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Abstract Complex systems have characteristics that

give rise to the emergence of rare and extreme events.

This paper addresses an example of such type of cri-

sis, namely the spread of the new Coronavirus disease

2019 (COVID-19). The study deals with the statistical

comparison and visualization of country-based real-

data for the period December 31, 2019, up to April

12, 2020, and does not intend to address the medical

treatment of the disease. Two distinct approaches are

considered, the description of the number of infected

people across time by means of heuristic models fitting

the real-world data, and the comparison of countries

based on hierarchical clustering and multidimensional

scaling. The computational and mathematical model-

ing lead to the emergence of patterns, highlighting sim-

ilarities and differences between the countries, pointing

toward the main characteristics of the complex dynam-

ics.
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1 Introduction

Many complex systems generate outputs that are char-

acterized by a frequency-size power law behavior over

several orders of magnitude [1,2]. The power laws have

been associated with scale-invariance, self-similarity,

and fractality and are consistent with self-organized

criticallity, that is a process in which a system, by itself,

converges to a state characterized by a coherent global

pattern, created by local interactions between low-level

elements [3,4].

The power laws are characterized by heavy-tails,

giving non-negligible probability to large events. How-

ever, some extreme events, labeled ‘dragon kings’,

while predictable, cannot be foreseen by the extrapo-

lation of power law distributions [5,6]. ‘Dragon kings’

may be associated with positive feedback, bifurcations,

and regime changes in out-of-equilibrium complex sys-

tems. ‘Dragon kings’ are often discussed in contrast

with ‘black swans’, which denote unpredictable catas-

trophic rare events [7]. These outliers are pervasive in

many areas, namely economy, finance, earth sciences,

and biology.

The recent Coronavirus disease 2019 (COVID-19)

outbreak is an example of an extreme event. We must

highlight that the occurrence of a rare event and the

actual description of its evolution are, however, dis-

tinct matters. This paper attempts to understand the

dynamics of the spreading across different countries
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of COVID-19, but not the prediction of its outbreak or

conclusion.

The first case of COVID-19 [8–10] was officially

reported in China on December 31, 2019, in Wuhan of

Hubei province. At an early stage, the Chinese author-

ities seemed not to give importance to the problem.

However, with the rapid emergence of new cases, the

attitude changed dramatically. The Chinese govern-

ment took a series of strong measures to contain the

disease and gave the world an example of commit-

ment and effectiveness. The growth rate of new cases

of COVID-19 in China has slowed significantly, and

the situation appears to be under control at the moment

of writing this paper [11,12].

In the meantime, new cases have been emerging in

many countries. In particular, the rapid evolution in

Iran, South Korea, Italy and Spain became the most

dramatic cases. COVID-19 was gradually reaching all

continents, with cases confirmed all over the world,

while having ‘alarming levels of inaction’ by some

countries, in the words of the director of the World

Health Organization (WHO).

More recently, by March 11, 2020, WHO officially

declared the COVID-19 a global pandemic, just when

the number of known cases reached approximately

121,000 and caused 4300 deaths, and after the cases

outside of China spread by a factor of 13 and the num-

ber of countries affected tripled in just two weeks.

Panic begins to spread in some populations [13],

fueled by the massive and speculative news broadcast

by the media and social networks. World governments

have taken drastic measures, such as closing schools,

entertainment venues and restaurants, and the move-

ment of people has slowed dramatically, in parallel with

thousands of canceled flights [14]. The tourism sector

and commercial flights are the most affected and the

world seems to be heading towards an economic reces-

sion, with the GDP of some countries being able to drop

double-digit figures.

No one can say whether the measures being taken are

sufficient [15], or what the evolution of the pandemic

will be, but this appears to be the public health crisis

of a generation. However, we cannot forget that, for

example, the H1N1 flu of 2009 caused between 151,000

and 575,000 deaths worldwide [16]. The COVID-19

has still a long way to go to reach the H1N1 levels. The

world faced other flu pandemic crises in the past [17]

and the scientific knowledge has never been so well

prepared as today to give appropriate answers to health

crises.

The analysis of the evolution of the confirmed cases

versus time has considerable interest from the point of

view of delivering good information to health organi-

zations and to the general public. Several statistics have

been presented, adopting different forms for organiz-

ing and visualizing the data. However, a comprehensive

representation of the COVID-19 spreading dynamics

across different countries is still missing.

In epidemiology, mathematical modeling plays an

important role in understanding the mechanisms that

govern the transmission of contagious diseases. The

work by Kermack and McKendrick [18] formulated

the general theory of susceptible–infected–recovered

(SIR). A SIR model involves a system of coupled equa-

tions relating the numbers of susceptible, infected and

recovered people over time, and computes the theoret-

ical number of infected people in a closed population.

