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RAPIQUE: Rapid and Accurate Video Quality Prediction of User

Generated Content

Zhengzhong Tu, Xiangxu Yu, Yilin Wang, Neil Birkbeck, Balu Adsumilli, and Alan C. Bovik, Fellow, IEEE

Blind or no-reference video quality assessment of user-generated content (UGC) has become a trending, challenging, heretofore
unsolved problem. Accurate and efficient video quality predictors suitable for this content are thus in great demand to achieve more
intelligent analysis and processing of UGC videos. Previous studies have shown that natural scene statistics and deep learning features
are both sufficient to capture spatial distortions, which contribute to a significant aspect of UGC video quality issues. However, these
models are either incapable or inefficient for predicting the quality of complex and diverse UGC videos in practical applications. Here
we introduce an effective and efficient video quality model for UGC content, which we dub the Rapid and Accurate Video Quality
Evaluator (RAPIQUE), which we show performs comparably to state-of-the-art (SOTA) models but with orders-of-magnitude faster
runtime. RAPIQUE combines and leverages the advantages of both quality-aware scene statistics features and semantics-aware deep
convolutional features, allowing us to design the first general and efficient spatial and temporal (space-time) bandpass statistics
model for video quality modeling. Our experimental results on recent large-scale UGC video quality databases show that RAPIQUE
delivers top performances on all the datasets at a considerably lower computational expense. We hope this work promotes and
inspires further efforts towards practical modeling of video quality problems for potential real-time and low-latency applications. To
promote public usage, an implementation of RAPIQUE has been made freely available online: https://github.com/vztu/RAPIQUE.

Index Terms—Video quality assessment, natural scene statistics, temporal, video compression, perceptual quality, user-generated
content, image quality assessment, deep learning

I. INTRODUCTION

Recent years have witnessed an explosion of user-generated

content (UGC) captured and streamed over social media

platforms such as YouTube, Facebook, TikTok, and Twitter.

Thus, there is a great need to understand and analyze billions

of these shared contents to optimize video pipelines of efficient

UGC data storage, processing, and streaming. UGC videos,

which are typically created by amateur videographers, often

suffer from unsatisfactory perceptual quality, arising from

imperfect capture devices, uncertain shooting skills, and a

variety of possible content processes, as well as compression

and streaming distortions. In this regard, predicting UGC video

quality is much more challenging than assessing the quality

of synthetically distorted videos in traditional video databases.

UGC distortions are more diverse, complicated, commingled,

and no “pristine” reference is available.

Traditional video quality assessment (VQA) models have

been widely studied [1] as an increasingly important toolset

used by the streaming and social media industries. While

full-reference (FR) VQA research is gradually maturing and

several algorithms [2], [3] are quite widely deployed, recent

attention has shifted more towards creating better no-reference

(NR) VQA models that can be used to predict and monitor the

quality of authentically distorted UGC videos. One intriguing

property of UGC videos, from the data compression aspect,

is that the original videos to be compressed often already

suffer from artifacts or distortions, making it difficult to decide

the compression settings [4]. Similarly, it is of great interest
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to be able to deploy flexible video transcoding profiles in

industry-level applications based on measurements of input

video quality to achieve even better rate-quality tradeoffs

relative to traditional encoding paradigms [5]. The decision

tuning strategy of such an adaptive encoding scheme, however,

would require the guidance of an accurate and efficient NR or

blind video quality (BVQA) model suitable for UGC [6].

Many blind video quality models have been proposed to

solve the UGC-VQA problem [4], [6]–[19]. Among these,

BRISQUE [8], GM-LOG [11], FRIQUEE [12], V-BLIINDS

[9], and VIDEVAL [6] have leveraged different sets of natu-

ral scene statistics (NSS)-based quality-aware features, using

them to train shallow regressors to predict subjective quality

scores. Another well-founded approach is to design a large

number of distortion-specific features, whether individually

[20]–[22], or combined, as is done in TLVQM [13] to achieve

a final quality prediction score. Recently, convolutional neural

networks (CNN) have been shown to deliver remarkable

performance on a wide range of computer vision tasks [23]–

[25]. Several deep CNN-based BVQA models have also been

proposed [18], [19], [26], [27] by training them on recently

created large-scale psychometric databases [28], [29]. These

methods have yielded promising results on synthetic distortion

datasets [1], but still struggled on UGC quality assessment

databases [30]–[32].

Prior work has mainly focused on spatial distortions, which

have been shown to indeed play a critical role in UGC video

quality prediction [6]. The exploration of the temporal statis-

tics of natural videos, however, has been relatively limited.

The authors of [6] have shown that temporal- or motion-

related features are essential components when analyzing the

quality of mobile captured videos, as exemplified by those in

the LIVE-VQC database [30]. Yet, previous BVQA models

that account for temporal distortions, such as V-BLIINDS and

TLVQM, generally involve expensive motion estimation mod-

https://github.com/vztu/RAPIQUE
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els, which are not practical in many scenarios. Furthermore,

while compute-efficient VQA models exist, simple BVQA

models like BRISQUE [8], NIQE [33], GM-LOG [11] are

incapable of capturing complex distortions that arise in UGC

videos. Complex models like V-BLIINDS [9], TLVQM [13],

and VIDEVAL [6], on the contrary, perform well on existing

UGC video databases, but are much less efficient, since

they either involve intensive motion-estimation algorithms or

complicated scene statistics features. A recent deep learning

model, VSFA [19], which extracts frame-level ResNet-50 [34]

features followed by training a GRU layer, is also less practical

due to the use of full-size, frame-wise image inputs and the

recurrent layers.

We have made recent progress towards efficient modeling

of temporal statistics relevant to the video quality problem, by

exploiting and combining spatial and temporal scene statistics,

as well as deep spatial features of natural videos. We summa-

rize our contributions as follows:

• We created a rapid and accurate video quality predictor,

called RAPIQUE, in an efficient manner, achieving supe-

rior performance that is comparable or better than state-

of-the-art (SOTA) models, but with a relative 20x speedup

on 1080p videos. The runtime of RAPIQUE also scales

well as a function of video resolution, and is 60x faster

than the SOTA model VIDEVAL on 4k videos.

• We built a first-of-its-kind BVQA model that combines

novel, effective, and easily computed low-level scene

statistics features with high-level deep learning features.

Aggressive spatial and temporal sampling strategies are

used, exploiting content and distortion redundancies, to

increase efficiency without sacrificing performance.

• We created a new spatial NSS feature extraction mod-

ule within RAPIQUE, which is a highly efficient and

effective alternative to the popular but expensive feature-

based BIQA model, FRIQUEE. The spatial NSS features

used in RAPIQUE are suitable for inclusion as basic

elements of a variety of perceptual transforms, leading to

significant efficiencies which might also be useful when

developing future BVQA models.

• We designed the first general, effective and efficient

temporal statistics model (beyond frame-differences) that

is based on bandpass regularities of natural videos, and

which can also be used as a standalone module to

boost existing BVQA methods on temporally-distorted

or motion-intensive videos.

The rest of this paper is organized as follows. Section II

reviews previous literature relating to video quality assessment

models, while Section III unfolds the details of the RAPIQUE

model. Experimental results and concluding remarks are given

in Section IV and Section V, respectively.

