.

Proposition 4.6. Let Ωǫ, 0 ≤ ǫ < ǫ0, be a family of domains satisfying conditions (H) and
(F) i). Then, the constant of the trace operator W 1,p(Ωǫ) → Lq(∂Ωǫ) for 1 ≤ p < N and
1 ≤ q ≤ Np−p

N−p
is bounded uniformly in ǫ, that is, there exists C independent of ǫ, such that

for all uǫ ∈W 1,p(Ωǫ)

‖uǫ‖Lq(∂Ωǫ) ≤ C‖uǫ‖W 1,p(Ωǫ).

Moreover, if 1 ≤ q < Np−p
N−p

, then for each δ > 0, there exists a Cδ, independent of ǫ, such

that for all uǫ ∈W 1,p(Ωǫ)

‖uǫ‖Lq(∂Ωǫ) ≤ Cδ‖uǫ‖L1(Ωǫ) + δ‖uǫ‖W 1,p(Ωǫ). (4.3)
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Proof. Observe that ‖uǫ‖Lq(∂Ωǫ) ≤ C
∑n

i=1 ‖uǫ‖Lq(∂Ωǫ∩Ui). Applying Lemma 4.1, we have for

1 ≤ q ≤ Np−p
N−p

‖uǫ‖Lq(∂Ωǫ∩Ui) ≤ C‖uǫ ◦ Φi,ǫ‖Lq(QN−1) ≤ C‖uǫ ◦ Φi,ǫ‖W 1,p(Q−

N
)

≤ C‖uǫ‖W 1,p(Ωǫ∩Ui) ≤ C‖uǫ‖W 1,p(Ωǫ)

from which the first inequality follows easily.
To show the second inequality, observe that if 1 ≤ q < Np−p

N−p
by interpolation we have

‖uǫ ◦ Φi,ǫ‖Lq(QN−1) ≤ Cδ‖u ◦ Φi,ǫ‖L1(Q−

N
) + δ‖u ◦ Φi,ǫ‖W 1,p(Q−

N
)

≤ CCδ‖uǫ‖L1(Ωǫ∩Ui) + C · δ‖uǫ‖W 1,p(Ωǫ∩Ui)

from where the last inequality follows easily.
Finally, we can prove

Corollary 4.7. In the same conditions of Proposition 4.6, if vǫ → v weakly in W 1,p(U),
then, for all 1 ≤ q < Np−p

N−p
we have ‖vǫ − v‖Lq(∂Ωǫ) → 0.

Proof. Observe that if vǫ → v w-W 1,p(U), then vǫ → v in L1(U) and ‖vǫ‖W 1,p(U), ‖v‖W 1,p(U) ≤
C. Hence, using (4.3), we have, for δ > 0, arbitrarily small

‖vǫ − v‖Lq(∂Ωǫ) ≤ Cδ‖vǫ − v‖L1(Ωǫ) + δ‖vǫ − v‖W 1,p(Ωǫ).

Hence,
lim sup

ǫ→0
‖vǫ − v‖Lq(∂Ωǫ) ≤ C · δ.

Since δ > 0 is arbitrarily small, we obtain the results.

Once these results on extension operators, Sobolev embeddings and trace operators have
been established, we will prove other technical results also needed in the proof of the main
result.

Lemma 4.8. Assume (H) is satisfied and let 1 < p <∞. There exists a function c(ǫ) with
c(ǫ) → 0 as ǫ → 0, such that for any u ∈ W 1,p(U) and for all 1 ≤ q ≤ p, i = 1, . . . , n, we
have

‖u ◦ φi,ǫ − u ◦ φi,0‖Lq(QN−1) ≤ c(ǫ)‖u‖W 1,p(U). (4.4)

Moreover, if hypothesis (F) i) is also satisfied, then (4.4) also holds for 1 ≤ q < (Np −
p)/(N − p).

Proof. To prove statement (4.4) for 1 ≤ q ≤ p it will be enough to show it for q = p, since
using Hölder inequality we will prove it for all 1 ≤ q ≤ p. Hence,

∫

QN−1

|u ◦ φi,ǫ(x
′) − u ◦ φi,0(x

′)|pdx′ =

∫

QN−1

|u ◦ Φi(x
′, ρi,ǫ(x

′)) − u ◦ Φi(x
′, 0)|pdx′
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=

∫

QN−1

∣

∣

∣

∣

∣

∫ ρi,ǫ(x
′)

0

∂(u ◦ Φi)

∂xN
(x′, xN)dxN

∣

∣

∣

∣

∣

p

dx′

≤

∫

QN−1

|ρi,ǫ(x
′)|p/p′

∫ ρi,ǫ(x′)

0

∣

∣

∣

∣

∂(u ◦ Φi)

∂xN

(x′, xN)

∣

∣

∣

∣

p

dxNdx
′

≤ ‖ρi,ǫ‖
p/p′

L∞(QN−1)

∫

QN−1

∫ ρi,ǫ(x′)

0

∣

∣

∣

∣

∂(u ◦ Φi)

∂xN
(x′, xN )

∣

∣

∣

∣

p

dxNdx
′.

Noticing that Φi is a smooth Lipschitz diffeomorphism and using the chain rule in the
last expression, we easily get that

∫

QN−1

∫ ρi,ǫ(x′)

0

∣

∣

∣

∣

∂(u ◦ Φi)

∂xN

(x′, xN)

∣

∣

∣

∣

p

dxNdx
′ ≤ C‖u‖p

W 1,p(U)

which shows the first part of the result with c(ǫ) = C‖ρi,ǫ‖
p/p′

L∞(QN−1).

Moreover, assuming (F) i) holds, from Proposition 4.6 we get that both ‖u◦φi,ǫ‖Lr(QN−1), ‖u◦
φi,0‖Lr(QN−1) ≤ C‖u‖W 1,p(U). Hence, using this uniform bound, inequality (4.4) for q = 1
and interpolating between L1(QN−1) and L(Np−p)/(N−p)(QN−1), we prove the last part of the
Lemma.

In the following result, we obtain the E-convergence of a suitable sequence of functions.

