
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 1

Rapyuta: A Cloud Robotics Platform
Gajamohan Mohanarajah, Dominique Hunziker, Raffaello D’Andrea, and Markus Waibel

Abstract—In this paper we present the design and
implementation of Rapyuta1, an open source cloud robotics
platform. Rapyuta helps robots to offload heavy computation
by providing secured customizable computing environments in
the cloud. The computing environments also allow the robots to
easily access the RoboEarth knowledge repository. Furthermore,
these computing environments are tightly interconnected, paving
the way for deployment of robotic teams. We also describe three
typical use cases, some benchmarking and performance results,
and two proof-of-concept demonstrations.

Note to Practitioners—Rapyuta allows to outsource some
or all of a robot’s onboard computational processes to a
commercial data center. Its main difference to other, similar
frameworks like the Google App Engine is that it is specifically
tailored towards multi-process high-bandwidth robotics
applications/middlewares and provides a well documented open
source implementation that can be modified to cover a large
variety of robotic scenarios. Rapyuta supports the outsourcing of
almost all of the current 3000+ ROS packages out of the box and
is easily extensible to other robotic middleware. A pre-installed
Amazon Machine Image (AMI) is provided that allows to
launch Rapyuta in any of Amazon’s data center within minutes.
Once launched, robots can authenticate themselves to Rapyuta,
create one or more secured computational environments in the
cloud, and launch the desired nodes/processes. The computing
environments can also be arbitrarily connected to build parallel
computing architectures on the fly. The WebSocket-based
communication protocol, which provides synchronous and
asynchronous communication mechanisms, allows not only
ROS based robots, but also browsers and mobiles phones to
connect to the ecosystem. Rapyuta’s computing environments
are private, secure, and optimized for data throughput. However,
its performance is in large part determined by the latency and
quality of the network connection and the performance of the
data center. Optimizing performance under these constraints
is typically highly application specific. The paper illustrates
an example of performance optimization in a collaborative
real-time 3D mapping application. Other target applications
include collaborative 3D mapping, task/grasp planning, object
recognition, localization, and teleoperation, among others.

Index Terms—Cloud Robotics, Networked Robots, Platform-
as-a-Service, Cloud-based Mapping

Submission Type—Regular Paper

I. INTRODUCTION

The past decade has seen the first successful, large-scale use

of mobile robots. However, the vast majority of these robots

either continue to use simple control strategies (e.g., robot

The authors are with the Institute of Dynamic Systems and Control (IDSC),
ETH Zurich, Zurich, Switzerland. The contact author is Gajamohan M., e-
mail: gajamohan.m@gmail.com

–
Manuscript received on 28.10.2013 and conditionally accepted on

13.02.2014
1The name is inspired from the movie Tenku no Shiro Rapyuta (English

title: Castle in the Sky) by Hayao Miyazaki, where Rapyuta is the castle in
the sky inhabited by robots.

Fig. 1: Simplified overview of the Rapyuta framework: Each

robot connected to Rapyuta has one or more secured comput-

ing environments (rectangular boxes) giving them the ability to

move their heavy computation into the cloud. In addition, the

computing environments are tightly interconnected with each

other and have a high bandwidth connection to the RoboEarth

[3] knowledge repository (stacked circular disks).

vacuum cleaners) or are operated remotely by humans (e.g.,

drones, unmanned ground vehicles, telepresence robots). One

reason these mobile robots lack intelligence is because the

costs of onboard computation and storage are high; this affects

not only the robot’s price point, but also results in the need for

additional space and extra weight, which constrain the robot’s

mobility and operation time. Another reason is the absence of

a common mechanism and medium to communicate and share

knowledge between robots with potentially different hardware

and software components.

The rapid progress of wireless technology and availability

of data centers hold the potential for robots to tap into the

cloud. Using the web as a powerful computational resource, a

communication medium, and a source of shared information

could allow developers to overcome these current limitations

by building powerful cloud robotics applications. Example

applications include map building [1], task/grasp planning

[2], object recognition, localization, and many others. Cloud

robotics applications hold the potential for lighter, smarter and

more cost-effective robots.

Running robotics applications in the cloud falls into the

Platform-as-a-Service (PaaS) model [4] of the cloud comput-

ing literature. In PaaS the cloud computing platform typically

includes an operating system, an execution environment, a

database, and a communication server. Many existing cloud

computing building blocks, including much of the existing

hardware and software infrastructure for computation, storage,

network access, and load balancing, can be directly leveraged

for robotics. However, specific requirements (such as the need

for multi-process applications, asynchronous communication,



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 2

and compatibility with existing robotics application frame-

works) limit the applicability of existing cloud computing

platforms to robot application scenarios.

For example, a general PaaS platform such as the popular

Google App Engine [5] is not well suited for robotics applica-

tions since it exposes only a limited subset of program APIs

tailored specifically for web applications, allows only a single

process, and does not expose sockets, which are indispensable

for robotic middlewares such as ROS [6]. The popular PaaS

framework Heroku [7] overcomes some of these limitations,

but lacks features required for many robotics applications, such

as bidirectional data flow between robots and their computing

environments. Other, more recent PaaS frameworks such as

Cloud Foundry [8] and OpenShift [9] are relatively liberal

in terms of available runtimes and languages, but typically

expect applications to be single processes or preconfigured

set of parent and child processes2 running inside a computing

environment that has only an HTTP connection to the outside3.

However, when it comes to robotics applications, such as the

ones based on ROS, processes (ROS nodes) typically run as a

computation graph and are dynamically configured to provide

services for robots.

In summary, the inadequacy of the existing general PaaS

platforms for robotics scenarios are mainly due to the dif-

ferences in web applications and robotics applications. Web

applications are typically stateless, single processes that use

a request-response model to talk to the client. Meanwhile,

robotic applications are stateful, multi-processed, and require

a bidirectional communication with the client. These fun-

damental differences may lead to different trade-offs and

design choices, and may ultimately result in different software

solutions for web and robotics applications.

Now, focusing on cloud robotics, the idea of having a

remote brain for the robots can be traced back to the 90s

[10], [11]. During the past few years, this idea has gained

traction (mainly due the availability of computational/cloud

infrastructures), and several efforts to build a cloud computing

framework for robotics have emerged. The DAvinCi Project

[1] used ROS as the messaging framework to get data into a

Hadoop cluster, and showed the advantages of cloud comput-

ing by parallelizing the FastSLAM algorithm [12]. It used a

single computing environment without process separation or

security; all inter-process communication were managed by

a single ROS master. Unfortunately, the DAvinCi Project is

not publicly available. While the main focus of DAvinCi was

computation, the ubiquitous network robot platform (UNR-

PF) [13], [14] focused on using the cloud as a medium for

establishing a network between robots, sensors, and mobile

devices. The project also made a significant contribution to

the standardization of data-structures and interfaces. Finally,

rosbridge [15], an open source project, focused on the external

communication between a robot and a single ROS environment

2Note that this requires some workarounds to implement and the developer
has to take care of the interprocess communication.