II. RELATED WORK

A. Traditional BVQA Models

Many early BVQA/BIQA models have been ‘distortion

specific’ in that they were designed to quantify a specific type

of distortion such as blockiness [35], blur [36], ringing [20],

banding [21], [37], [38], or noise [22], [39] in compressed im-

ages and videos. Recent high-performing BIQA/BVQA mod-

els are almost exclusively learning-based, operating by training

sets of generic quality-aware features, which are combined

to conduct quality predictions [7]–[10], [12]–[15]. Learning-

based BVQA models are more versatile and generalizable

than ‘distortion specific’ models, in that the selected features

are broadly perceptually relevant, while powerful regression

models can adaptively map the features onto quality scores

learned from the data in the context of a specific application.

The most popular BVQA algorithms deploy perceptually

relevant, low-level features based on simple, yet highly regular

parametric bandpass models of scene statistics [40]. These

natural scene statistics (NSS) models often are predictably

altered by the presence of distortions [41], although they

have more limited power to characterize complex, commingled

distortions. Successful picture quality models of this type have

been explored in the wavelet (BIQI [42], DIIVINE [7], C-

DIIVINE [43]), DCT (BLIINDS [44], BLIINDS-II [45]) and

spatial domains (NIQE [33], BRISQUE [8]), and have been

further extended to encompass natural bandpass space-time

video statistics models [9], [46]–[48], among which the most

well-known model is Video-BLIINDS [9]. Other extensions

of empirical NSS include models of the joint statistics of

the gradient magnitude and Laplacian of Gaussian (GM-LOG

[11]), in log-derivative and log-Gabor spaces (DESIQUE [49]),

as well as in the gradient domain of LAB color transforms (HI-

GRADE [10]). The FRIQUEE model [12] achieves excellent

performance on UGC/consumer video/picture databases [29],

[31], [32], [50], [51] by leveraging a bag of NSS features

drawn from diverse color spaces and perceptually motivated

transform domains.

Time-domain behavior is the key attribute that differentiates

videos from still pictures. The perception of video corre-

lates highly with motion and temporal change [52]. Amongst

BVQA models, Video-BLIINDS [9] was the first to explore

the use of (spatio-) temporal scene statistics of video using

DCT coefficient statistics in the time-differenced domain. V-

BLIINDS also involves calculating motion coherence and

global motion features, which requires expensive motion esti-

mation, to account for temporal masking effects.

Instead of using DCT transforms, Mittal et al. proposed a

completely blind model called VIIDEO [47], which inspects

the divisively normalized spatial statistics of frame differences.

Bandpass filtering followed by divisive normalization was

applied to frame differences, after which the inter-subband

correlations are modeled over the temporal variation of the

extracted generalized Gaussian parameters. As a highly ex-

perimental temporal-only model, VIIDEO includes no spatial

features, hence does not perform well on natural UGC video

datasets [30], [31].

Regarding the joint modeling of spatiotemporal statistics, Li

et al. proposed to adopt 3D-DCT transforms of local space-

time regions from videos to extract quality-aware features

[46]. More recently, the authors of [53] leveraged 3D divisive

normalization transformed (DNT) and spatiotemporal Gabor-

filtered responses of 3D-DNT coefficients of natural videos.

The 3D transforms adopted therein, however, are too expensive
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Fig. 1. Schematic overview of the proposed RAPIQUE model. Top block shows the spatial and temporal NSS feature extraction branch, while bottom block
depicts the CNN feature extraction flow. The final feature vector is simply concatenated from the extracted spatial and temporal NSS and the CNN features,
which is further used to train a regressor head.

for practical use; neither have these models been observed to

perform well on UGC datasets [30], [32].

Another intriguing and more practical approach to integrat-

ing temporal features into BVQA models is to design separable

spatial-temporal statistics [4], [48], [54], [55]. Spatial features

can be modified to capture temporal effects within BIQA

models like BRISQUE, whereby simple frame-differences or

spatially displaced frame-differences are deployed [4], [48],

[56], [57].

A very recent feature-based BVQA model called TLVQM

[13] uses a two-level feature extraction mechanism to achieve

efficient computation of a set of impairment/distortion-relevant

features. Unlike NSS-based models, TLVQM relies on a

comprehensive set of highly crafted features that measure

motion, specific distortion artifacts, and aesthetics. TLVQM

requires that a large number of parameters be specified by the

user, which may affect its general performance on datasets or

scenarios it has not been exposed to. The model currently

achieves very good performance on natural video quality

databases at a reasonable complexity.

VIDEVAL [6] is currently the SOTA feature-based BVQA

model on recent large-scale video dataset like KoNViD-1k

[31] and YouTube-UGC [32]. It employs feature selection and

fusion on top of efficacious NSS-based models as well as

distortion-based features. It is also a very compact model as it

only utilizes 60 features. However, it has not been observed to

efficiently scale to high-resolution and high-framerate videos.

B. Deep Learning-Based BVQA Models

Deep convolutional neural networks (CNNs) have been

shown to deliver standout performance in a wide variety

of low-level computer vision applications [17], [23], [25],

[58]. Recently, the release of several large-scale psychome-

tric visual quality databases [29]–[32], [51] have sped the

application of deep CNNs to perceptual video and image

quality modeling. To conquer the limits of small data size,

researchers have either proposed to conduct patch-wise data-

augmentation during training [59]–[61], or to pretrain deep

nets on larger visual sets like ImageNet [62], then fine tune

on target quality databases. Several authors report remarkable

performance on synthetic distortion databases [63], [64] or on

naturally distorted databases [29], [51].

Deep CNN models have also been employed for natural

video quality prediction. Kim et al. [26] proposed a deep

video quality assessor (DeepVQA) to learn spatio-temporal

visual sensitivity maps via a deep CNN and a convolutional

aggregation network. The V-MEON model [65] leveraged a

multi-task CNN framework which jointly optimizes a 3D-

CNN for feature extraction and a codec classifier, and using

fully-connected layers to predict video quality. Zhang et al.

[27] leveraged transfer learning to develop a general-purpose

BVQA framework based on weakly supervised learning and

a resampling strategy. In the VSFA model [19], the authors

applied a pre-trained image classification CNN as a deep

feature extractor, then integrated the frame-wise deep features

using a gated recurrent unit and a subjectively-inspired tem-

poral pooling layer, reporting leading performance on several

natural video databases [31], [50], [66]. The authors then built

an enhanced version of VSFA, dubbed MDVSFA [67], by

employing a mixed datasets training strategy on top, training

a single VQA model on multiple datasets, and reporting

superior performance on publicly available datasets. Several

other popular CNN-based BVQA models [19], [26], [27], [65],

[67] produce accurate quality predictions on legacy (single
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(a) img1 (MOS=3.82, best quality) (b) img2 (MOS=2.93, good quality)

(c) img3 (MOS=35.8, bad quality) (d) img4 (MOS=15.9, worst quality)

Fig. 2. Exemplar test images exhibiting four categories of quality: (a) img1
(best) and (b) img2 (good) are two good-quality images from KonIQ-10k
(MOS range: [1, 5]) [51], while (c) img3 (bad) and (d) img4 (worst) are two
bad-quality pictures from CLIVE (MOS range: [0, 100]) [29].

Fig. 3. Histograms of MSCN (left) and variance map (right) of the four
images shown in Fig. 2.

synthetic distortion) video datasets [1], [68], but struggle on

recent in-the-wild UGC databases [31], [50], [66].