Lemma 4.9. Assume (H) is satisfied. Let uǫ ∈ H1(Ωǫ) such that ‖uǫ‖H1(Ωǫ) ≤M . Then,

i) There exists a subsequence, denoted by uǫk
and u0 ∈ H1(Ω) such that uǫk

E
−⇀u0.

ii) If we also assume that (F) i) holds, then, there exists a subsequence ǫk, and a function

u ∈ H1(U) such that PΩǫk
,U(uǫk

) → u, w-H1(U) and uǫk

E
−⇀u|Ω.

Proof. i) With an standard argument we can get a subsequence, that we still denote by uǫ

and a function u0 ∈ H1(Ω), with the property that uǫ|K ⇀ u0|K for all K ⊂⊂ Ω. To show

that, for this subsequence, uǫ

E
−⇀u0, we observe that by Proposition 3.3 it is enough to show

that (uǫ, Eǫv)H1(Ωǫ) → (u0, v)H1(Ω) for any v ∈ H1(Ω). In fact, for any K ⊂⊂ Ω, we have

(uǫ, Eǫv)H1(Ωǫ) − (u0, v)H1(Ω) = (uǫ − u0, v)H1(K) + (uǫ, Eǫv)H1(Ωǫ\K) − (u0, v)H1(Ω\K).

Since we have
a) (uǫ − u0, v)H1(K) → 0
b) |(u0, v)H1(Ω\K)| ≤ ‖u0‖H1(Ω\K)‖v‖H1(Ω\K) ≤M‖v‖H1(Ω\K), and
c) |(uǫ, Eǫv)H1(Ωǫ\K)| ≤ ‖uǫ‖H1(Ωǫ\K)‖Eǫv‖H1(Ωǫ\K) ≤ M‖Eǫv‖H1(Ωǫ\K) → M‖v‖H1(Ω\K), as
ǫ→ 0,
we obtain

lim sup
ǫ→0

|(uǫ, Eǫv)H1(Ωǫ) − (u0, v)H1(Ω)| ≤ 2M‖v‖H1(Ω\K)
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Since K ⊂⊂ Ω is arbitrary and therefore the measure of |Ω \K| is arbitrarily small and
the function v is fixed, we get that the limit above necessarily must be zero and we get the
result.

ii) Since ‖uǫ‖H1(Ωǫ) ≤ M and the family of maps PΩǫ,U are uniformly bounded in ǫ, we have
that ‖PΩǫ,U(uǫ)‖H1(U) is uniformly bounded. Hence, we can get a function u ∈ H1(U) and a
subsequence, that we denote again by PΩǫ,U(uǫ) such that PΩǫ,U(uǫ) → u weakly in H1(U).

To prove that we also have uǫ

E
−⇀u|Ω we follow the same argument as in i)

5 Proof of the main results

In this section we will provide a proof of Theorem 2.4 and Theorem 2.6. For this, we will
need to prove a series of results and at the end of the section we indicate how this results
actually prove the main theorems.

We keep the notation of the previous sections and in particular we consider a family
of domains Ωǫ satisfying conditions (H) and (F). We will obtain the convergence of the
equilibria of the problem in Ωǫ to the solutions of the problem in Ω.

In terms of the nonlinearities, taking into account Remark 2.5, we will assume that f
and g satisfy conditions (2.4) and (2.5), respectively.

Consider the family of spaces H1(Ωǫ) and H1(Ω) with their usual norms. We define the
family of linear operators Eǫ : H1(Ω) → H1(Ωǫ) given by Eǫ = Rǫ ◦ P , where P is a linear
and continuous operator P : H1(Ω) → H1(RN) that extends a function u defined in Ω to
a function defined in RN and Rǫ is the restriction to Ωǫ, Rǫ(w) = w|Ωǫ

. Considering this
definition and the fact that from (H), |Ωǫ \ Ω| → 0 and |Ω \ Ωǫ| → 0 when ǫ → 0, we get
that

‖Eǫ(u)‖H1(Ωǫ) → ‖u‖H1(Ω).

We also have, ‖Eǫ‖ ≤ ‖Rǫ‖ · ‖P‖ ≤ ‖P‖, independent of ǫ.

With respect to the function γ defined in Section 2 we have the following

Lemma 5.1. Assume hypotheses (H) and (F) hold. Then, for any function f ∈ W 1,1(U)
and for any x0 ∈ ∂Ω, r > 0 small, we get

∫

∂Ωǫ∩B(x0,r)

f →

∫

∂Ω∩B(x0,r)

fγ

In particular, we also have
∫

∂Ωǫ

f →

∫

∂Ω

fγ

Proof. Consider the finite cover {Ui}m
i=0, such that Ωǫ ⊂ ∪m

i=0Ui. Without loss of gen-
erality we may assume that B(x0, r) ⊂ Ui for some i ∈ {1, . . . , n}. If we denote by
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Bi = Φ−1
i (B(x0, r) ∩ ∂Ω), then

∫

B(x0,r)∩∂Ωǫ

f −

∫

B(x0,r)∩∂Ω

fγ =

∫

QN−1∩Bi

f ◦ φi,ǫ.Jφi,ǫ − (fγ) ◦ φi,0.Jφi,0

=

∫

QN−1∩Bi

(f ◦ φi,ǫ − f ◦ φi).Jφi,ǫ +

∫

QN−1∩Bi

f ◦ φi,0.(Jφi,ǫ − γi)

Using the definition of γi given in hypothesis (F) ii) and the fact that ρi,ǫ → 0 uniformly in
QN−1, we obtain that the integrals goes to zero.

As a consequence of this result, we get

Corollary 5.2. The function γ is independent of the parameterization chosen and therefore
it is unique. Moreover, γ ≥ 1.

Proof. Suppose that γ depends on the parametrization. Then there will exist γ and γ̃, both
satisfying Lemma 5.1. Hence

∫

∂Ω

fγ =

∫

∂Ω

fγ̃, for all f ∈ C∞
0 (RN).

This implies that γ = γ̃ almost everywhere in ∂Ω.
Moreover, taking f ≡ 1 in Lemma 5.1, we get that |∂Ωǫ ∩ B(x0, r)| → ‖γ‖L1(∂Ω∩B(x0,r)).

But, since ∂Ωǫ approaches ∂Ω, then by the upper semicontinuity of the measure, we have
that lim infǫ→0 |∂Ωǫ ∩ B(x0, r)| ≥ |∂Ω ∩ B(x0, r)|. This implies that ‖γ‖L1(∂Ω∩B(x0,r)) ≥
|∂Ω ∩B(x0, r)|, for all x0 ∈ ∂Ω and for all r > 0 small. This implies that γ ≥ 1.