3Some allow developers to use general messaging frameworks, such as
RabbitMQ, for communication between computing environments, but this a
significant undertaking, if someone wants to build a messaging framework
similar to ROS/Rapyuta.

in the cloud.

With the open source project Rapyuta4 we attempt to solve

some of the remaining challenges of building a complete

cloud robotics platform. Rapyuta is based on an elastic com-

puting model that dynamically allocates secure computing

environments (or clones [16]) for robots. These computing

environments are tightly interconnected, allowing robots to

share all or a subset of their services and information with

other robots, through their corresponding clones. This inter-

connection makes Rapyuta a useful platform for multi-robot

deployments such as those described in [17].

Furthermore, Rapyuta’s computing environments provide

high bandwidth access to the RoboEarth [3] knowledge repos-

itory, enabling robots to benefit from the experience of other

robots. Note that until now robots directly submitted and

queried data in the RoboEarth repository, and all the process-

ing, planning, and reasoning on this data happened locally on

the robot. With Rapyuta, robots can perform these tasks in the

cloud by having a corresponding software agent/clone. Thus,

Rapyuta is also called the RoboEarth Cloud Engine.

Rapyuta’s ROS-compatible computing environments allow

it to run almost all open source ROS packages without any

modifications while sidestepping the severe drawbacks of

client-side robotics applications, including requirements for

expensive and/or power-hungry hardware, configuration/setup

overheads, dependence on custom middleware, as well as often

failure-prone maintenance and updates. In addition to its out-

of-the-box ROS compatibility, Rapyuta can also be customized

for other robotics middlewares.

Finally, Rapyuta’s WebSocket-based communication server

provides bidirectional, full duplex communication with the

physical robot. Note that this design choice also allows the

server to initiate the communication and send data or com-

mands to the robot.

The remainder of this paper is structured as follows: Taking

a bottom-up approach we present each of the main components

of the architecture individually along with our design choices

in Sec. II and Rapyuta’s communication protocols in Sec. III.

Sec. IV returns to a general picture and presents several

use cases that combine the previous components and the

communication protocols in different ways to fit a variety

of deployment scenarios. Then, performance and benchmark-

ing results are presented in Sec. V. This is followed by

two robotics demonstrations that highlight various aspects of

Rapyuta in Sec. VI. We conclude in Sec. VII with a with a brief

outlook on Rapyuta’s future developments and the potential

future of cloud robotics in general.

II. MAIN COMPONENTS

Rapyuta’s four main components are: the computing en-

vironments onto which robots offload their tasks, a set of

communication protocols, four core task sets to administer the

system, and a command data structure to organize the system

administration.

4Rapyuta is part of the RoboEarth initiative aimed at building a world wide
web for robots. Visit http://www.roboearth.org/ for details.

The source code of Rapyuta is available at http://github.com/rapyuta/rce
under Apache License, Version 2.0.

http://www.roboearth.org/
http://github.com/rapyuta/rce


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 3

A. Computing Environments

Rapyuta’s computing environments are implemented us-

ing Linux Containers [18], which provide a lightweight and

customizable solution for process separation, security, and

scaling. In principle, Linux Containers can be thought of as an

extended version of chroot [19], which isolates processes

and system resources within a single host machine. Since

Linux Containers do not emulate hardware (similar to platform

virtualization technologies), and since all processes share the

same kernel provided by the host, applications run at native

speed.

Furthermore, Linux Containers also allow easy configura-

tion of disk quotas, memory limits, I/O rate limits, and CPU

quotas, which enables a single environment to be scaled up to

fit the biggest machine instance of the IaaS [4] provider, or

scaled down to simply relay data to the Hadoop [20] backend,

similar to the DAvinCI [1] framework.

Each computing environment is set up to run any process

that is a ROS node, and all processes within a single envi-

ronment communicate with each other using the ROS inter-

process communication. Having the well-established ROS pro-

tocol inside the environments allows them to run all existing

ROS packages without any modifications, and lowers the

hurdle for application developers.

B. Communication and Protocols

For the communication three main solutions were consid-

ered and evaluated. The first solution, a bus based commu-

nication approach, used a bus process in each host machine

to which all the other Rapyuta processes running in the

host machine were connected to. By connecting all the bus

processes the bus was providing the functionality to route the

internal messages to the corresponding destination. Although,

this solution allowed a relatively easy control of the message

flow, the resulting latencies were high. The second solution

distinguished itself by directly connecting ROS nodes without

any intermediary processes. While this variant resulted in the

lowest latencies, it was relatively complex to maintain during

runtime and challenging in terms of securing the communi-

cation. The third solution, which is currently implemented

in Rapyuta, strikes a balance between the complexity of the

system and the resulting latencies. This solution used Endpoint

processes to define a clear Interface for communicating with

external processes. The Endpoints are directly connected with

each other using Ports. Figure 2 shows these building blocks

and the basic communication channels of Rapyuta.

Interfaces are used for communicating between a Rapyuta

process and a non-Rapyuta process running either on the robot

or in the computing environment. They provide a synchronous

(service-based) or an asynchronous (topic-based) transport

mechanism. Interfaces used for communicating with robots

provide converters, which convert a data message from the

internal communication format to a desired external communi-

cation format and vice versa. Ports are used for communicating

between Rapyuta processes.

The Endpoints allow to split the communication protocols

into three parts. The first part is the internal communication

Rapyuta

BoundaryMaster

Task Set

EP

I

I

P

P

RPC

Robot

Robot

EP

I

I

P

P

RPC

ROS
Node

ROS
Node

Fig. 2: The basic communication channels of Rapyuta: The

Endpoints (EP) are connected to the Master task set using a

two-way remote procedure call (RPC) protocol. Additionally,

the Endpoints have Interfaces (I) for connections to robots

or (ROS) nodes, as well as Ports (P) for communicating

between Endpoints. The dotted lines represent the external

communication, dashed lines represent the ROS-based com-

munication between ROS nodes and Rapyuta, and finally

all solid lines represent the internal communication between

Rapyuta’s processes.

protocol, which covers all communication between Rapytua’s

processes. The next part is the external communication pro-

tocol, which covers the data transfer between the physical

robot and the cloud infrastructure running Rapyuta. The last

part consists of the communication between Rapyuta and

the applications running inside the containers. Each of these

protocols are presented in more detail in Sec. III.

C. Core Task Sets

This sub-section presents the four Rapyuta task sets that

administer the system. A task set is a set of functionalities

and one or more of these sets can be put together to run as a

process depending on the use case (see Sec. IV)
1) Master Task Set: The Master task set is the main

controller that monitors and maintains the command data

structure, which includes:

• organization of connections between robots and Rapyuta,

• processing of all configuration requests from robots, and

• monitoring the network of other task sets.