III. RAPID AND ACCURATE VIDEO QUALITY EVALUATOR

(RAPIQUE)

Prior statistics-based video quality models have been shown

to be capable of capturing complex UGC distortions, such as

FRIQUEE [12], TLVQM [13], and VIDEVAL [6]. However,

these models are subject to time-consuming executions since

either expensive motion estimation or high-order statistical

features are required. CNN models are able to efficiently

capture high-level features, which have also been observed

to be useful quality indicators [19], albeit directly applying a

CNN on high-resolution video frames is expensive. Here we

propose an efficient two-branch framework, as depicted in Fig.

1, which combines quality-aware, low-level NSS features with

high-level, semantics-aware CNN features. The NSS features

operate on higher-resolution spatial and temporal bandpass

feature maps, while the CNN feature extractor is applied on a

resized low-resolution frames for practical considerations. We

also adopt a sparse frame sampling strategy when extracting

features, which further accelerates the runtime. We present the

details of RAPIQUE in the following.

Fig. 4. Histograms of four-orientation (H, V, D1, D2) MSCN pair-production
of the four images shown in Fig. 2.

A. Natural Scene Statistics

It has been observed that the spatial wavelet/subband co-

efficients of natural images exhibit strong regularities (Gaus-

sianity) following a divisive normalization transform (DNT)

[7]. A simple but effective form of divisive normalization,

called mean subtraction and contrast normalization (MSCN),

has been observed to accurately characterize image naturalness

in multiple feature transforms [8], [10], [12], [49]. We develop

NSS-based features following the methodology of FRIQUEE

[12], which leverages multiple perceptually-relevant feature

transforms to extract a large number of statistical features.

RAPIQUE uses simple yet effective low-order bandpass statis-

tics, achieving comparable performance as the complex and

time-consuming high-order features used in FRIQUEE. We

were inspired by the successful and efficient basic features

developed as products of spatially-adjacent MSCN responses,

and log-derivative statistics in BRISQUE [8] and DESIQUE

[49], respectively. Specifically, let Y (i, j) be a given intensity

image or a transformed feature map. The MSCN operator is

applied on Y (i, j) to further decorrelate and Gaussianize the

local pixels:

Ŷ (i, j) =
Y (i, j)− µ(i, j)

σ(i, j) + C
, (1)

where, (i, j) are spatial indices and C = 1 is a constant that

prevents instabilities caused by having a small variance in the

denominators. The factors µ(i, j) and σ(i, j) are the weighted

local mean and standard deviation within a spatial window

centered at location (i, j) calculated by:

µ(i, j) =
K
∑

k=−K

L
∑

ℓ=−L

wk,lY (i− k, j − ℓ) (2)

σ(i, j)=

√

√

√

√

K
∑

k=−K

L
∑

ℓ=−L

wk,ℓ[Y (i− k, j − ℓ)− µ(i, j)]2, (3)
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Fig. 5. Histograms of seven types of MSCN paired log-derivative (Eqs. (8))
of the four images shown in Fig. 2.

where w = {wk,ℓ|k = −K, ...,K, ℓ = −L, ..., L} is a 2D

isotropic, truncated, unit-volume Gaussian weighting function.

We used K = L = 3 in our implementations.

It has been empirically observed that the MSCN coefficients

of images or video frames have characteristic statistical proper-

ties that are altered by the presence of distortion, and therefore,

quantifying these deviations can help enable the prediction

of perceived quality [8], [40]. A well-known model is the

generalized Gaussian distribution (GGD) with zero mean [8]:

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(

−
( |x|

β

)α)

, (4)

where β = σ
√

Γ(1/α)
Γ(3/α) and Γ(·) is the gamma function:

Γ(a) =
∫

∞

0
ta−1e−tdt. The two parameters are the shape α

and the spread σ, of the zero-mean symmetric GGD, which

are estimated using a popular moment-matching based method

[69]. These are used as features to predict perceptual quality.

Another statistical observation is that the sample distri-

butions of products of pairs of neighboring pixels in the

MSCN coefficient map along four directions - horizontal (H)

(Ŷ (i, j)Ŷ (i, j + 1)), vertical (V) (Ŷ (i, j)Ŷ (i + 1, j)), main-

diagonal (D1) (Ŷ (i, j)Ŷ (i+1, j+1)), and secondary-diagonal

(D2) (Ŷ (i, j)Ŷ (i+ 1, j − 1)) also exhibit a regular statistical

structure, which are well-modeled as following a zero mode

asymmetric generalized Gaussian distribution (AGGD) [8],

[47]:

f(x; ν, σ2
l , σ

2
r) =



























ν

(βl+βr)Γ(
1
ν )

exp

(

−
(

−x

βl

)ν)

x<0

ν

(βl+βr)Γ(
1
ν )

exp

(

−
(

x

βr

)ν)

x>0,

(5)

where

βl = σl

√

Γ(1/ν)

Γ(3/ν)
and βr = σr

√

Γ(1/ν)

Γ(3/ν)
. (6)

An AGGD model has four parameters: ν controls the shape

of the distribution, while (σl, σr) are scale parameters that

control the spread along each side of the mode; and η is the

mean of the distribution, given by η = (βr − βl)
Γ(2/η)
Γ(1/η) .

Apart from the second-order pair-product statistics, we also

extract another supplementary set of features by modeling the

log-derivative statistics of neighboring MSCN coefficient pairs

as introduced in [49]. Specifically, the absolute pixel values of

Ŷ (i, j) are first logarithmically transformed:

Z(i, j) = log[|Ŷ (i, j)|+ 0.1], (7)

then seven types of log-derivative statistics (Eqs. (8))

along six paired orientations - horizontal (H: ∇xZ(i, j)),
vertical (V: ∇yZ(i, j)), main-diagonal (MD: ∇xyZ(i, j)),
secondary-diagonal (SD: ∇yxZ(i, j)), horizontal-vertical

(HV: ∇x∇yZ(i, j)), and two combined-diagonals (CDs:

∇cx∇cyZ(i, j)1, ∇cx∇cyZ(i, j)2), are modeled as GGD,

respectively, after which the estimated GGD parameters are

gathered as additional statistical features for learning the

eventual quality predictor.

D1 :∇xZ(i, j) = Z(i, j + 1)− Z(i, j)

D2 :∇yZ(i, j) = Z(i+ 1, j)− Z(i, j)

D3 :∇xyZ(i, j) = Z(i+ 1, j + 1)− Z(i, j)

D4 :∇yxZ(i, j) = Z(i+ 1, j − 1)− Z(i, j)

D5 :∇x∇yZ(i, j) = Z(i− 1, j) + Z(i+ 1, j)

− Z(i, j − 1)− Z(i, j + 1)

D6 :∇cx∇cyZ(i, j)1 = Z(i, j) + Z(i+ 1, j + 1)

− Z(i, j + 1)− Z(i+ 1, j)

D7 :∇cx∇cyZ(i, j)2 = Z(i−1, j−1) + Z(i+1, j+1)

− Z(i− 1, j + 1)− Z(i+ 1, j − 1)

(8)

For each pair log-derivative feature map, a single scale NSS

model is used to derive two parameters (α, σ) by fitting a

GGD distribution using the same moment-matching procedure,

yielding a total of 14 additional features.

The variance field (or ‘sigma’ field) in Eq. (3) has been

previously shown to provide effective quality-aware features

deriving from the same NSS/retinal model [10], [12]. We

extract two additional quantities from the variance field (Eq.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2021.3090333, IEEE Open

Journal of Signal Processing

6

Fig. 6. Extracted feature maps defined in Sec. III-B. 1st row: Y , GM , LoG,
DoG; 2nd row: O2, O3, GMO2, GMO3; 3rd row: BY , RG, GMBY ,
GMRG; 4th row: A, B, GMA, GMB.