Lemma 5.3. Assume (H) and (F)i) are satisfied. Let uǫ be a bounded sequence in H1(Ωǫ)
and let wǫ be given by wǫ = A−1

ǫ hǫ(uǫ). Then wǫ is also a bounded sequence in H1(Ωǫ).

Proof. Recall that saying that wǫ = A−1
ǫ hǫ(uǫ) is equivalent to saying that wǫ is the weak

solution of −∆wǫ + wǫ = f(x, uǫ) in Ωǫ with boundary condition ∂wǫ

∂n
+ g(x, uǫ) = 0 on ∂Ωǫ.

Hence, we get

‖wǫ‖
2
H1(Ωǫ)

=

∫

Ωǫ

f(x, uǫ)wǫ −

∫

∂Ωǫ

g(x, uǫ)wǫ.

Using the boundedness of f and g given by (2.4) and (2.5), and applying the embeddings
and trace theorems obtained in Proposition 4.6 and 4.5, we easily get the result.

Now, we prove the convergence of nonlinear part.

Proposition 5.4. Assume (H) and (F) are satisfied. Let wǫ, uǫ ∈ H1(Ωǫ), such that
PΩǫ,U(uǫ) → u, w-H1(U) and PΩǫ,U(wǫ) → w, w-H1(U). Then,

∫

Ωǫ

f(x, uǫ)wǫ →

∫

Ω

f(x, u)w

∫

∂Ωǫ

g(x, uǫ)wǫ →

∫

∂Ω

g(x, u)wγ

(5.1)
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This implies that 〈hǫ(uǫ), wǫ〉 → 〈h(u), w〉.

Proof. From (2.4) and using the convergence of uǫ, wǫ we easily get the first statement of
(5.1).

For the second statement, observe that

|

∫

∂Ωǫ

g(x, uǫ)wǫ −

∫

∂Ω

g(x, u)wγ| ≤

∫

∂Ωǫ

|g(x, uǫ) − g(x, u)||wǫ|

+

∫

∂Ωǫ

|g(x, u)||wǫ − w| + |

∫

∂Ωǫ

g(x, u)w −

∫

∂Ω

g(x, u)wγ|

≤ C‖uǫ − u‖L2(∂Ωǫ)‖wǫ‖L2(∂Ωǫ) + C‖wǫ − w‖L1(∂Ωǫ) + |

∫

∂Ωǫ

g(x, u)w −

∫

∂Ω

g(x, u)wγ| → 0

where we use Corollary 4.7 to prove that the first two terms go to 0 and Lemma 5.1 for the
last one.

Now, we are in conditions to prove

Proposition 5.5. Assume (H) and (F) are satisfied. Then, A−1
ǫ hǫ

CC
−→A−1h.

Proof. In order to prove the compact converge of A−1
ǫ hǫ to A−1h, we need to verify that

i) A−1
ǫ hǫ is a compact operator for each ǫ > 0 fixed,

ii) {A−1
ǫ h(uǫ)}0≤ǫ≤ǫ0 is an E-precompact family whenever ‖uǫ‖H1(Ωǫ) is bounded.

iii) A−1
ǫ hǫ(uǫ)

E
−→A−1h(u0), if uǫ

E
−→u0.

Let us show each of the three points above.
i) For each ǫ > 0 fixed, since h : H1(Ωǫ) → H−α(Ωǫ) for some 1/2 < α < 1 and A−1

ǫ :
H−α(Ωǫ) → H2−α(Ωǫ) are continuous maps and using the compact imbedding of H2−α(Ωǫ)
in H1(Ωǫ), with 2 − α > 1, we get that the A−1

ǫ hǫ is compact.

ii) Let uǫ ∈ H1(Ωǫ) be such that ‖uǫ‖H1(Ωǫ) ≤ C. In particular, from Lemma 4.9 ii) we get

a subsequence and a function u ∈ H1(U) such that PΩǫk
,U(uǫk

) → u, w-H1(U) and uǫk

E
−⇀u0

where u0 = u|Ω.
Consider now wǫk

= A−1
ǫk
hǫk

(uǫk
). Then, by Lemma 5.3, ‖wǫk

‖H1(Ωǫk
) is a bounded se-

quence and therefore, again by Lemma 4.9 ii) we get a subsequence, that we denote again by

wǫk
and a function w ∈ H1(U) such that PΩǫk

,U(wǫk
) → w, w-H1(U) and wǫk

E
−⇀w0 where

w0 = w|Ω.
Let us show now that, as a matter of fact, we have w0 = A−1h(u0). For this, notice that

since wǫk

E
−⇀w0, we have that for any v ∈ H1(Ω), (wǫk

, Eǫk
v)H1(Ωǫk

) → (w0, v)H1(Ω). But,

(wǫk
, Eǫk

v)H1(Ωǫk
) = 〈hǫk

(uǫk
), Eǫk

v〉 → 〈h(u0), v〉 = (A−1h(u0), v)H1(Ω), where we have used

Proposition 5.4. Hence, w0 = A−1h(u0).
Now, we prove ‖wǫk

‖H1(Ωǫk
) → ‖w0‖H1(Ω). For this, observe that ‖wǫk

‖2
H1(Ωǫk

) = 〈hǫk
(uǫk

), wǫk
〉 →

〈h(u0), w〉 = ‖w0‖2
H1(Ω), where we have used again Proposition 5.4. The convergence of
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the norms and the weak E-convergence of the sequence, imply, using Proposition 3.4, that

wǫk

E
−→w0.

iii) If we assume now that uǫ
E

−→u0, then we have that ‖uǫ‖H1(Ωǫ) ≤M . In particular, for any
sequence ǫk → 0, we can extract another subsequence, that we denote it also as ǫk, such that
following the argument made above to prove ii), we have, that PΩǫk

,U(uǫk
) → u, u0 = u|Ω and,

for this subsequence, A−1
ǫk
h(uǫk

)
E

−→A−1h(u0). Since this has been proved for any sequence,

then we obtain the E-convergence for the the whole family, that is A−1
ǫ h(uǫ)

E
−→A−1h(u0).