As opposed to the other task sets, only a single copy of the

Master task set runs inside Rapyuta. Although running the

Master task inside a single process creates a single point of

failure, the Master task set is not duplicated or distributed

in order keep the complexity of the system down. This

drawback will be addressed in the upcoming design iterations

of Rapyuta.
2) Robot Task Set: The robot task set is defined by the ca-

pabilities necessary to communicate with a robot. It includes:

• forwarding of configuration requests to the Master,

• conversion of data messages, and

• communication with robots and other Endpoints.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 4

3) Environment Task Set: The environment task set is

defined by the capabilities necessary to communicate with a

computing environment. It includes:

• communication with ROS nodes and other Endpoints,

• launching/stopping ROS nodes, and

• adding/removing parameters.

A process containing the environment task set runs inside

every computing environment.
4) Container Task Set: The container task set is defined

by the capabilities necessary to start/stop computing environ-

ments. A process containing the container task set runs inside

every machine.

D. Command Data Structure

Rapyuta is organized in a centralized command data struc-

ture. This data structure is managed by the Master task set

and it consists of the four components shown in Fig. 3.

Rapyuta

Network

1

User

0..n

1

LoadBalancer

1

Distributor

1

Fig. 3: Simplified UML diagram of Rapyuta’s top level com-

mand data structure.

The Network (see Fig. 4) is the most complex part of the

data structure. Its elements are used to provide the basic

abstraction of the whole platform and are referenced by

the User, LoadBalancer, and Distributor components. The

Network is also used to organize the internal and external

communication, which will be discussed in detail in Sec. III.

The addition of Namespaces in the command data structure

enables an Endpoint to group Interfaces of a single robot or

a computing environment and the addition of the connection

classes (EndpointConnection, InterfaceConnection, and Con-

nection) simplifies the reference counting for the connections.
The User (see Fig. 5) generally represents a human who

has one or more robots that need to be connected to the cloud.

Each User has a unique API key, which is used by the robots

for authentication. The User can have multiple Namespaces

which is an abstracted representation of a container or robot.

A Namespace, in turn, can have several Interfaces.
The LoadBalancer (see Fig. 6) is used to manage the

Machines which are intended to run the computing environ-

ments. To allow these computing environments to communi-

cate directly with each other without Rapyuta (see Sec. III-E)

the computing environments can be added to a Network-

Group. Therefore the NetworkGroups have a representation

of each Container included in the group and references to

the participating Machines. Similarly, the Machines have a

reference of each Container they are running. Additionally,

the LoadBalancer is used to assign new containers to the

appropriate machine.
Finally, the Distributor is used to distribute incoming con-

nections from robots between available robot Endpoints.

Connection

0..n
2

InterfaceConnection

0..n
1

Port

0..n
1

Interface

0..n
1

Namespace

0..n

0..n

1

0..n

1
0..n

1

Endpoint

2

2
EndpointConnection

0..n
10..n

Network

Fig. 4: Simplified UML diagram of Rapyuta’s top level com-

ponent Network.

User

apiKey: str

0..n

1

Namespace
0..n

1
Interface

type

Robot Container

Fig. 5: Simplified UML diagram of Rapyuta’s top level com-

ponent User.

III. COMMUNICATION PROTOCOLS

This section presents Rapyuta’s internal and external com-

munication protocols in more detail. The third protocol, as

mentioned in II-A, is based on ROS [6] and is not covered in

this paper and the reader is referred to the ROS documentation.

A. Internal Communication Protocol

All Rapyuta processes communicate with each other over

UNIX sockets and the protocol is built using the Twisted

framework [21], an event-driven networking engine that uses

asynchronous messaging. The type of messages used for the

internal communication can be split into two categories. The

first type consists of all administrative messages used to

configure Rapyuta. All these messages either originate or end

in the Master process (runs the Master task set) containing

the command data structure. The Perspective Broker, a two-

way RPC5 implementation for the Twisted framework, is used

as the protocol for administrative messages. The second and

the most frequent type is the data protocol. For this type

5RPC (Remote Procedure Call) is a communication protocol that allows a
process to execute a procedure in another process.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 5

NetworkGroup
0..n

1

LoadBalancer

0..n
1

Container
0..n

0..n

1
0..n

1
Machine

Fig. 6: Simplified UML diagram of Rapyuta’s top level com-

ponent LoadBalancer.

of communication, a length prefixed protocol is used. The

content of a data message is a serialized ROS message. For

Rapyuta, an additional header containing the ID of the sending

Interface, an optional destination ID (necessary for service

type interfaces), and the message ID (which is used also for

the external communication) is added. This results in a header

length of 22 or 38 bytes plus the message ID, which has a

length upper bounded by 255 bytes.

B. External Communication Protocol

The robots connect to Rapyuta using the WebSockets

protocol [22], similar to rosbridge [15]. The protocol was

implemented using the Autobahn tools [23], which also runs

on top of the Twisted framework [21]. Unlike a common web

server, which uses pull technology, the use of WebSockets

allows Rapyuta to push results. Note that this protocol is

very general compared to the ROS protocol used in the

DAvinCI [1] framework, allowing easy integration of non-ROS

robots, mobile devices and even web browsers into the system.

The messages between the robot and Rapyuta are pure

ASCII JSON6 messages that have the following top level

structure:

{ "type":"...", "data": ... },

which is an unordered collection of key/value pairs. Note that

a value can, in turn, be a collection of key/values pairs. The

value of the type key is a string and denotes the type of

message found in data:

CC The create container message creates a secure com-

puting environment in the cloud;

DC The destroy container message destroys an existing

computing environment;

CN The configure components message enables the

launching/stopping of ROS nodes, the setting/re-

moval of parameters in the ROS parameter server,

and the adding/removal of Interfaces;

CX The configure connections message enables the con-

nection/disconnection of Interfaces;

DM The data messages are used to send/receive any kind

of messages to/from application nodes (for more

examples see Sec. IV-B);

6JSON (JavaScript Object Notation) is a lightweight data-interchange
format with a focus on human readability.

ST Status messages are pushed from Rapyuta to the

robot; and

ER Error messages are also pushed from Rapyuta to the

robot.

C. Handling Large Binary Messages

The WebSocket interface supports transportation of binary

blobs and, for some types of data, it is better to transport

them as a binary blob instead of using their corresponding

ROS message type encoded as a JSON string. For example,

the RoboEarth logo (RGBA, 842×595), if transported as PNG

(lossless data compression), takes 18 kB in bandwidth but uses

approximately 2.0 MB when transported as a serialized ROS

message. Converting the ROS message into a JSON string

would result in an even larger message size.

To exploit this method of transportation, special convert-

ers between the binary format and the corresponding ROS

message must be provided on the Rapyuta’s interface side.

Rapyuta provides a default PNG-to-sensor msgs/Image con-

verter as an example of how to build new converters.

When sending a binary message, first a standard data

message is sent as a JSON string with a reference to the binary

blob that will follow. The message is a DM type message

having a data key with value:

"iTag" : "converter_modifyImage",

"type" : "sensor_msgs/Image",

"msgID" : "msgID_0",

"msg*" : "f9612e9b3c7945ef8643f9f590f0033a"

The ’*’ in the last line indicates that the value/resource will

follow as a binary blob with the given ID as header. Note that

the ID must be unique only within the current connection.