(3)): the mean φσ and square of the reciprocal of the coefficient

of variation (CoV):

φσ =
1

MN

M−1
∑

i=0

N−1
∑

j=0

σ(i, j) (9)

where the CoV is ρ = (φσ/ωσ)
2 and where

ωσ =

√

√

√

√

1

MN

M−1
∑

i=0

N−1
∑

j=0

[σ(i, j)− φσ]2. (10)

In order to visualize how these NSS regularities are per-

turbed by UGC distortions, we selected four pictures ranging

from high quality to low quality - 10004473376.jpg

(MOS=3.82), 6462096609.jpg (MOS=2.93) from KoNIQ-

10k [51] and t4.bmp (MOS=35.8), 12.bmp (MOS=15.9)

from LIVE-IQC [29], as shown in Fig. 2. Fig. 3 plots

the histograms of the MSCN and variance field coefficients

on these images of diverse perceptual quality. Note that it

is extremely difficult to isolate specific distortion types on

authentically distorted UGC pictures, since several complex,

commingled distortions usually co-exist, hence it is difficult to

predict how a given GGD histogram will vary in the presence

of quality degradations. However, we may still observe in

Fig. 3 that MSCN and sigma coefficients can differentiate

images having different perceptual qualities. In this regard,

the estimated parameters from these distributions are good

indicators of perceptual quality for UGC pictures or videos.

We also plotted the histograms of adjacent pair products

and log-derivative statistics in Fig. 4 and 5, respectively. It

may be observed that the product statistics exhibit similar

behavior as the MSCN coefficients, in that their shapes are

significantly altered as a function of quality. These statistics

better characterize correlations introduced or lost by distortion

as compared to first-order MSCN and variance features. The

seven types of log-derivative statistics shown in Fig. 5 exhibit

distinct deviations against distortion, and all are effective at

capturing quality variations on UGC pictures. Therefore, it is

TABLE I
SUMMARY OF THE PROPOSED NSS-34 FEATURE EXTRACTION MODULE.

INDEX DESCRIPTION COMPUTATION PROCEDURE

f1 − f2 (α, σ) Fit GGD to MSCN coefficients
f3 − f4 (φσ , ωσ) Compute statistics on ‘sigma’ map
f5 − f8 (ν, η, σl, σr) Fit AGGD to H pairwise products
f9 − f12 (ν, η, σl, σr) Fit AGGD to V pairwise products
f13 − f16 (ν, η, σl, σr) Fit AGGD to D1 pairwise products
f17 − f20 (ν, η, σl, σr) Fit AGGD to D2 pairwise products
f21 − f22 (α, σ) Fit GGD to D1 pairwise log-derivative
f23 − f24 (α, σ) Fit GGD to D2 pairwise log-derivative
f25 − f26 (α, σ) Fit GGD to D3 pairwise log-derivative
f27 − f28 (α, σ) Fit GGD to D4 pairwise log-derivative
f29 − f30 (α, σ) Fit GGD to D5 pairwise log-derivative
f31 − f32 (α, σ) Fit GGD to D6 pairwise log-derivative
f33 − f34 (α, σ) Fit GGD to D7 pairwise log-derivative

informative to include all these statistical features in the final

prediction model.

B. Spatial Features

We built a basic statistical feature extraction module us-

ing the NSS features mentioned in the previous section, as

summarized in Table I. Given an input image or feature map,

it extracts two features (α, σ) from the MSCN transforms,

two features (φσ, ωσ) from the variance field, 16 features

4 × (ν, η, σl, σr) from the AGGD fit of MSCN adjacent pair

products along 4 directions, and 14 features 7 × (α, σ) from

GGD fits of paired log-derivatives along 7 directions, yielding

a total of 34 features, which we dub NSS-34 for simplicity.

We also hypothesized that the NSS-34 operator is able

to extract valuable color quality information if applied in

a chromatic space, which we deem to be a more unified

and efficient approach than crafting specific, complex features

in different feature spaces, as is done in FRIQUEE [12].

The proposed NSS-34 feature set is based on fast, low-level

statistics derived from GGD and AGGD models only, which

we will show to deliver superior efficiency in the experimental

section.

The gradient magnitude (GM) of a video frame is defined

as the root mean square of directional gradients along two

orthogonal spatial directions. GM is computed by convolving

with a linear filter such as the Roberts, Sobel, or Prewitt. We

utilized the Sobel kernels:

hx =





+1 0 −1
+2 0 −2
+1 0 −1



 and hy =





+1 +2 +1
0 0 0
−1 −2 −1



 (11)

whereby the GM of an image or frame I(i, j) is calculated

by:

GM =
√

(I ∗ hx)2 + (I ∗ hy)2, (12)

where ∗ denotes the convolution operator.

It has been observed that two dimensional difference-of-

Gaussian (DoG) or Laplacian-of-Gaussian (LoG) operators

well-characterize the multiscale receptive fields of retinal

ganglion cells [70]. We also extract two bandpass maps,

using LoG and DoG, and extract their corresponding NSS-34

features, respectively. The LoG of image I is:

LoG = I ∗ hLoG, (13)
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frame 0 frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 frame 7

subband 0 subband 1 subband 2 subband 3 subband 4 subband 5 subband 6 subband 7

Fig. 7. Top row: eight exemplar consecutive frames sampled from sequence Tractor in LIVE-VQA [1]. Middle row: temporal bandpass-filtered responses
by convolving with the filters in an 8-subband Haar-wavelet filter bank, which are shown in the bottom row. The subband frequency increases from left to
right: k = 0, ..., 7, for both the responses and wavelet functions.

where the LoG kernel is defined as:

hLoG =

(

∂2

∂x2
+

∂2

∂y2

)

gσ(x, y)

=
x2 + y2 − 2σ2

2πσ6
exp

(

−x2 + y2

2σ2

)

,

(14)

where gσ(x, y) is an isotropic Gaussian function with scale

parameter σ. We used a window size of 9×9 for LoG filtering.

While the GM and LoG are used by RAPIQUE to amplify

high-frequency responses relating to local frame structures,

the DoG is configured to capture mid-frequencies, expressive

of structure at larger bandpass scales. The DoG response is

defined as the difference of the responses of two Gaussian

filters with different standard deviations

DoG = I ∗ gσ1
− I ∗ gσ2

= I ∗ (gσ1
− gσ2

). (15)

To avoid redundant information between the LoG and DoG,

only the first level of an N -level DoG decomposition with

k = 1.6, σi = ki−1, i = 1, ..., N − 1 is utilized. Fig. 6 shows

the differences between the GM, LoG, and DoG responses on

a sample video frame. Overall, the four luma channel feature

maps (Y,GM,LoG,DoG) (where Y = 0.299R + 0.587G +
0.114B) are fed into the NSS-34 module to obtain useful

statistical features.