The compact convergence of A−1
ǫ hǫ to A−1h given by the previous proposition will guar-

antee us with the upper semicontinuity of the set of equilibria. More precisely,

Corollary 5.6. If (H) and (F) are satisfied, then for any family of equilibria {u∗ǫ}0<ǫ≤ǫ0 of
(1.1) there exists an equilibrium point u∗0 of (1.2) and a subsequence of {u∗ǫ} that E-converges
to u∗0.

Proof. Apply Theorem 3.8.
We can also prove

Proposition 5.7. If (H) and (F) are satisfied, then there exists 0 < α < 1 and M > 0
such that ‖u∗ǫ‖Cα(Ω̄ǫ), ‖u

∗
0‖Cα(Ω̄) ≤ M , for any u∗ǫ , solution of (1.1), 0 ≤ ǫ ≤ ǫ0 and any u∗0,

solution of (1.2).

In particular, if u∗ǫ
E

−→u∗0, then we also have

‖u∗ǫ − Eǫu
∗
0‖Cβ(Ω̄ǫ) → 0

for any 0 < β < α.

Proof. That the solutions of (1.2) are Hölder continuous, follows from standard elliptic
regularity theory. Notice that if u∗0 is a solution of (1.2) and we define fu∗

0
(x) = f(x, u∗0(x))

and gu∗

0
(x) = g(x, u∗0(x)), then, u∗0 is the unique solution of the problem

{

−∆u + u = fu∗

0
(x), in Ω

∂u
∂n

= −gu∗

0
(x), on ∂Ω.

(5.2)

But, since f and g are bounded functions, then fu∗

0
∈ L∞(Ω), gu∗

0
∈ L∞(∂Ω) and elliptic

regularity theory implies that u∗0 is Hölder continuous and its norm in the Hölder space will
be determined by Ω and ‖fu∗

0
‖L∞(Ω) and ‖gu∗

0
‖L∞(∂Ω).

To obtain the uniform bound of the solutions of (1.1), we start by showing that ‖u∗ǫ‖L∞(Ωǫ)

is uniformly bounded in ǫ. Since by (2.4) and (2.5), |f(x, u)|, |g(x, u)| ≤ C, then by compar-
ison principles, we have that |u∗ǫ(x)| ≤ C|Uǫ(x)| where U is the solution of

{

−∆Uǫ + Uǫ = 1, in Ωǫ

∂Uǫ
∂n

= 1, on ∂Ωǫ.
(5.3)
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If we multiply (5.3) by (Uǫ − k)+, where k > 0, and integrate by parts, we obtain
∫

Ωǫ

|∇(Uǫ − k)+|2 +

∫

Ωǫ

|(Uǫ − k)+|2 + (k − 1)

∫

Ωǫ

(Uǫ − k)+ =

∫

∂Ωǫ

(Uǫ − k)+

Moreover, by the trace theorem obtained in Proposition 4.6 and if we define Ak,ǫ = {x ∈ Ωǫ :
Uǫ(x) > k}, we get ‖(Uǫ − k)+‖L1(∂Ωǫ) ≤ C‖(Uǫ − k)+‖W 1,1(Ωǫ) = C‖(Uǫ − k)+‖W 1,1(Ak,ǫ) ≤

C|Ak,ǫ|
1
2‖(Uǫ−k)+‖H1(Ωǫ). Hence, if k > 1, we get ‖(Uǫ−k)+‖H1(Ωǫ) ≤ C|Ak,ǫ|

1
2 . Moreover, by

the Sobolev embeddings of Proposition 4.5, we get that there exists a constant C independent
of ǫ, k and Uǫ, such that

‖(Uǫ − k)+‖L1(Ak,ǫ) ≤ |Ak,ǫ|
N+2
2N ‖(Uǫ − k)+‖

L
2N

N−2 (Ak,ǫ)
= |Ak,ǫ|

N+2
2N ‖(Uǫ − k)+‖

L
2N

N−2 (Ωǫ)

≤ C|Ak,ǫ|
N+2
2N ‖(Uǫ − k)+‖H1(Ωǫ) ≤ C|Ak,ǫ|

1+ 1
N

This last estimate allows us to apply Lemma 5.1 from [14] and obtain the L∞ uniform
bound for Uǫ, which implies the uniform L∞ bound for all u∗ǫ .

Observe that the key ingredient in the proof above is the uniform Sobolev embeddings
and trace theorem obtained in Proposition 4.5 and Proposition 4.6, respectively. To obtain
the uniform Hölder estimates on u∗ǫ we follow the same ideas. As a matter of fact, for a fixed
ǫ we can apply Lemma B.1 v) of [7] and obtain that u∗ǫ ∈ Cα(Ω̄ǫ) for certain 0 < α < 1.
To conclude that the Hölder norm is uniformly bounded in ǫ, we realize that the estimate
(B.11) of [7] depends on the domain through the measure of the domain |Ωǫ|, which is
controlled in our case, and through the constants C that appear in (B.10). This constants
come exactly from the Sobolev embeddings and trace theorems which are also controlled in
our case. Hence, we can obtain estimate (B.11) where all the constants are independent of
ǫ. Applying Theorem 7.2 from [14] we obtain the uniform Hölder estimates on the solutions
u∗ǫ .

The last part of the proposition is obtained through the compact embedding of Cα(Ω̄ǫ) →֒
Cβ(Ω̄ǫ) for all β < α.

We also have a kind of converse result of Corollary 5.6, in the case where the equilibrium
of the limiting problem is hyperbolic.

Corollary 5.8. If (H) and (F) are satisfied and if u∗0 is a hyperbolic equilibrium point of
(1.2) then there exists {u∗ǫ} equilibrium points of (1.1) such that {u∗ǫ} E-converges to u∗0.

Proof. Since u∗0 is a hyperbolic equilibrium point of (1.2), u∗0 isolated. Then there exists
δ > 0 such that u∗0 is the unique equilibrium point in B(u∗0, δ) and its index, relatively to the
map A−1

0 h, satisfies |ind(u∗0, A
−1
0 h)| = 1. We refer to [13] for a definition of the index.