D. Communication with RoboEarth

By default, every container has a py_re_comm7 node

running inside it. This ROS node exposes the RoboEarth

repository by providing services to download, upload, update,

delete, and query action recipes, object models, and environ-

ments stored in the RoboEarth repository. Since the RoboEarth

repository is also typically hosted in the same data center, all

applications running on Rapyuta have high bandwidth access

to the data using the wired networks, in contrast to applications

running on board the robot with wireless connectivity over the

Internet.

E. Virtual Networks

As described in Sec. III-A, processes running in different

computing environments (containers) communicate through

Rapyuta’s internal communication protocol built on top of

ROS. However, some applications that are distributed over

multiple containers, may require a less abstracted version of

the network to use different protocols such as Open MPI [24].

Containers within a common host could communicate using

the LXC bridge, which is the default network interface/bridge

(layer 2 or data link layer of the OSI model [25]) for con-

tainers. However, the LXC bridges of different host machines

7See http://github.com/rapyuta/re comm core for more details.

http://github.com/rapyuta/re_comm_core


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 6

cannot be connected directly. Therefore, the current version of

Rapyuta includes the functionality to create a virtual network

with an arbitrary topology between containers that belong to

a specific user. The virtual network is realized using Open

vSwitch [26], which is connected to an additional network

interface of the container. Open vSwitch was selected mainly

due to its high (production) quality, openness (licensed under

Apache 2.0 similar to Rapyuta), and scalability with almost

no compromise in usability (compared to the standard Linux

bridge). See benchmarking results in Sec. V-C for comparisons

between the virtual networks and Rapyuta’s internal commu-

nication protocol.

IV. DEPLOYMENT

The core components and communication protocols de-

scribed in the previous sections can be combined in different

ways to meet the specifications of a robotic scenario. This

section presents three typical use cases, a basic example of

the communication process and some useful tools.

A. Use cases

Figure 7 shows the standard use case8 where the four task

sets are split up into the four processes (the Master process,

RobotEndpoint process, EnvironmentEndpoint process, and the

Container process), and combined with interconnected com-

puting environments to build a PaaS framework. The Master

process runs on a single dedicated machine. Other machines

each run both a RobotEndpoint and a Container process. The

two task sets are run separately, since the Container process

requires super user privileges to start and stop containers which

could pose a severe security risk when combined with the

open accessible RobotEndpoint process. The fourth process,

the EnvironmentEndpoint process, is running inside every

computing environment. Note that this configuration allows

all three elastic computing models to be deployed for cloud

robotics, as proposed in [16]; the peer-based, proxy-based, and

the clone-based model. From an administrative point of view,

the standard use case can be deployed in the following ways:

• Private cloud: Rapyuta, the applications running on it, and

the robots belong to a single entity. This is better suited

for some commercial entities where trust and security is

the highest concern.

• Software-as-a-Service: Rapyuta and the applications run-

ning on it belong to a single entity, and several users

connect and use the applications. This allows the single

entity to better protect its intellectual property, keep the

software up to date, and provide better support.

• Platform-as-a-Service: Here, only the Rapyuta platform

is managed by a single entity, while a community of

developers develop and share/host the applications. In

addition to the advantages stated above, this allows for

easy benchmarking and ranking of various solutions to

robotics.

The second use case is an extreme case of the standard

use case where everything runs on a single machine with one

8See http://rapyuta.org/install and http://rapyuta.org/usage for more details
on the setup and usage of the standard use case.

container. This mimics a rosbridge [15] system and can be

used as a sandbox to develop cloud robotics applications and

investigate latencies.

Finally, the third use case presented in Fig. 8 shows how to

set up a network of robots using the RobotEndpoint and Master

processes. Although Fig. 8 shows a single machine, multiple

machines with interconnected RobotEndpoint processes are

also feasible. Although, this use case is similar to the ROS

multimaster implementations [27] in terms of functionality,

Rapyuta has several advantages such as connections over non-

local networks and fine grained control over which topics

and services of a ROS system are available for another ROS

system. However, if all robots are connected to a local network

and if no malicious activity is expected from any of the robots,

a ROS multimaster implementation would be easier to setup

and debug.

Master

Task Set

Robot

EP
I

I

I

I

Robot

Robot

Robot

Robot

Fig. 8: Use Case 3: Process configuration for setting up

a network of robots running a RobotEndpoint and Master

process in a single machine (light-gray block).

Note that the machines mentioned in all three use cases

(light-gray blocks in Figs. 7 and 8) can also be instances of an

IaaS [4] provider such as Amazon EC2 [28] or Rackspace [29].

B. Basic Communication Example

In order to illustrate the usage and communication protocols,

this subsection provides a simple example of a communi-

cation process with Rapyuta’s standard use case setup (see

Fig. 7). Here a Roomba vacuum cleaning robot with a wireless

connection uses Rapyuta to record/log its 2D pose. The

communication takes place in the following order:

1) Initialization: The first step for the Roomba is to contact

the process running the Master task set using the user ID

roombaOwner to get the address of a RobotEndpoint. This

is done with the following HTTP request:

http://[domain]:[port]?userID=roombaOwner&version=[

version]

A RobotEndpoint is selected of the available Endpoints and

the Endpoint’s URL is returned to the Roomba as a JSON

encoded response.

{

"url":"ws://[domain]:[port]/"

}

http://rapyuta.org/install
http://rapyuta.org/usage


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 7

Master

Task Set

Container

Task Set

Robot

EP
I

I

P

P

P

LXC

LXC

Container

Task Set

Robot

EP
P I

P

P

LXC

Robot

Robot Robot

Environment EPP

I I

ROS

Node

ROS

Node

T
o

R
ob

oE
ar

th

R
ep

os
it
or

y

py

re

comm

Fig. 7: Use Case 1: The typical use case of Rapyuta processes deployed on three machines (light-gray blocks) to build a PaaS

framework with interconnected computing environments (LXC, dark-gray blocks). Here the Master task set runs as a single

process on one of the machines and the other two machines are used to deploy containers. Inside each machine that hosts

containers, the robot task set runs as a single process, and inside each container the environment task set runs as a single

process. The computing environment denoted by LXC (Linux Containers) is enlarged in the right side of the figure. Note that

the dashed arrow from the py_re_comm node denotes the connection to the RoboEarth knowledge repository within the same

cluster/data center, thus providing a high bandwidth access.