Most previous BVQA models have overlooked the impor-

tance of chromatic features, whereas recent work [6], [10],

[55], [66] has shown the efficacy of color components for UGC

video quality prediction. Previous efforts on the chromatic

statistics of quality models involve opponent color spaces

such as YIQ/YUV [15], [71], O1O2O3 [72], LMS [12], [72],

perceptual color spaces like CIELAB [10], [12], [73], HSI

[12], [74], Yellow color [12], and “colorfulness” features

[6], [13], [75]. Here we deploy perceptually relevant color

transforms from RGB frames (where R(i, j), G(i, j), B(i, j)
are red, green, and blue channels) to O1O2O3, red-green (RG),

and blue-yellow (BY) as follows:





O1

O2

O3



 =





0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.60 0.17









R
G
B



 (16)

and

R(i, j) = log[R(i, j) + 0.1]− µR

G(i, j) = log[G(i, j) + 0.1]− µG

B(i, j) = log[B(i, j) + 0.1]− µB

, (17)

where µR, µG, and µB are the average values of log[R(i, j)+
0.1], log[G(i, j)+0.1], and log[B(i, j)+0.1], respectively, over

each entire frame. Then the RG and BY opponent color space

values are

L̂ = (R+ G + B)/
√
3

BY = (R+ G − 2B)/
√
6

RG = (R− G)/
√
2

. (18)

We also included chroma maps A,B from the most widely

used CIELAB perceptual color space [10], [12], which can

be converted from RGB via CIEXYZ [76]. Note that we

extract both chroma maps as well as their corresponding

gradient maps (via Eq. (12)) following the suggestions in [10].

The above defined luma and chroma feature transforms are

visualized in Fig. 6.

Images are naturally multiscale, and distortions affect image

structures across scales. Incorporating multiscale information

in quality models provides significant performance improve-

ments [8], [77]. Hence, we extract NSS-34 features from the

four luma feature maps (Y, GM, LoG, DoG) at two scales: the

original image scale and a reduced (by a factor two) resolution.

However, we only extract NSS-34 features at the half scale

on the twelve chroma feature maps, since frames are often

compressed in YUV420 format, which already contain chroma

information in reduced scale; additionally, it has also been

observed that humans are more sensitive to luma distortions

than chroma distortions [55]. To sum up, the entire collection

of spatial features is collected by applying two-scales NSS-34

to the luma feature maps and single-scale NSS-34 to the chro-

matic maps, yielding a total of 34×2×4+34×1×12 = 680
features. It is worth noting that this 680-dim spatial model is an

improved alternative to the SOTA 560-dim FRIQUEE model

[12] since it achieves comparable performance as FRIQUEE,

but is 20x faster.
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Fig. 8. Histograms of raw subband (left) and the corresponding MSCN
normalized coefficients (right) of a natural video Tractor, where the
normalized coefficients exhibit homogeneous regularities across bands.

C. Temporal Features

Prior BVQA methods accounting for temporal distortions,

however, either rely on expensive motion estimation [9],

[13], or underperform on UGC videos by only accounting

for simple frame-difference statistics [4], [47], [48], even

including complex CNN models [19], [26]. Here we attempt to

exploit more general temporal scene statistics of natural videos

to develop and improve BVQA models. To the best of our

knowledge, we propose the first general, effective and efficient

temporal statistics model based on bandpass regularities of

natural videos along the time dimension, going beyond simpler

frame-difference models [78].

Inspired by the efficacy of temporal bandpass statistics in

the prediction of frame rate-dependent video quality [54],

our proposed temporal model utilizes 1D temporal bandpass

representations. Specifically, consider a bank of K temporal

bandpass filters denoted hk, k ∈ {0, ...,K − 1}, where k
denotes the subband index. The temporal bandpass responses

of a video F (x, t) (where x = (x, y) and t represents spatial

and temporal co-ordinates, respectively) is

Yk(x, t) = F (x, t) ∗ hk(t) k = 0, ...,K − 1, (19)

where ∗ and Yk are 1D temporal convolution operations and

the bandpass response of the kth filter, respectively. Note that

frame differences are a special case of Eq. (19) (the high-pass

component of a 2-tap Haar wavelets). Fig. 7 visually illustrates

the bandpass responses of a natural video from the LIVE-VQA

dataset [1] using 3-level Haar wavelet filters.

Attempting to generalize the spatial NSS as mentioned in

Sec. III-A to the temporal domain, we instead analyze the

statistics of the temporal bandpass coefficients Yk(x, t), k =
1, ..., 7 (ignoring the lowest band k = 0) by again applying

MSCN transforms, as in Eq. (1), to further decorrelate the

subband representations, over a set of frame time samples

t ∈ {t0, t1, ..., tN} (note that t does not need to be densely

sampled). Note that in Eq. (1), µk(x, t) and σk(x, t) are

replaced by the local mean and standard deviation within a

spatial window centered at location (x, t), for each subband

k.

We have found that the MSCN coefficients of the temporal

bandpass coefficients of natural videos also exhibit a Gaussian-

like appearance, as shown in Fig. 8, while the regularities are

modified by the presence of distortion, strongly suggesting

the possibility of quantifying deviations to predict perceived

video quality. We model the distributions of subband MSCN

TABLE II
SUMMARY OF THE TESTED BVQA DATASETS.

Database # Vid Reso Sec Label Range

KoNViD-1k’17 [31] 1,200 540p 8 MOS+σ [1,5]
LIVE-VQC’18 [30] 585 1080p-240p 10 MOS [0,100]
YouTube-UGC’20 [32] 1,380 4k-360p 20 MOS+σ [1,5]

coefficients again using the pre-defined GGD and AGGD

distributions, by merely passing them into the NSS-34 feature

extractor (Sec. III-B). Similar to the spatial feature processing,

we also extract the temporal statistical features over two scales

(original and half scale), yielding a 476-dim feature vector ((34
features/band)×(7 subbands)×(2 scales) = 476).

Inspired by the efficacy of standard deviation pooling as

first introduced in GMSD [79] and later also shown effective

when utilized for temporal pooling in [6], [13], we calculate

the 680 spatial features at two frames per second within each

non-overlapping one-second chunk, then enrich the feature set

by applying average and absolute difference pooling [80] of

the frame features within each chunk, based on the hypothesis

that the variation of spatial features also correlates with the

temporal properties of the video. Finally, all of the chunk-

wise feature vectors are average pooled across all chunks to

derive the final set of features over the entire video.

D. Deep Learning Features

CNN-based solutions have been observed to generally per-

form well on UGC picture quality problems [17], [27], [51]

thanks to several recently released large-scale picture quality

datasets [17], [51], [82]. Still, none of them have proven

effective on UGC video quality databases [30]–[32]. However,

the authors of [6] have shown that the simple feature vector

from an FC-layer, without fine-tuning, to be a useful quality

indicator if training a shallow regressor on top. Therefore,

we, for the first time, propose to leverage the best of both

worlds, by combining powerful quality-aware NSS features

as described in Sec. III-A, III-B, III-C, with pre-trained deep

learning features, by jointly training a regressor on them to

predict the final quality score.

One issue encountered when dealing with quality prediction

problems is the mismatch of picture sizes between the standard

inputs of CNN models such as VGG-16 [83], ResNet-50

[34], and IQA-valid high-resolution images. Two possible

solutions have been attempted to solve this. The authors of

[17], [61] suggested applying a CNN on spatially sampled

small patches, then aggregating the locally predicted scores to

obtain global quality scores. The authors of [51] presented a

CNN operating on full-sized images, but with either global

average pooling (GAP) or spatial pyramid pooling (SPP) [84],

feeding FC layers. These two schemes, however, increase the

computation load of the CNN models. Since our proposed

model is already armed with powerful spatial and temporal

quality-aware features, we added CNN features only to ex-

ploit its ability to capture high-level semantic information,

supplementing the low-level NSS features. In this regard, we

aggressively downscaled the frames to fit the CNN model
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TABLE III
PERFORMANCE COMPARISON OF THE EVALUATED BVQA MODELS ON THE FOUR BVQA DATASETS. THE UNDERLINED AND BOLDFACED ENTRIES

INDICATE THE BEST AND TOP THREE PERFORMERS ON EACH DATABASE FOR EACH PERFORMANCE METRIC, RESPECTIVELY.