Since A−1
ǫ hǫ compactly converges to A−1

0 h then, by Theorem 3 in [19], we get that
|ind(B(Eǫu

∗
0, δ), A

−1
ǫ hǫ)| = 1. In consequence, for each ǫ there exists at least one equi-

librium point u∗ǫ of (1.1) in B(Eǫu
∗
0, δ). If u∗ǫ does not E-converges to u∗0, then there will

exist a subsequence u∗ǫk
such that no other sub-subsequence can E-converge to u∗0. But from
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Corollary 5.6, we will have that there exists ũ0, an equilibrium point of the limiting equa-
tion (1.2) and a subsequence of u∗ǫk

which E-converges to ũ0. We will necessarily have that
ũ0 ∈ B(u∗0, δ). But this will imply that ũ0 = u∗0, which is a contradiction.

Remark 5.9. In case all equilibrium points of the limiting equation (1.2) are hyperbolic, we
have that the equilibrium points are all isolated, there are a finite number of them and from
Corollary 5.6 and 5.8 we get that the family Eǫ of equilibrium points is continuous at ǫ = 0.

Notice that the continuity from the remark above does not exclude the possibility that
near an equilibrium point of the limiting equation there may live several different equilib-
rium points of the perturbed problem. We will actually show that under some additional
condition on the differentiability of hǫ and assuming that A−1

ǫ hǫ
′(u∗ǫ) converges compactly

to A−1h0
′(u∗0), where hǫ

′(u∗ǫ) is the linearization of hǫ at u∗ǫ , it is possible to obtain the
uniqueness of the equilibrium points.

We first prove the A−1
ǫ hǫ

′(u∗ǫ) converges compactly to A−1h0
′(u∗0), if u∗ǫ E-converges to

u∗0.
Let hǫ

′(u∗ǫ) : H1(Ωǫ) → H−α(Ωǫ) given by

〈hǫ
′(u∗ǫ)vǫ, wǫ〉 =

∫

Ωǫ

∂uf(x, u∗ǫ)vǫwǫ −

∫

∂Ωǫ

∂ug(x, u
∗
ǫ)vǫwǫ, (5.4)

for vǫ ∈ H1(Ωǫ), wǫ ∈ Hα(Ωǫ) and h0
′(u∗0) : H1(Ω) → H−α(Ω) given by

〈h0
′(u∗0)v, w〉 =

∫

Ω

∂uf(x, u∗0)vw −

∫

∂Ω

γ∂ug(x, u
∗
0)vw, (5.5)

for v ∈ H1(Ω), w ∈ Hα(Ω).
As a matter of fact, we will consider a more general case, defining h̃ǫ and h̃0,

〈h̃ǫvǫ, wǫ〉 =

∫

Ωǫ

Vǫvǫwǫ +

∫

∂Ωǫ

bǫvǫwǫ, vǫ ∈ H1(Ωǫ), wǫ ∈ Hα(Ωǫ) (5.6)

and

〈h̃0v, w〉 =

∫

Ω

V0vw +

∫

∂Ω

γb0vw, v ∈ H1(Ω), w ∈ Hα(Ω), (5.7)

where Vǫ ∈ L∞(Ωǫ), V0 ∈ L∞(Ω), bǫ ∈ L∞(∂Ωǫ), b0 ∈ L∞(∂Ω).

Proposition 5.10. Assume conditions (H) and (F) hold. Let Vǫ and bǫ be potentials defined
in Ωǫ and in ∂Ωǫ respectively, such that ‖Vǫ‖L∞ ≤ K and ‖bǫ‖L∞ ≤ K. Assume that

Ṽǫ → Ṽ0, weakly in L2(RN),

where Ṽǫ and Ṽ0 are the extension by zero of Vǫ and V0 to all of R
N . Assume also that for

all i = 1, 2, . . . , n, we have

bǫ ◦ φi,ǫ → b0 ◦ φi,0, strongly in L2(QN−1)

where φi,ǫ and φi,0 are defined in (2.1) and (2.2) respectively. Then, we have A−1
ǫ h̃ǫ

CC
−→A−1

0 h̃0.
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Proof. To show the compact convergence of A−1
ǫ h̃ǫ to A−1

0 h̃0 we follow similar arguments
as in the proof of Proposition 5.5.

i). To show that for fixed 0 ≤ ǫ ≤ ǫ0, the linear operators A−1
ǫ ◦ h̃ǫ are compact, we observe

that, with elliptic regularity theory, these operators transform H1(Ωǫ) into H2−α(Ωǫ), for
some α < 1, which is compactly embedded in H1(Ωǫ).

ii). Let us consider now a family of functions uǫ ∈ H1(Ωǫ) with ‖uǫ‖H1(Ωǫ) ≤ C and let

wǫ = A−1
ǫ h̃ǫ(uǫ). Notice that this means that wǫ is the solution of

{

−∆wǫ + wǫ = Vǫuǫ in Ωǫ

∂wǫ
∂n

= bǫuǫ on ∂Ωǫ.
(5.8)

Multiplying (5.8) by wǫ, using that Vǫ, bǫ are bounded in L∞ and the uniform boundedness
of the trace operator we get, as in Lemma 5.3, that ‖wǫ‖H1(Ωǫ) ≤ C.

Applying Lemma 4.9 ii), we get subsequences uǫk
, wǫk

and functions u, w ∈ H1(U) such

that PΩǫk
,U(uǫk

) → u, PΩǫk
,U(wǫk

) → w, both w-H1(U) and such that uǫk

E
−⇀u|Ω, wǫk

E
−⇀w|Ω

Let us show first that w = A−1h̃(u). For this, observe that if v ∈ H1(U), then

(wǫk
, v)H1(Ωǫk

) =

∫

Ωǫk

Vǫk
uǫk
v +

∫

∂Ωǫk

bǫk
uǫk
v (5.9)

But from the fact that Ṽǫ → Ṽ0 weakly in L2(RN) and ‖Ṽǫ‖L∞(RN ) ≤ K then Ṽǫ → Ṽ0

weakly in Lq(Ω) for any 1 ≤ q <∞. From here and using Proposition 4.5 we obtain that

∫

Ωǫk

Vǫk
uǫk

v →

∫

Ω

V0uv

For the boundary part,

|

∫

∂Ωǫk
∩Ui

bǫk
uǫk
v −

∫

∂Ω∩Ui

γb0uv|

≤ |

∫

∂Ωǫk
∩Ui

bǫk
(uǫk

− u)v| + |

∫

∂Ωǫk
∩Ui

bǫk
uv −

∫

∂Ω∩Ui

γb0uv|

≤ C‖uǫk
− u‖L2(∂Ωǫk

)‖v‖L2(Ωǫk
) + |

∫

∂Ωǫk
∩Ui

bǫk
uv −

∫

∂Ω∩Ui

γb0uv|.