In the second step of initialization, Roomba makes a connec-

tion using the received URL of the assigned RobotEndpoint,

registers using the robot ID roomba, and logs in using the API

key secret. This is done with the following HTTP request:

ws://[domain]:[port]/?userID=roombaOwner&robotID=

roomba&key=secret

2) Container Creation: The Roomba creates a computing

environment and tags it with a CC-type message having a

data key with value:

"containerTag" : "roombaClone"

Note that the tag must be unique within the robots that use

the same user ID. Container creation also automatically starts

the necessary Rapyuta processes inside the container.
3) Configure Nodes: The Roomba launches the logging

node (posRecorder.py) and starts two Interfaces with tags

using a CN-type message having a data key with value:

"addNodes" : [{

"containerTag" : "roombaClone",

"nodeTag" : "positionRecorder",

"pkg" : "testPkg",

"exe" : "posRecorder.py"

}],

"addInterfaces" : [{

"endpointTag" : "roomba",

"interfaceTag" : "pos",

"interfaceType" : "SubscriberConverter",

"className" : "geometry_msgs/Pose2D"

}, {

"endpointTag" : "roombaClone",

"interfaceTag" : "pos",

"interfaceType" : "PublisherInterface",

"className" : "geometry_msgs/Pose2D",

"addr" : "/posPub"

}]

Note that the above complex message can be split into multiple

messages that launches the node and start Interfaces separately.
4) Binding Interfaces: Before the Roomba can use the

added node the two Interfaces must be connected. This is

achieved with a CX-type message having a data key with

value:

"connect" : [{

"tagA" : "roomba/pos",

"tagB" : "roombaClone/pos"

}]

5) Data: Finally, the Roomba starts sending the data mes-

sage that contains the 2D pose information, i.e., a DM-type

message having a data key with value:

"iTag" : "pos",

"type" : "geometry_msgs/Pose2D",

"msgID" : "id",

"msg" : {

"x" : 3.57,

"y" : -44.5,

"theta" : 0.581

}

This data message (ASCII JSON) is converted to a ROS mes-

sage at the Interface roomba/pos and is sent to the Interface

roombaClone/pos. The Interface roombaClone/pos

then transfers the message to the posRecorder.py

node via the ROS environment. Now, for example, by

adding Interfaces of type PublisherConverter and



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 8

SubscriberInterface, a topic can also be transferred

from the nodes running in RoombaClone to the robot

roomba.

C. Tools

Managing a cloud-based environment is a complex and

cumbersome task. To simplify the management of Rapyuta,

a console client for administrators and users is provided. This

tool allows users to monitor Rapyuta’s components based on

their privileges and to interact with Rapyuta similar to the

external protocol described in Sec. III-B9.

Setting up Rapyuta can be the first and the biggest hurdle

for a beginner. To address this issue, Rapyuta provides a

provisioning script for users who want to setup and use

Rapyuta in their own hardware. The script sets up the full

system, including the networking, containers, and their file

system. This provisioning script is compatible with almost all

of the recent Ubuntu (12.04,12.10,13.04) and ROS (Fuerte,

Groovy) variants at the time of writing. For Amazon EC2

users, Rapyuta provides an Amazon Machine Image (AMI)

with the latest stable version, which they can copy and start

using within minutes10.

V. PERFORMANCE AND BENCHMARKING

In this section we provide various performance measures

of Rapyuta under different configurations and provide bench-

marking results with rosbridge. All experiments were con-

ducted by measuring the round-trip times (RTTs) of different

sized messages between two processes. Note that all experi-

ments are a variation of: where the two processes were run-

ning, their communication route, and the transport mechanism.

A topic-based and a service-based transport mechanism were

used. For each experiment, 25 message sizes (log-uniformly

distributed between 10 B and 10 MB) were selected and,

for each size, 20 samples were measured. All experiments,

except for the remote process/robot case, were performed on a

machine instance in Amazon’s Ireland data center. A machine

located at ETH Zurich, Switzerland was used to replicate the

remote process/robot.

In addition to the transmission delays (message size/band-

width), round-trip times also contain other factors such as

queuing time, processing time and propagation delay (dis-

tance/propagation speed). For smaller messages, the influence

of these other factors diminish the effects of transmission

delays, giving a flat RTT for message of sizes up to 10

kB. After 10 kB the transmission delays start to dominate

resulting in an almost linear increase in RTTs with respect to

the message size (after a brief transient phase).

For interpretation and comparison, note that a tf-typed

message that contains the relationship between multiple coor-

dinate frames of the robot shown in Fig. 12 is around 100 B;

whereas an RGB-D frame, which contains a PNG compressed

RGB and depth image in VGA resolution, is around 500 kB.

9For more details on the console client see http://rapyuta.org/Console
10For more details on the setup tools for installation see http://rapyuta.org/

Install

A. Rapyuta Core

In this part, we compare RTTs for all the core data routes

of the standard use case as shown in Fig. 7. The results of the

experiments are shown in Fig. 9a for the topic-based transport

mechanism and Fig. 9b for the service-based transport mech-

anism. Since a new connection must be established for every

service call that is made, services show a higher latency than

topics. However, the trends with respect to RTTs of different

routes remain the same under both transport mechanisms.

The results in Figs. 9a and 9b show:

• Communication with an external process (R2C) is the

biggest constraint of Rapyuta’s throughput11.

• The difference between containers running in the same

machine (C2C-1) and different machines (C2C-2), re-

sulting from iptables’ port forwarding overheads,

can be neglected in comparison to the difference to the

communication between two nodes in the same ROS

environment (N2N).

• Rapyuta introduces an overhead of < 2 ms for topics and

5 ms for services for data sizes up to 10 kB (see Fig. 9a),

which can be seen from the differences between C2C-1

and N2N.

B. rosbridge

Here we compare Rapyuta with rosbridge with respect to

RTTs. Figures 10a and 10b show round-trip times (RTTs)

for communication with an external non-Rapyuta process that

runs on the same machine where the framework (Rapyuta/ros-

bridge) is running, and on a remote machine respectively.

For external processes running on the same machine

(Fig. 10a), RTTs are dominated by the queuing and processing

times. For small message sizes, both services and topics show

lower RTTs for rosbridge compared to Rapyuta. Conversely,

Rapyuta shows lower RTTs than rosbridge for larger message

sizes. The larger RTTs of Rapyuta for small message sizes

is due to the fact that the message has to pass through two

endpoints (processes) whereas in the case of rosbridge the

message only has to pass through a single process. For larger

messages the implementation of the transport becomes the

dominating factor. Due to the fact that Rapyuta’s WebSocket

library (Autobahn [23] version 0.6.0) has a better performance

compared to rosbridge’s WebSocket library (tornado [30]

version 2.3)12, the RTTs for larger message sizes of Rapyuta

are smaller.

For remote external processes (Fig. 10b), RTTs are domi-

nated by the transmission delays of the Internet connection.

These transmission delays diminish rosbridge’s advantage over

small message, and results in a similar performance between

Rapyuta and rosbridge for smaller messages. For larger mes-

sages (10 − 300 kB) rosbridge RTTs are lower for topics

compared to Rapyuta, but higher for services. For message

sizes larger than 500 kB, Rapyuta offers lower RTTs. This is

11The abrupt increase of RTTs for data sizes between 10
4 and 10

5 bytes
is due to an artifact of Amazon’s networking infrastructure at the time of
writing. This is reproducible even with a basic server using a normal TCP
socket with a straightforward echo protocol.

12This fact was verified by using a straightforward echo protocol.

http://rapyuta.org/Console
http://rapyuta.org/Install
http://rapyuta.org/Install


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 9

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
o

u
n

d
-t

ri
p

ti
m

e
[m

s]

Topic-based Communication

R2C - Topic

C2C-2 - Topic

C2C-1 - Topic

N2N - Topic

(a) RTTs for different data routes in the standard use case (see Fig. 7)
under the topic transport mechanism.