DATASET KoNViD-1k [31] LIVE-VQC [30] YouTube-UGC [32] All-Combined [6]

MODEL SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

BRISQUE [8] 0.6567 0.6576 0.4813 0.5925 0.6380 13.100 0.3820 0.3952 0.5919 0.5695 0.5861 0.5617
GM-LOG [11] 0.6578 0.6636 0.4818 0.5881 0.6212 13.223 0.3678 0.3920 0.5896 0.5650 0.5942 0.5588

HIGRADE [10] 0.7206 0.7269 0.4391 0.6103 0.6332 13.027 0.7376 0.7216 0.4471 0.7398 0.7368 0.4674
FRIQUEE [12] 0.7472 0.7482 0.4252 0.6579 0.7000 12.198 0.7652 0.7571 0.4169 0.7568 0.7550 0.4549

CORNIA [14] 0.7169 0.7135 0.4486 0.6719 0.7183 11.832 0.5972 0.6057 0.5136 0.6764 0.6974 0.4946
HOSA [81] 0.7654 0.7664 0.4142 0.6873 0.7414 11.353 0.6025 0.6047 0.5132 0.6957 0.7082 0.4893

KonCept512 [51] 0.7349 0.7489 0.4260 0.6645 0.7278 11.626 0.5872 0.5940 0.5135 0.6608 0.6763 0.5091
PaQ-2-PiQ [17] 0.6130 0.6014 0.5148 0.6436 0.6683 12.619 0.2658 0.2935 0.6153 0.4727 0.4828 0.6081

V-BLIINDS [9] 0.7101 0.7037 0.4595 0.6939 0.7178 11.765 0.5590 0.5551 0.5356 0.6545 0.6599 0.5200
TLVQM [13] 0.7729 0.7688 0.4102 0.7988 0.8025 10.145 0.6693 0.6590 0.4849 0.7271 0.7342 0.4705
VMEON [65] 0.1118 0.1958 0.6322 0.4024 0.4088 15.524 0.0634 0.1100 0.6304 0.2578 0.2594 0.6657

VSFA [19] 0.7728∗ 0.7754∗ 0.4205∗ 0.6978∗ 0.7426∗ 11.649∗ - - - - - -
MDVSFA [67] 0.7812∗ 0.7856∗ - 0.7382∗ 0.7728∗ - - - - - - -
VIDEVAL [6] 0.7832 0.7803 0.4026 0.7522 0.7514 11.100 0.7787 0.7733 0.4049 0.7960 0.7939 0.4268

RAPIQUE 0.8031 0.8175 0.3623 0.7548 0.7863 10.518 0.7591 0.7684 0.4060 0.8070 0.8229 0.3968

∗The results are cited from experiments reported in their original papers

(a) TLVQM

(b) VIDEVAL

(c) RAPIQUE

Fig. 9. Scatter plots and nonlinear logistic fitted curves of (c) RAPIQUE versus MOS, compared against (a) TLVQM [13] and (b) VIDEVAL [6], using a
grid-search SVR using k-fold cross-validation on KoNViD-1k [31], LIVE-VQC [30], YouTube-UGC [32], and the All-Combined set (Sec. IV-A), respectively.

inputs when extracting these semantic-aware features, yielding

greater efficiency than previous CNN VQA models. Another

reason to use a pre-trained CNN without fine-tuning is to

prevent overfitting, since existing video quality datasets are

of limited sizes. In our implementation, we used a ResNet-50

(2,048-dim) as a semantic feature extractor.

E. Learning a Video Quality Predictor

We summarize the feature extraction process as follows.

Since our goal is to build an efficient BVQA model, we

devised spatial and temporal sampling strategies to further

improve its speed. Specifically, given an input video F (x, t),
RAPIQUE uniformly samples 2 frames per second, based on
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which the 680-dim spatial NSS features (in Sec. III-B) are

extracted, then average and absolute-difference pools these

to obtain 680 spatial and 680 temporal variation features,

respectively. RAPIQUE also uniformly samples 8 consecutive

frames each second, then applies temporal Haar filter (Eq.

(7)) to extract 7 bandpass responses, from which 476 features

are calculated at each time sample. The above features are

calculated at a higher resized resolution while maintaining the

aspect ratio (we used 512p in our experiments). However, the

CNN backbone (ResNet-50) operates on resized frames at a

sparse temporal sampling of 1 frame/sec to attain an additional

2,048 features.

After obtaining all the spatial, temporal, and CNN features

within each one-second chunk, we adopt a simple approach to

concatenate them all into a totally 3884-dimensional feature

vector for each video chunk, then average-pool each to obtain

a single 3884 feature vector over the entire video. A shallow

or deep regressor head can then be trained on the aggregated

feature vector to predict the final video quality scores.

IV. EXPERIMENTS

A. Experiment Settings

Datasets and Baselines: We used three recent BVQA

datasets as testbeds for the performance evaluations: KoNViD-

1k [31], LIVE-VQC [30], and YouTube-UGC [32], as sum-

marized in Table II. We also used the combined set (denoted

All-Combined) as introduced in [6] as an additional composite

benchmark. The All-Combined dataset is simply the union of

KoNViD-1k (1,200), LIVE-VQC (575), and YouTube-UGC

(1,380) after MOS calibration:

yadj = 5− 4× [(5− yorg)/4× 1.1241− 0.0993] (20)

yadj = 5− 4× [(100− yorg)/100× 0.7132 + 0.0253] (21)

where equations (20) and (21) are used to calibrate KoNViD-

1k and LIVE-VQC, respectively (YouTube-UGC does not

need to be changed). Here yadj denotes the adjusted scores,

while yorg is the original MOS. We refer the reader to [6] for

details regarding assumptions and derivations of the calibration

process.

The baseline models used for comparison are BRISQUE

[8], GM-LOG [11], HIGRADE [10], FRIQUEE [12], the

codebook-based models CORNIA [14] and HOSA [81], and

the deep learning models, KonCept512 [51], PaQ-2-PiQ [17]

which are all spatial-only models. All the spatial models

extract features at 1 fps, which were average-pooled to obtain

the final video-level feature vector used for training. We

also compared against three feature-based BVQA models, V-

BLIINDS [9], TLVQM [13], and VIDEVAL [6], and the deep

learning-based models, V-MEON [65] and VSFA [19] as well

as its enhanced version, MDVSFA [67]. Since ‘completely

blind’ models such as NIQE [33] and VIIDEO [47] were not

observed to perform reasonably well on these natural video

datasets [6], we did not include them.

Evaluation Method: We used a support vector regressor

(SVR) as the back-end regression model to learn the feature-

to-score mappings [8], [9], [12], [13], [61]. We optimized

Fig. 10. Performance comparison of SRCC/PLCC as a function of the
percentage of the content used to train the compared blind VQA models
on the composite All-Combined set. Note that this result is self-explanatory
as we used a slightly different evaluation method (20 iterations, SVR with
randomized search cross-validation) compared to previous experiments.

the SVR parameters (C, γ) via a randomized grid-search on

the training set. Following convention, we randomly split the

dataset into training and test sets (80%/20%) over 20 itera-

tions, and the overall median test performance was reported.