But, from Corollary 4.7, we have that the first term in the last expression goes to 0. Moreover,
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for the second term,

|

∫

QN−1

bǫk
(φi,ǫk

)u(φi,ǫk
)v(φi,ǫk

)Jφi,ǫk
− γ(φi,0)b0(φi,0)u(φi,0)v(φi,0)Jφi,0|

= |

∫

QN−1

bǫk
(φi,ǫk

)u(φi,ǫk
)v(φi,ǫk

)Jφi,ǫk
− b0(φi,0)u(φi,0)v(φi,0)γi|

≤

∫

QN−1

|bǫk
(φi,ǫk

) − b0(φi,0)| |u(φi,ǫk
)| |v(φi,ǫk

)| |Jφi,ǫk
|

+

∫

QN−1

|b0(φi,0)| |u(φi,ǫk
) − u(φi,0)| |v(φi,ǫk

)| |Jφi,ǫk
|

+

∫

QN−1

|b0(φi,0)| |u(φi,0)| |v(φi,ǫk
) − v(φi,0))| |Jφi,ǫk

|

+|

∫

QN−1

b0(φi,0)u(φi,0)v(φi,0)(Jφi,ǫk
− γi)| = I1 + I2 + I3 + I4

Since v, w ∈ H1(U), it follows from Lemma 4.8, that
∫

QN−1
|v(φi,ǫ) − v(φi,0)|2 and

∫

QN−1
|w(φi,ǫ)−w(φi,0)|2 converge to zero when ǫ→ 0. Using these facts and that ‖Jφi,ǫ‖L∞(QN−1) ≤

K and ‖b0‖L∞(∂Ω) ≤ K, we get that I2, I3 → 0.
Also, using Proposition 4.6, we get that v(φi,ǫ), w(φi,ǫ) is uniformly bounded in Lr(QN−1)

for 1 ≤ r < N−1
N−2

when ǫ → 0. Moreover, Jφi,ǫ is uniformly bounded in L∞. Using that
bǫ ◦ φi,ǫ converges to b0 ◦ φi,0 strongly in Lp(Ui ∩ ∂Ω) for 1 ≤ p <∞, we get that I1 → 0.

Finally, using hypothesis (F) and Remark 2.1, Jφi,ǫ converges to γi weakly in Lp(QN−1),
for any 1 ≤ p <∞. This implies that I4 → 0.

Hence, passing to the limit in both sides of (5.9) we have that

(w, v)H1(Ω) =

∫

Ω

V0uv +

∫

∂Ω

γb0uv

which shows that w = A−1h̃0(u).

Let us show now that, as a matter of fact, wǫk

E
−→w. From Proposition 3.4 it will be

enough to show that ‖wǫk
‖H1(Ωǫk

) → ‖w‖H1(Ω). But,

‖wǫk
‖2

H1(Ωǫk
) =

∫

Ωǫk

Vǫk
uǫk

wǫk
+

∫

∂Ωǫk

bǫk
uǫk
wǫk

and with a very similar argument as the one above, we can show that
∫

Ωǫk

Vǫk
uǫk
wǫk

+

∫

∂Ωǫk

bǫk
uǫk

wǫk
→

∫

Ω

V0uw +

∫

∂Ω

γb0uw = ‖w‖H1(Ω)

which shows the convergence of the H1 norms.

iii) To prove that if uǫ
E

−→u then wǫ
E

−→w we follow the same line of proof as it was done to
show iii) in the proof of Proposition 5.5.

Hence, we can show easily now the following
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Corollary 5.11. Let u∗ǫ and u∗0 be equilibrium points of (1.1) and (1.2) respectively such

that u∗ǫ
E

−→u∗0. Let hǫ
′(u∗ǫ) and h0

′(u∗0) be given by (5.4) and (5.5). Then, the sequence of
operators A−1

ǫ hǫ
′(u∗ǫ) ∈ L(H1(Ωǫ)) converges compactly to A−1h0

′(u∗0) ∈ L(H1(Ω)).
In particular, we can apply Proposition 3.10.

Proof. We just apply Proposition 5.10 with Vǫ(x) = ∂f
∂u

(x, u∗ǫ(x)), bǫ(x) = ∂g
∂u

(x, u∗ǫ(x)) for
0 ≤ ǫ ≤ ǫ0, which satisfy the hypotheses of Proposition 5.10.

We also want to show the uniqueness of the solutions given in Theorem 2.4. For this, we
will need the following

Lemma 5.12. Assume f, g satisfy (2.4) and (2.5). There exists K > 0 such that for all vǫ,
‖vǫ‖H1(Ωǫ) ≤ 1 we have

‖A−1
ǫ (hǫ(u

∗
ǫ + vǫ) − hǫ(u

∗
ǫ) − h′ǫ(u

∗
ǫ)vǫ)‖H1(Ωǫ) ≤ K‖vǫ‖

1+ 1
N−1

H1(Ωǫ)

Proof. Let wǫ = A−1
ǫ (hǫ(u

∗
ǫ + vǫ) − hǫ(u

∗
ǫ) − h′ǫ(u

∗
ǫ)vǫ). This means Aǫwǫ = hǫ(u

∗
ǫ + vǫ) −

hǫ(u
∗
ǫ) − h′ǫ(u

∗
ǫ)vǫ, and wǫ is a solution of

{

−∆wǫ + wǫ = f(x, u∗ǫ + vǫ) − f(x, u∗ǫ) − ∂uf(x, u∗ǫ)vǫ, in Ωǫ,
∂wǫ

∂n
+ g(x, u∗ǫ + vǫ) − g(x, u∗ǫ) − ∂ug(x, uǫ)vǫ = 0 on ∂Ωǫ.