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
o

u
n

d
-t

ri
p

ti
m

e
[m

s]

Service-based Communication

N2N - Service

R2C - Service

C2C-1 - Service

C2C-2 - Service

(b) RTTs for different data routes in a standard use case (see Fig. 7)
under the service transport mechanism.

Fig. 9: Round Trip Times (RTTs) of different transport mechanisms and data routes in the standard use case (see Fig. 7).

N2N denotes the communication of two processes (nodes) within the same ROS environment inside a container; C2C denotes

two processes in two different containers, where for C2C-1 the containers are running on the same machine and for C2C-2

on different host machines. Finally R2C denotes the communication between a remote process and a process running inside

Rapyuta’s containers.

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
o

u
n

d
-t

ri
p

ti
m

e
[m

s]

Rapyuta/rosbridge - local client

Service - rosbridge

Service - Rapyuta

Topic - rosbridge

Topic - Rapyuta

(a) RTTs with the external process running on the same host machine
that is running Rapyuta/rosbridge.

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
o

u
n

d
-t

ri
p

ti
m

e
[m

s]

Rapyuta/rosbridge - remote client

Service - rosbridge

Service - Rapyuta

Topic - rosbridge

Topic - Rapyuta

(b) RTTs with a remote external process running at ETH Zurich,
Switzerland while Rapyuta and rosbridge ran on Amazon’s Ireland
data center.

Fig. 10: Round Trip Times (RTTs) of different transport mechanisms and data routes in Rapyuta and rosbridge [15].



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 10

Fig. 12: The two low-cost (∼ 600$) robots used in our

demonstrations: Each robot consists mainly of a differential

drive base (iRobot Create), an RGB-D sensor (PrimeSense),

an ARM-based single board computer (ODROID-U2), and a

dual band USB wireless device.

again due to the better performance of Rapyuta’s WebSocket

library.

C. Virtual Network-based Internal Communication

Here we compare the virtual networks discussed in III-E

to Rapyuta’s internal communication protocol. Note that all

virtual network-based experiments between two containers

had one single ROS master managing the communication as

opposed to one ROS master per container in a typical Rapyuta

use case. Figs. 11a and 11b compare the communication

between two containers under the virtual network using ROS

and Rapyuta’s internal communication protocol. Except for

LXC bridge’s artifact for service calls with larger messages,

the virtual networks are superior to Rapyuta’s internal com-

munication protocol. Note that this comes at the cost of losing

security and encapsulation, and is thus only allowed within a

single user’s computing environments.

VI. DEMONSTRATIONS

In addition to the tutorial applications that come with the

source code, we also developed two typical robotic applica-

tions to highlight various aspects of Rapyuta.

A. Demonstration: Cloud-based Mapping

As a first proof-of-concept demonstration, we implemented

a cloud-based collaborative mapping service in Rapyuta. The

robots shown in Fig. 12 consist mainly of off-the-shelf com-

ponents. They use the iRobot Create as their base, and this

differential drive base provides a serial interface to send

control commands and receive sensor information. PrimeSense

CARMIN 1.08 is used for the RGB-D sensing. A 48 × 52

mm embedded board with a smartphone-class multi-core ARM

processor is used for onboard computation. The embedded

board runs a standard Linux operating system and connects to

the cloud through a dual-band USB wireless device. This hard-

ware setup was used with different software configurations to

highlight different aspects of the challenges and opportunities.

1) Complete Offloading: In this setup almost all of the

processing was moved to Rapyuta and the only computation

done on board was the compression of the RGB-D data. At

ROSCON 2013 (Stuttgart, Germany) this setup was demon-

strated by doing a frame-by-frame compression with Rapyuta

running at Amazon’s data center in Ireland, which resulted

in a 5 MB/s throughput at 30Hz in QVGA resolution.

This setup demonstrated the practical limits of off-the-shelf

wireless devices and helped us stress test Rapyuta in terms

of throughput. Under this frame-by-frame compression, any

resolution higher than the QVGA resulted in dropped frames

due to the bandwidth limitation. For more effective ways of

sending visual and depth information see Sec.VI-A2 below

and Sec.VI-B.

2) Local Visual Odometry: In this setup13, a dense visual

odometry algorithm [31] was run on board the robot, and only

the RGB-D key frames were sent to Rapyuta for the global

optimization. This setup used a bandwidth of 300-500 kB/s

with QVGA-resolution key frames and demonstrated a good

trade off between the data rates and computation given the

wireless speed, and the robots’ speed and available computa-

tion. Furthermore, this setup also had a component running

on Rapyuta that directed the robot to its next exploration

point based on predefined set points. This component can be

extended to automatically provide set points based on the map

being built.

3) Collaborative Mapping: In this setup, multiple robots

were used to collaboratively build a 3D map of an envi-

ronment. This setup demonstrated that the cloud can serve

not only as a computational resource, but also as a common

medium for collaborative tasks. A 3D model of an environment

created by this method is shown in Fig. 13.

For more details and quantitative evaluations on Secs.

VI-A2 and VI-A3 see [32].

B. Demonstration: Dense Mapping with Rapyuta

As a second demonstration we implemented a dense map-

ping service, which compressed and streamed all the RGB-

D data at VGA resolution to the GPU processes running on

Rapyuta. This demonstration used the point cloud library’s

(PCL) [33] implementation of the KinectFusion [34] algo-

rithm, which does not rely on keyframes as in the previous

demonstration, but utilizes all images and all of their pixels

to reconstruct the map. This prevents the mapping algorithm

from being split up (as suggested previously) to reduce the

necessary bandwidth, and is therefore used as an example

for an application where a large amount of data must be

exchanged. Libav [35] (an open source video and audio

processing library) was used to compress the RGB-D stream

as two separate video streams. For this demonstration we

compressed the color images using the common compression

scheme h264. For the depth images we used the FFV1 video

codec, since FFV1 natively supports the lossless compression

13The source code of the dense visual odometry-based mapping demon-
stration is available at http://github.com/rapyuta/rapyuta-mapping under the
Apache 2.0 license.

http://github.com/rapyuta/rapyuta-mapping


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 11

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
o

u
n

d
-t

ri
p

ti
m

e
[m

s]
C2C - Single Machine

Service - LXC bridge

Service - Rapyuta

Topic - LXC bridge

Topic - Rapyuta

(a) RTTs with LXC bridge-based virtual networks and Rapyuta. The
two containers that were running the communication processes were
hosted by a single host machine.

101 102 103 104 105 106 107
10−1

100

101

102

103

104

Data Size [bytes]

R
o

u
n

d
-t

ri
p

ti
m

e
[m

s]

C2C - Separate Machines

Service - OVS bridge

Service - Rapyuta

Topic - OVS bridge

Topic - Rapyuta

(b) RTTs with Open vSwitch [26]-based virtual networks and
Rapyuta. The two containers that were running the communication
processes were hosted separately on two host machines.