All of the evaluated methods were implemented using the

original release by the respective authors. Four performance

metrics were used: the Spearman Rank-Order Correlation

Coefficient (SRCC) and the Kendall Rank-Order Correlation

Coefficient (KRCC) are non-parametric measures of prediction

monotonicity, while the Pearson Linear Correlation Coefficient

(PLCC) with corresponding Root Mean Square Error (RMSE)

were computed to assess prediction accuracy. Note that PLCC

and RMSE are computed after performing a nonlinear four-

parametric logistic regression to linearize the objective predic-

tions to be on the same scale as MOS [1]:

f(x) = β2 +
β1 − β2

1 + exp (−x+ β3/|β4|)
. (22)

B. Main Evaluation Results

Table III shows the main comparison results on the

four evaluated datasets. It may be observed that RAPIQUE

achieved the best performance on KoNViD-1k, even outper-

forming the most recent, dense deep learning models such as

VSFA and MDVSFA. On LIVE-VQC, which contains many

mobile videos exhibiting large camera motions [6], TLVQM,

which contains numerous heavily crafted motion-relevant fea-

tures, was the best performer. However, RAPIQUE ranked

a clear second, indicating that the temporal NSS features in

RAPIQUE are powerful indications of temporal and motion-

related distortions.

The most recent deep still picture quality models, Kon-

Cept512 and PaQ-2-PiQ, have been observed to perform

poorly on UGC-VQA datasets. One reason for this is that these

models were trained on picture quality datasets [17], [51], con-

taining strictly spatial content and distortions. A leading blind

deep video quality model, V-MEON, also does not perform

well, likely because it was trained on compression artifacts

rather than on complex combinations of UGC distortions.

On the larger datasets, RAPIQUE delivered the second-best

correlation against the subjective data on YouTube-UGC, only
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(a)

(b)

Fig. 11. Ablation study of RAPIQUE on (a) four benchmarks and (b) different
content types - Spat denotes the spatial model (Sec. III-B), Var is the temporal
difference-pooled spatial models (Sec. III-C), CNN represents deep features
(Sec. III-D), and Temp presents the Haar bandpass-filtered features introduced
in Sec. III-C.

slightly worse than the current SOTA model VIDEVAL, while

RAPIQUE ranked the best on the 3165-video composite set,

All-Combined. Since VIDEVAL was created by a supervised

feature selection process (using subjective labels) on the

composite combined set, wherein YouTube-UGC accounts for

a large portion, it would be expected to outperform on these

two sets. The RAPIQUE model, on the contrary, is database-

agnostic, and also exhibited uniformly well performance on

all four test sets. In this regard, RAPIQUE has the potential

to perform better on future larger-scale datasets and in real-

world application scenarios it has not been exposed to. The

scatter plots and fitted curves of RAPIQUE predictions versus

MOS in Fig. 9 visually demonstrate that the performance of

RAPIQUE remains stable on video sequences from different

databases, achieving smaller RMSE on larger databases.

C. Effects of Training Data Size

To study the degree of performance variation by the com-

pared algorithms, we vary the training-test splits from 10%

to 90% of the content used for training, using the rest for

testing on the composite combined set. As might be seen in

Fig. 10, the RAPIQUE model was able to already achieve

better than 0.8 in PLCC provided only 50% of the data

for training. When compared to SOTA methods, although

RAPIQUE was not observed to outperform VIDEVAL when

the fraction of training data was less than 40%, it delivered

improved performances relative to VIDEVAL and TLVQM as

the proportion of training data was increased, as shown in

Fig. 10. This suggests that RAPIQUE is very data-efficient,

TABLE IV
PERFORMANCE OF RAPIQUE COMBINED WITH DIFFERENT DEEP

LEARNING FEATURES. RAPIQUE ((W/ RESNET-50) IS THE DEFAULT

VERSION PROPOSED IN THIS PAPER.

DATASET MODEL / METRIC SRCC↑ PLCC↑ RMSE↓

KoNViD-1k

RAPIQUE (w/ ResNet-50) 0.8031 0.8175 0.3623

RAPIQUE (w/ VGG-19) 0.7554 0.7389 0.4238

RAPIQUE (w/ KonCept512) 0.7802 0.7793 0.3975

RAPIQUE (w/ PaQ-2-PiQ) 0.7726 0.7672 0.4026

LIVE-VQC

RAPIQUE (w/ ResNet-50) 0.7548 0.7863 10.518

RAPIQUE (w/ VGG-19) 0.6888 0.7048 12.228

RAPIQUE (w/ KonCept512) 0.7497 0.7611 11.231

RAPIQUE (w/ PaQ-2-PiQ) 0.7147 0.7308 11.599

YouTube-UGC

RAPIQUE (w/ ResNet-50) 0.7591 0.7684 0.4060

RAPIQUE (w/ VGG-19) 0.7379 0.7398 0.4365

RAPIQUE (w/ KonCept512) 0.7668 0.7678 0.4190

RAPIQUE (w/ PaQ-2-PiQ) 0.7596 0.7606 0.4200

All-Combined

RAPIQUE (w/ ResNet-50) 0.8070 0.8229 0.3968

RAPIQUE (w/ VGG-19) 0.6888 0.7048 12.228

RAPIQUE (w/ KonCept512) 0.7924 0.7976 0.4169

RAPIQUE (w/ PaQ-2-PiQ) 0.7742 0.7809 0.4312

with the potential to achieve even better results when larger-

scale datasets become available.

D. Ablation Study

To analyze the importance of each module in RAPIQUE,

we conducted an ablation study. Fig. 11 shows the incremental

performance attained when adding each module sequentially.

It is worth mentioning the dataset biases of the evaluated

benchmarks. For example, the authors of [6] observed that

the LIVE-VQC videos generally contain more (camera) mo-

tions and temporal distortions than other databases, while

spatial distortions predominate on KoNViD-1k and YouTube-

UGC. It may be observed in Fig. 11(a) that the spatial

NSS module (Sec. III-B) performs quite well on the UGC

databases that mainly present spatial distortions, like KoNViD-

1k and YouTube-UGC, indicating its efficacy in capturing

authentic spatial distortions. LIVE-VQC, which mainly con-

tains videos with large motions, challenges the spatial NSS

module, aligning with the empirical observations made above

[6]. Adding spatial variation and temporal NSS features (Sec.

III-C) improves the performance of RAPIQUE on LIVE-VQC,

indicating that these two types of temporal features capture

important attributes of motion-intensive videos. Interestingly,

we also noticed that including the SpatialNSS-Var features

degraded performance on YouTube-UGC. It is possible that

the SpatialNSS-Var features are redundant with SpatialNSS

features on YouTube-UGC, causing the training algorithm to

underperform. We also observed that temporal statistics did

not contribute much to the assessment of Internet UGC videos

from YouTube and KoNViD-1k (Flickr).

It is also important to note that including deep learning

features (Sec. III-D) significantly boosts the performance over

only using NSS features on all these UGC datasets, further val-

idating our assumptions expressed in Sec. II-B, that high-level

semantic features are also informative when conducting UGC

video quality prediction. To better understand which types
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TABLE V
FEATURE DIMENSIONALITY AND AVERAGE (CPU/GPU) RUNTIME

COMPARISON (IN SECONDS) EVALUATED ON 1080p VIDEOS.