(5.10)

Multiplying the equation by wǫ and integrating by parts, we get

‖wǫ‖
2
H1(Ωǫ)

=

∫

Ωǫ

(f(x, u∗ǫ + vǫ) − f(x, u∗ǫ) − ∂uf(x, u∗ǫ)vǫ))wǫ

−
∫

∂Ωǫ
(g(x, u∗ǫ + vǫ) − g(x, u∗ǫ) − ∂g(x, u∗ǫ)vǫ))wǫ.

(5.11)

We will show that

|

∫

Ωǫ

(f(x, u∗ǫ + vǫ) − f(x, u∗ǫ) − ∂f(x, u∗ǫ )vǫ))wǫ| ≤ C̃η‖vǫ‖
2+4/N
H1 + η‖wǫ‖

2
H1(Ωǫ) (5.12)

and

|

∫

∂Ωǫ

(g(x, u∗ǫ + vǫ) − g(x, u∗ǫ) − ∂g(x, u∗ǫ )vǫ))wǫ| ≤ C̃η‖vǫ‖
2+2/(N−1)
H1 + η‖wǫ‖

2
H1(Ωǫ), (5.13)

for some η < 1.
In fact, using Hölder and Young inequalities we have

|

∫

Ωǫ

(f(x, u∗ǫ + vǫ) − f(x, u∗ǫ) − ∂uf(x, u∗ǫ)vǫ))wǫ|

≤ ‖f(·, u∗ǫ + vǫ) − f(·, u∗ǫ) − ∂uf(·, u∗ǫ)vǫ)‖L2(Ωǫ)‖wǫ‖L2(Ωǫ)

≤ Cη‖f(·, u∗ǫ + vǫ) − f(·, u∗ǫ) − ∂uf(·, u∗ǫ)vǫ)‖
2
L2(Ωǫ)

+ η‖wǫ‖
2
L2(Ωǫ)

.
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Since the function f satisfies (2.4), we can show that, if we define θǫ(x) = min{1, |vǫ(x)|},
then

|f(x, u∗ǫ(x) + vǫ(x)) − f(x, u∗ǫ(x)) − ∂uf(x, u∗ǫ(x))vǫ(x))| ≤ C1θǫ(x)|vǫ(x)|, ae x ∈ Ωǫ,

for some constant C1 independent of ǫ, vǫ and u∗ǫ . To see this, notice that applying the
mean value theorem, we have |f(x, u∗ǫ(x) + vǫ(x)) − f(x, u∗ǫ(x)) − ∂uf(x, u∗ǫ(x))vǫ(x))| =
|(∂uf(x, ũǫ(x)) − ∂uf(x, uǫ(x)))vǫ(x)|, where ũǫ(x) is certain intermediate point between
u∗ǫ(x) and u∗ǫ(x) + vǫ(x). Hence, by the uniform boundedness of ∂uf(x, u) we have that
|∂uf(x, ũǫ(x)) − ∂uf(x, uǫ(x))| ≤ 2C. On the other hand, using again the mean value
theorem and the uniform boundedness of ∂uuf , we get |∂uf(x, ũǫ(x)) − ∂uf(x, u∗ǫ(x))| =
|∂uuf(x, ūǫ(x))|ũǫ(x)−u∗ǫ(x)| ≤ C|v(x)|, for some value ūǫ(x) between ũǫ(x) and u∗ǫ(x). This
implies that |∂uf(x, ũǫ(x))−∂uf(x, uǫ(x))| ≤ 2C min{1, vǫ(x)}, from where the result follows.

This implies that ‖θǫ‖L∞(Ωǫ) ≤ 1 and ‖θǫ‖L2(Ωǫ) ≤ ‖vǫ‖L2(Ωǫ). By interpolation, we get

‖θǫ‖Lp(Ωǫ) ≤ ‖vǫ‖
2/p
L2(Ωǫ)

, for any 2 ≤ p <∞.

Thus, using that the embedding H1(Ωǫ) →֒ Lq(Ωǫ) is uniformly bounded for 1 ≤ q ≤
2N/(N − 2), we get,

‖f(u∗ǫ + vǫ) − f(u∗ǫ) − f ′(u∗ǫ)vǫ)‖
2
L2(Ωǫ)

≤ C1‖θǫvǫ‖
2
L2(Ωǫ)

≤ C1‖θǫ‖
2
LN (Ωǫ)

‖vǫ‖
2

L
2N

N−2 (Ωǫ)
≤ C1‖vǫ‖

2+4/N

H1(Ωǫ)
,

which shows (5.12).
For the boundary part, using Hölder and Young inequalities we have

|

∫

∂Ωǫ

(g(u∗ǫ + vǫ)g(u
∗
ǫ) − g′(u∗ǫ)vǫ))wǫ| ≤ ‖g(u∗ǫ + vǫ) − g(u∗ǫ) − g′(u∗ǫ)vǫ)‖L2(∂Ωǫ)‖wǫ‖L2(∂Ωǫ)

≤ Cη‖g(u
∗
ǫ + vǫ) − g(u∗ǫ) − g′(u∗ǫ)vǫ)‖

2
L2(∂Ωǫ)

+ η‖wǫ‖
2
L2(∂Ωǫ)

.

Using the uniform imbedding of H1(Ωǫ) in L2(∂Ωǫ), we get

|

∫

∂Ωǫ

(g(u∗ǫ +vǫ)g(u
∗
ǫ)−g

′(u∗ǫ)vǫ))wǫ| ≤ Cη‖g(u
∗
ǫ +vǫ)−g(u

∗
ǫ)−g

′(u∗ǫ)vǫ)‖
2
L2(∂Ωǫ)

+η‖wǫ‖
2
H1(Ωǫ)

As we did above for f , we can also prove that,

|g(u∗ǫ(x) + vǫ(x)) − g(u∗ǫ(x)) − g′(u∗ǫ(x))vǫ(x))| ≤ C2θǫ(x)|vǫ(x)|,

where θǫ(x) = min{1, |vǫ(x)|} for x ae in ∂Ωǫ, then ‖θǫ‖L∞ ≤ 1 and ‖θǫ‖L2(∂Ωǫ) ≤ ‖vǫ‖L2(∂Ωǫ).

By interpolation, we get ‖θǫ‖Lp(∂Ωǫ) ≤ ‖vǫ‖
2/p
L2(∂Ωǫ)

, for 2 ≤ p <∞.