Fig. 11: Round Trip Times (RTTs) for communication between containers under different transport mechanisms

(a) Top view

(b) Side view with a photo taken in a similar perspective.

Fig. 13: A point cloud map of a room at ETH Zurich built in

real-time by the two robots shown in Fig. 12. The individual

maps generated by the two robots are merged and optimized

in a process running on the cloud. The robots are re-localized

and the robot model is over-layed in the merged map.

Fig. 14: A frame of the KinectFusion output running on an

Amazon GPU instance in Ireland.

of a 16-bit monochrome image stream, whereas h264 does not

support this type of pixel format.14

Figure 14 shows a sample frame of the KinectFusion output.

The bandwidth usage of the RGB images in this particular

case was 1.1 MB/s for a dynamic scene and 800 kB/s for a

static scene. Compared to 27.6 MB/s (which is the bandwidth

requirement of raw RGB images) the compression results in a

reduction of 96%. Similarly, the bandwidth required for the

depth images was 1.6 MB/s for a dynamic scene and 1.4

MB/s for a static scene. This resulted in a reduction of 92%,

compared to the 18.4 MB/s requirement of the raw depth

14The source code of the depth mapping demonstration can be found at
http://github.com/rapyuta/rapyuta-kinfu. under the Apache 2.0 license.

http://github.com/rapyuta/rapyuta-kinfu


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 12

images. Note that all values are for a frame rate of 30 frames

per second. The second notable aspect of this demonstration

is that it uses the GPU to process the incoming data in a

timely manner. This allows us to demonstrate that although the

algorithm runs isolated in a virtual machine, the container is

flexible enough to allow direct access to the GPU, a hardware

component of the host machine.

Mapping was specifically selected due its high data rate,

which is an important constraint in cloud robotics. Other

tasks that can benefit from the cloud and that are closer to

manufacturing include grasp planning [2] and object recog-

nition [36]. Both tasks are computationally expensive, highly

parallelizable, and require a significant amount of storage.

To build a reasonable alternative to Rapyuta (to run the

above cloud-based application) a developer would have to:

• provision servers from an IaaS provider,

• connect the servers together with some technology like

Open vSwitch [26](see Sec. III-E) and common ROS

master/multimaster setup [27] based on the application

requirements, and

• connect the external robots to the servers using rosbridge

[15].

However, compared to Rapyuta, the developer will lose the

generality (architecture has to be manually changed based on

the application), scalability, and security (multiple users can

use this system only under the assumption of complete trust)

with this alternative15.

VII. CONCLUSION AND OUTLOOK

In this paper we described the design, implementation,

benchmarking results, and the first demonstrations of Rapyuta,

a PaaS framework for robots. Rapyuta, based on an elastic

computing model, dynamically allocates secured computing

environments for robots.

We showed how the computing environments and the

communication protocols allow robots to easily offload their

computation to the cloud. We also described how Rapyuta’s

computing environments can be interconnected to share spe-

cific resources with other environments, making it a suitable

framework for multi-robot control and coordination.

Our choice of communication protocols were explained,

and an example was provided to clarify the different types of

messages and to show how they work together. With respect to

communication, we also provided some benchmarking results

for different protocols.

Next, we showed the flexibility of Rapyuta’s modular design

by giving three specific use cases as a guide. Finally, two

robotics demonstrations were presented as examples to high-

light various aspects of Rapyuta and cloud robotics in general.

These demonstrations also provided practical examples on

how to handle application-specific tradeoffs between available

onboard computation, the application’s bandwidth and real-

time requirements, the reliability of communication with the

cloud, and the available cloud infrastructure.

15There is also the option of modifying an existing open source PaaS frame-
work for web applications to run robotics application. This is a significant
undertaking and we do not recommend it.

Together with the RoboEarth Knowledge Repository,

Rapyuta provides an appropriate cloud robotics platform that

has the potential to improve robotics in the following ways:

• provides massively-parallel computation on demand for

sample-based statistical modelling and motion plan-

ning [37],

• leverages the cloud as a real-time communication medium

for collaborative task performance and information shar-

ing,

• serves as a global repository to store and share object

models, environment maps, and actions recipes between

various robotic platforms; enabling life-long learning,

• robotic Application-as-a-Service: eliminates setup and

update overhead for the end users, serves as a better

model for protecting intellectual property for the devel-

opers, and functions as a common platform to benchmark

different algorithms and solutions, and

• allows humans to monitor or intervene and help robots

when they are lost; this not only makes the robotic system

more robust but also provides a lot of labelled data to

learn from as an intermediary step before humans are

taken out of the loop.

Many more applications can be found in the field of intel-

ligent transportation, environmental monitoring, smart homes

and defence [16].

ACKNOWLEDGMENT

This research was funded by the European Union Seventh

Framework Programme FP7/2007-2013 under grant agreement

no. 248942 RoboEarth and was supported by AWS (Amazon

Web Services) in Education Grant award. The authors would

like to express their gratitude towards Vladyslav Usenko

(TUM) for help building the mapping demonstration, Dhanan-

jay Sathe and Mayank Singh for their help with the software

development, Carolina Flores and Christine Waibel for helping

with the promotional video, Matei Ciocarlie (Willow Garage)

for the excellent feedback on the draft, and all RoboEarth

colleagues for their support and feedback.

REFERENCES

[1] R. Arumugam, V. R. Enti, K. Baskaran, and A. S. Kumar, “DAvinCi:
A cloud computing framework for service robots,” in Proc. IEEE Int.

Conf. Robotics and Automation. IEEE, May 2010, pp. 3084–3089.
[2] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasping

with uncertainty in shape: Estimating lower bounds on achieving force
closure with zero-slip push grasps.” in Proc. IEEE Int. Conf. Robotics

and Automation. IEEE, May 2012, pp. 576–583.
[3] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-

Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle,
M. Tenorth, O. Zweigle, and R. van de Molengraft, “Roboearth,”
Robotics Automation Mag., IEEE, vol. 18, no. 2, pp. 69 –82, june 2011.

[4] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Special Publication 800-
145, 2011, available http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

[5] Google, Inc., “Google App Engine,” 2014. [Online]. Available:
https://developers.google.com/appengine/

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[7] J. Lindenbaum, A. Wiggins, and O. Henry, “Heroku,” 2007. [Online].
Available: http://www.heroku.com/

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://developers.google.com/appengine/
http://www.heroku.com/


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, MONTH YEAR 13

[8] VMware, Inc., “Cloud Foundry,” 2013. [Online]. Available: http:
//www.cloudfoundry.com/

[9] Red Hat, Inc, “OpenShift,” 2013. [Online]. Available: https://openshift.
com/

[10] K. Goldberg and R. Siegwart, Eds., Beyond webcams: an introduction

to online robots. Cambridge, MA, USA: MIT Press, 2002.
[11] M. Inaba, S. Kagami, F. Kanehiro, Y. Hoshino, and H. Inoue, “A plat-

form for robotics research based on the remote-brained robot approach.”
I. J. Robotic Res., vol. 19, no. 10, pp. 933–954, 2000.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press, 2005.
[13] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud Networked

Robotics,” Network, IEEE, vol. 26, no. 3, pp. 28–34, May-June 2012.
[14] M. Sato, K. Kamei, S. Nishio, and N. Hagita, “The ubiquitous network

robot platform: Common platform for continuous daily robotic services,”
in System Integration (SII), 2011 IEEE/SICE Int. Symp., Dec 2011, pp.
318 –323.