MODEL DIM RUNTIME

CPU GPU

BRISQUE (1 fr/sec) 36 1.7 -
GM-LOG (1 fr/sec) 40 2.1 -
HIGRADE (1 fr/sec) 216 11.6 -
FRIQUEE (1 fr/sec) 560 701.2 -
CORNIA (1 fr/sec) 10k 14.3 -
HOSA (1 fr/sec) 14.7k 1.2 -
KonCept512 (1 fr/sec) - 2.8 0.3
PaQ-2-PiQ (1 fr/sec) - 6.9 0.8

V-BLIINDS 47 1989.9 -
V-MEON - 16.4 2.6
TLVQM 75 183.8 -
VSFA - 1288.7 157.9
MDVSFA - 1319.4 162.5
VIDEVAL 60 305.8 -

RAPIQUE (proposed) 3.8k 17.3 -

TABLE VI
COMPLEXITY ANALYSIS OF RAPIQUE. TABULATED VALUES REFLECT

THE PARTIAL TIME DEVOTED TO EACH SUB-COMPONENT IN RAPIQUE.

MODULE DIM RUNTIME

SpatialNSS (Sec. III-B) 680
11.1

SpatialNSS-Var (Sec. III-C) 680
TemporalNSS (Sec. III-C) 476 5.8
CNN (Sec. III-D) 2.0k 0.4

RAPIQUE (Full model) 3.8k 17.3

of videos are advantageously analyzed by the CNN features,

we divided the combined set into three subsets of differing

contents: 2,667 natural videos, 163 screen contents, and 209

gaming videos, as shown in Fig. 11(b). Notably, we observed

that the CNN features provided more benefits on screen

content and gaming videos than on natural videos. The new

temporal statistical features yielded noticeable improvements

relative to using only spatial features. Lastly, our deployment

of CNN modules is essentially different from other methods

[17], [51] in that RAPIQUE only requires a single pass of the

resized frames (224x224), making it highly advantageous in

application scenarios having high-speed requirements.

E. Performance on different deep features

To determine which kinds of deep features most effectively

complement the proposed NSS features, we conducted another

ablation study. We compared the performance of RAPIQUE

variants that use features from different backbones: VGG-

19, ResNet-50, PaQ-2-PiQ (trained on LIVE-FB [17]), and

KonCept512 (trained on KonIQ-10k [51]). Since PaQ-2-PiQ

was designed for local quality prediction, we included the

predicted 3 × 5 local quality scores along with the single

global score. For KonCept512, the 256-dim feature vector

immediately before the last linear layer in the fully connected

head was included. We also included VGG-19 and ResNet-50,

except for they were pre-trained on ImageNet classification.

The overall performance results are tabulated in Table IV.

It may be observed that combining NSS features with ResNet-

50 yielded the best or top performances on all benchmarks,

BRISQUE

GM-LOG

HIGRADE
FRIQUEE

CORNIA
HOSA

KonCept512

PaQ-2-PiQ

V-BLIINDS

TLVQM

VIDEVAL
RAPIQUE

Fig. 12. Scatter plots of SRCC (on All-Combined) of selected BVQA
algorithms versus CPU runtime (per 1080p video on average). Purple indicates
the proposed RAPIQUE model.

Fig. 13. Our proposed RAPIQUE model enables high-resolution video quality
prediction at significantly lower runtimes than existing BVQA methods.
Particularly, as seen in the plot our model is 2-150x faster than baselines,
depending on resolution, and the higher, the faster.

slightly better than KonCept512, suggesting that features pre-

trained on classification tasks provide valuable high-level

semantic information to the quality assessment process. More-

over, using features pre-trained on a specific IQA dataset

may limit model generalizability to future, unseen distortions.

Another important reason why we prefer ResNet-50 over Kon-

Cept512 is the gigantic model size of the InceptionResNetV2

[85], used as the backbone of KonCept512.

F. Complexity and Runtime Comparison

Apart from performance analysis, computational efficiency

is also of great importance for BVQA models. Thus, we also

study the model (feature) dimension and runtime comparisons

in Table V. For a fair comparison, all the experiments were

carried out in the same desktop computer, a Dell OptiPlex

7080 Desktop with Intel Core i7-8700 CPU@3.2GHz, 32G

RAM, and GeForce GTX 1050 Graphics Cards. The models

were implemented using their original releases on MATLAB

R2018b and Python 3.6.7 under Ubuntu 18.04.3 LTS system. It

should be noted that our comparison of computing complexity

involves methods that use different sampling rate (or FPS),

which is critical to model efficiency. However, we regard

the design of FPS itself as an important aspect of BVQA

algorithms, and thus our comparison still provides insights on

developing more efficient BVQA models.
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It may be seen that RAPIQUE is extremely efficient as

compared to other complex top-performing BVQA models like

TLVQM and VIDEVAL. Specifically, RAPIQUE is 10x faster

than TLVQM, which also aims to efficiency. Fig. 12 shows

the scatter plots of SRCC versus runtime, which indicates that

RAPIQUE achieves comparable prediction accuracy, but with

20x less computational expense as compared to VIDEVAL,

the current SOTA model on the UGC-VQA problem [6].

We observe however that, CNN models that benefit from

optimized low-level implementations are generally faster than

NSS models executed in MATLAB; we have observed a

∼10x speedup by switching from CPU to GPU on the CNN-

based models, KonCept512, PaQ-2-PiQ, V-MEON, VSFA, and

MDVSFA.

Predicting the quality of videos having multiple diverse

resolutions is also a pressing problem, but has barely

been discussed, since most video datasets only contain

single-resolution contents. Thanks to the large-scale dataset,

YouTube-UGC [32], which contains videos at five different

resolutions, we were able to extend the complexity analysis

to videos ranging from 540p to 4k, to study computational

scalability with respect to video size. Fig. 13 compares com-

putation time as a function of video resolution. We may

observe that RAPIQUE has superior computational scalability

in terms of data sizes, making it attractive and preferable for

potential real-time, low-latency, and light-weight applications

requiring high-resolution video inputs. Particularly, as seen in

the plot our model is 2-150x faster than baselines, depending

on resolution, and the higher, the faster. In Table VI we list

the partial compute time of each sub-module in RAPIQUE

on 1080p videos. Since all of the NSS-based features are

implemented in MATLAB, a high-level prototyping tool, we

would expect further accelerations to be possible (by orders-of-

magnitude) if implemented in low-level languages like C/C++,

or GPU-friendly frameworks such as Tensorflow or PyTorch.

V. CONCLUSION

We have proposed an effective and efficient model for

predicting the subjective quality of user-generated videos,

which we call the Rapid and Accurate Video Quality Eval-

uator (RAPIQUE). The model, for the first time, leverages

a composite of spatio-temporal scene statistics features and

deep CNN-based high-level features in a two-branch frame-

work, then jointly learns a regressor head for video quality

prediction. Within the model, we developed new spatial scene

statistics models in an efficient way and further extended

the overall model to include normalized temporal bandpass

responses, yielding the first general efficacious temporal NSS

model for UGC video quality problems. Experiments on recent

large-scale UGC video databases show the superior accuracy

and efficiency of the proposed model in that it achieves

competitive or substantially higher accuracy than both SOTA

conventional as well as deep learning video quality models.

RAPIQUE is computationally less expensive by orders-of-

magnitude than the most accurate benchmark methods and

scales remarkably well with video resolution. To support

reproducible research, an implementation of RAPIQUE is

available on https://github.com/vztu/RAPIQUE.
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