Thus, with the analysis above and using that the trace operator H1(Ωǫ) → Lq(∂Ωǫ) is

uniformly bounded in ǫ for 1 ≤ q ≤ 2(N−1)
N−2

we get

‖g(u∗ǫ + vǫ) − g(u∗ǫ)− g′(u∗ǫ)vǫ)‖
2
L2(∂Ωǫ)

≤ C2‖θǫvǫ‖
2
L2(∂Ωǫ)

≤ C2‖θǫ‖
2
L2(N−1)(∂Ωǫ)

‖vǫ‖
2

L
2(N−1)

N−2 (∂Ωǫ)
≤ C2‖vǫ‖

2+2/(N−1)

H1(Ωǫ)
. (5.14)
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which shows (5.13).
Plugging (5.12) and (5.13) in (5.11), choosing η < 1/2 and realizing that for N ≥ 2 we

have 1/(N − 1) ≤ 2/N , we show the Lemma.

Now, we prove the uniqueness result of the main theorem.

Proposition 5.13. If u∗0 is a hyperbolic equilibrium point of (1.2), then there exist δ > 0
and ǫ0 > 0 such that for 0 < ǫ < ǫ0 there exists one and only one equilibrium point u∗ǫ of
(1.1), with ‖u∗ǫ − Eǫu

∗
0‖ ≤ δ.

Proof. The existence of at least one equilibrium u∗ǫ with ‖u∗ǫ − Eǫu
∗
0‖ ≤ δ is guaranteed by

Corollary 5.8. Now we prove that u∗ǫ is unique. In fact, uǫ is a equilibrium point of (1.1) if
and only if uǫ is a fixed point of A−1

ǫ hǫ. We prove that if uǫ 6= u∗ǫ and ‖uǫ −u∗ǫ‖ ≤ δ for some
δ > 0, then

‖uǫ − A−1
ǫ hǫ(uǫ)‖ > 0.

Since u∗0 is a hyperbolic equilibrium, we get that ‖(I − A−1
0 h′0(u

∗
0))

−1‖ ≤ M . More-
over, A−1

ǫ h′ǫ(u
∗
ǫ) converges compactly to A−1h′0(u

∗
0). This implies by Lemma 3.9 that ‖(I −

A−1
ǫ h′ǫ(u

∗
ǫ))

−1‖ ≤ M , M independent of ǫ. In particular, there exists η > 0 such that
‖(I − A−1

ǫ h′ǫ(u
∗
ǫ))(zǫ)‖ ≥ η‖zǫ‖. Thus,

‖uǫ − A−1
ǫ hǫ(uǫ)‖H1(Ωǫ) ≥ ‖uǫ − u∗ǫ − Aǫh

′
ǫ(u

∗
ǫ)(uǫ − u∗ǫ)‖H1(Ωǫ)

− ‖A−1
ǫ (h(uǫ) − h(u∗ǫ) − h′(u∗ǫ)(uǫ − u∗ǫ))‖H1(Ωǫ). (5.15)

By Lemma 5.12, we have that there exists 0 < δ0 < 1 such that

‖A−1
ǫ (h(uǫ) − h(u∗ǫ) − h′(u∗ǫ)(uǫ − u∗ǫ))‖H1(Ωǫ) ≤ η/2‖(uǫ − u∗ǫ)‖H1(Ωǫ),

for ‖(uǫ − u∗ǫ)‖H1(Ωǫ) ≤ δ0. Using this, we get that

‖uǫ − A−1
ǫ hǫ(uǫ)‖H1(Ωǫ) ≥ η/2‖uǫ − u∗ǫ‖H1(Ωǫ).

and this completes the proof.

With all the results obtained in this section, we can easily provide a proof of the two
main results.

Proof of Theorem 2.4: Part i) is obtained from Corollary 5.6 and Proposition 5.7. Part
ii) is proved from Proposition 5.13 and from the convergence in Cβ (and therefore in L∞)
obtained in Part i).

Proof of Theorem 2.6: We just need to apply Corollary 5.11.
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[8] H. Brézis, Análisis funcional, Teoŕıa y aplicaciones, Alianza Universidad Textos, Madrid,
1984.

[9] A. Carvalho, S. Piskarev, A general approximation scheme for attractors of abstract
parabolic problems, Numer. Funct. Anal. Optim. To appear.

[10] J. Casado-Dı́az, E. Fernández-Cara, J. Simon, Why viscous fluids adhere to rugose
walls: a mathematical explanation, Journal of Differential Equations 189 (2003), no.
2, 526–537.

[11] G. Chechkin, A. Friedman, A.L. Piatnitski, The boundary-value problem in domains
with very rapidly oscillating boundary, J.of Math. Anal. Appl. 231, pp. 213-234 (1999)

[12] E. N. Dancer and D. Daners, Domain Perturbations for Elliptic Equations subject to
Robin Boundary Conditions, Journal of Differential Equations 138, (1997) 86-132.

[13] M.A. Krasnoselskii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis (Trans-
lated from the Russian by C.C. Fenske) Grundlehren Math. Wiss (Fundamental Prin-
ciples of Mathematical Sciences) vol 263, Springer, Berlin 1984.

[14] O. Ladyzhenskaya and N. N. Ural‘tseva, Linear and Quasilinear Ellpitic Equations,
Academic Press, (1968).

[15] V.G. Maz’ja, Sobolev Spaces, Springer-Verlag, Berlin 1985

28



[16] N. Neuss, M. Neuss-Radu, A. Mikelic, Effective laws for the Poisson equation on domains
with curved osicllating boundaries, Preprint 2004-36, SFB 359, Heidelberg.

[17] S.E. Pastukhova, The oscillating boundary phenomenon in the homogenization of a
climatization problem, Differential Equations 37, pp 1276-1283 (2001)

[18] E. Sanchez-Palencia, Non homogeneous media and vibration theory, Volume 127, Lec-
ture Notes in Physics, Springer-Verlag, Berlin (1980)

[19] G. Vainikko, Approximative methods for nonlinear equations (two approaches to the
convergence problem), Nonlinear Analysis, Theory, Methods & Applications, vol2, 6
(1978) 647-687.

29


	Introduction
	Setting of the problem and main results
	Solutions as fixed points and E-convergence
	Fixed points
	E-convergence

	Some technical results
	Proof of the main results