[15] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins, “ROS and rosbridge:
Roboticists out of the loop,” in Proc. Annual ACM/IEEE Int. Conf.

Human-Robot Interaction, 2012, pp. 493–494.
[16] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges

and applications,” Network, IEEE, vol. 26, no. 3, pp. 21–28, May-June
2012.

[17] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouses,” AI Magazine,
vol. 29, no. 1, pp. 9–20, 2008.

[18] “Linux Containers,” 2012. [Online]. Available: http://lxc.sourceforge.net/
[19] “chroot, Linux programmer’s manual,” 2012. [Online]. Available:

http://www.kernel.org/doc/man-pages/online/pages/man2/chroot.2.html
[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” in Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.
[21] G. Lefkowitz, “Twisted,” 2012. [Online]. Available: http://twistedmatrix.

com/
[22] I. Fette and A. Melnikov, “The WebSocket Protocol, RFC 6455,” 2011.

[Online]. Available: http://tools.ietf.org/html/rfc6455
[23] Tavendo GmbH, “Autobahn WebSockets,” 2014. [Online]. Available:

http://autobahn.ws/
[24] Community Project, “Open MPI: Open Source High Performance

Computing,” 2013. [Online]. Available: http://www.open-mpi.org/
[25] “Information Technology — Open Systems Interconnection — Basic

Reference Model: The Basic Model,” ISO/IEC, Nov. 1994.
[26] Community Project, “Open vSwitch,” 2013. [Online]. Available:

http://openvswitch.org/
[27] ROS Community Project, “Multimaster Special Interest Group (SIG),”

2014. [Online]. Available: http://wiki.ros.org/sig/Multimaster/
[28] Amazon.com Inc., “Amazon Elastic Compute Cloud,” 2014. [Online].

Available: http://aws.amazon.com/ec2
[29] Rackspace US, Inc., “The Rackspace Open Cloud,” 2012. [Online].

Available: http://www.rackspace.com/
[30] Facebook, Inc., “Tornado Framework,” 2014. [Online]. Available:

https://github.com/facebook/tornado
[31] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time visual odometry

from dense RGB-D images,” in ICCV Computer Vision Workshop, 2011,
pp. 719–722.

[32] G. Mohanarajah, V. Usenko, M. Singh, M. Waibel, and R. D’Andrea,
“Cloud-based collaborative 3D mapping in real-time with low-cost
robots,” IEEE Transactions on Automation Science and Engineering,
March 2014, under review. [Online]. Available: http://rapyuta.org/
images/9/9f/cloudMappingT-ASE.pdf

[33] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[34] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in Mixed

and Augmented Reality (ISMAR), 2011 10th IEEE International Sympo-

sium on, 2011, pp. 127–136.
[35] “libav,” 2013. [Online]. Available: http://libav.org/
[36] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”

Signal Processing Magazine, IEEE, vol. 28, no. 3, pp. 59–69, May 2011.
[37] USA Robotics VO, “A Roadmap for U.S. Robotics, From Internet to

Robotics, 2013 Edition,” 2013.

Gajamohan Mohanarajah is a PhD candidate at
ETH Zurich supervised by Prof. Raffaello D’Andrea
and co-supervised by Prof. Andreas Krause. He
obtained his undergraduate and masters degree from
Tokyo Institute of Technology, Japan specializing
in control and systems engineering. His current
interests include cloud robotics, controls, and large-
scale machine learning.

Dominique Hunziker is a Master student at the
ETH Zurich in the programme Robotics, Systems,
and Control. He received the Bachelor’s degree in
mechanical engineering from ETH Zurich in 2011.
His current interests include cloud robotics, Python
development, and piloting helicopters.

Raffaello D’Andrea received a B.Sc. degree in
Engineering Science from the University of Toronto
in 1991, and M.S. and Ph.D. degrees in Electrical
Engineering from the California Institute of Tech-
nology in 1992 and 1997, respectively. He held
positions as assistant professor, and later, associate
professor at Cornell University from 1997 to 2007.
He is currently a full professor of dynamic systems
and control at ETH Zurich, and technical co-founder
and chief technical advisor at Kiva Systems. A
creator of dynamic sculpture, his work has appeared

at various international venues, including the National Gallery of Canada, the
Venice Biennale, Ars Electronica, and ideaCity.

Markus Waibel Markus Waibel received an MSc in
Physics from the Technical University of Vienna in
2003 and a PhD in Robotics from the EPF Lausanne
in 2007. He is currently a Senior Researcher at ETH
Zurich and Program Manager of the cloud robotics
project RoboEarth. He is also the co-founder of the
ROBOTS Association and its flagship publications
Robohub and the ROBOTS Podcast, and the founder
of Robotics by Invitation, an online panel discussion
of 30 high-profile roboticists.

http://www.cloudfoundry.com/
http://www.cloudfoundry.com/
https://openshift.com/
https://openshift.com/
http://lxc.sourceforge.net/
http://www.kernel.org/doc/man-pages/online/pages/man2/chroot.2.html
http://twistedmatrix.com/
http://twistedmatrix.com/
http://tools.ietf.org/html/rfc6455
http://autobahn.ws/
http://www.open-mpi.org/
http://openvswitch.org/
http://wiki.ros.org/sig/Multimaster/
http://aws.amazon.com/ec2
http://www.rackspace.com/
https://github.com/facebook/tornado
http://rapyuta.org/images/9/9f/cloudMappingT-ASE.pdf
http://rapyuta.org/images/9/9f/cloudMappingT-ASE.pdf
http://libav.org/

	Introduction
	Main Components
	Computing Environments
	Communication and Protocols
	Core Task Sets
	Master Task Set
	Robot Task Set
	Environment Task Set
	Container Task Set

	Command Data Structure

	Communication Protocols
	Internal Communication Protocol
	External Communication Protocol
	Handling Large Binary Messages
	Communication with RoboEarth
	Virtual Networks

	Deployment
	Use cases
	Basic Communication Example
	Initialization
	Container Creation
	Configure Nodes
	Binding Interfaces
	Data

	Tools

	Performance and Benchmarking
	Rapyuta Core
	rosbridge
	Virtual Network-based Internal Communication

	Demonstrations
	Demonstration: Cloud-based Mapping
	Complete Offloading
	Local Visual Odometry
	Collaborative Mapping

	Demonstration: Dense Mapping with Rapyuta

	Conclusion and Outlook
	References
	Biographies
	Gajamohan Mohanarajah
	Dominique Hunziker
	Raffaello D'Andrea
	Markus Waibel