Many variations of the original SIR model were pro-

posed, such as the susceptible–infectious–susceptible

(SIS) and the susceptible–exposed–infectious–recovered

(SEIR), based on ordinary [19], stochastic [20] and

fractional order [21,22] differential equations. These

recent versions were adopted for studying the spread

of distinct infectious diseases [23,24], including the

COVID-19 [25]. However, the main concern of such

approach is the model validation, since it requires to

compare the results with real data. Contrary to model-

driven, data-driven approaches rely on data series for

deriving adequate fitting functions. These heuristic

models describe well one stage of the epidemic, but fail

when the disease evolves toward a different phase. We

must also note that the heuristic model is useless in the

initial epidemic phase, due to insufficient data [26,27].

The paper addresses the statistical comparison and

visualization of COVID-19 country reported cases in

the period December 31, 2019, up to April 12, 2020.

The study does not aim to be a contribution tailored for

medical treatment or prevention of the disease. There-

fore, in a first phase, we adopt a nonlinear least-squares

technique to determine possible candidate heuristic

models for describing the data regarding COVID-19

infections. In a second phase, we use distinct metrics

for processing the data both in the time and frequency

domains. The information is visualized using hierar-

chical clustering (HC) and multidimensional scaling

(MDS) for comparing the COVID-19 evolution in the

different countries. The HC and MDS generate loci of
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Fig. 1 Geographic map of the COVID-19 spread for 165 countries. The color map is proportional to the number of days elapsed since

the occurrence of the first case for each country for the period of time τ

points in 2- and 3-dimensional spaces representing the

number of infections for each country. The position-

ing and the patterns formed by the points lead to direct

interpretations of the results. The study is data-driven,

and the models are applicable only at some stages of the

outbreak and when enough data points are available.

In this line of thought, the paper is organized as fol-

lows. In Sect. 2 we introduce the dataset adopted in the

follow-up. In Sect. 3 we analyze the data by means of

regression modeling. In Sect. 4 we compare and visu-

alize the COVID-19 spreading data in various coun-

tries. In Sect. 5, we discuss the possibility of foreseeing

the future evolution. Finally, in Sect. 6 we discuss the

results and summarize the main conclusions.

2 The dataset

The COVID-19 data are made available by the Euro-

pean Centre for Disease Prevention and Control (https://

www.ecdc.europa.eu/en). The dataset is provided in

Excel format, containing the number of infected and

the number of deaths for each country, on a daily basis.

Data for the period from December 31, 2019, up to

April 12, 2020, were collected for analysis. This period

of time will be denoted as τ henceforth.

Figure 1 depicts a geographic map where the col-

ormap is proportional to the number of days elapsed

since the occurrence of the first case in each country.

We verify that the COVID-19 is particularly severe in

the northern hemisphere and, thus, seems not to follow

the same pattern of other serious diseases that affected

mainly the underdeveloped countries. Therefore, some

possible synchronization between countries, or, even,

the emergence of new waves of spread in the future

are still unclear and techniques such as the Kuramoto

model [28] for assessing that hypothesis should be con-

sidered.

Let xi (t) denote the time series of confirmed

COVID-19 daily infections for the i th country, i =
1, . . . , M , where t = 1, . . . , T represents time with

one day resolution, within the time interval τ . There-

fore, the signals xi (t) evolve in discrete times, t , and

can be interpreted as one manifestation of a complex

system.

For the sake of statistical significance and accu-

racy of the mathematical tools used for processing

the data, we just consider the countries with time
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Table 1 List of 79 countries with time series comprising at least 30 days with new infections during the period τ

i Country Acronym i Country Acronym i Country Acronym

1 Albania AL 28 Hungary HU 55 Philippines PH

2 Algeria DZ 29 Iceland IS 56 Poland PL

3 Argentina AR 30 India IO 57 Portugal PT

4 Armenia AM 31 Indonesia ID 58 Qatar QA

5 Australia AU 32 Iran IR 59 Romania RO

6 Austria AT 33 Iraq IQ 60 Russia RU

7 Azerbaijan BH 34 Ireland IE 61 San Marino SM

8 Bahrain BE 35 Israel IL 62 Saudi Arabia SA

9 Belgium BR 36 Italy IT 63 Senegal SN

10 Brazil BN 37 Japan JP 64 Serbia RS

11 Bulgaria BG 38 Kuwait KW 65 Singapore SG

12 Canada CA 39 Latvia LV 66 Slovakia SK

13 Chile CL 40 Lebanon LB 67 Slovenia SI

14 China CN 41 Luxembourg LU 68 South Africa ZA

15 Colombia CO 42 Malaysia MY 69 South Korea KR

16 Costa Rica CR 43 Malta MT 70 Spain ES

17 Croatia HR 44 Mexico MX 71 Sweden SE

18 Czechia CZ 45 Moldova MD 72 Switzerland CH

19 Denmark DK 46 Morocco MA 73 Taiwan TW

20 Ecuador EC 47 Netherlands NL 74 Thailand TH

21 Egypt EG 48 New Zealand NZ 75 Tunisia TN

22 Estonia EE 49 Norway NO 76 United Arab Emirates AE

23 Finland FI 50 Oman OM 77 UK GB

24 France FR 51 Pakistan PK 78 USA US

25 Georgia GE 52 Palestine PS 79 Vietnam VN

26 Germany DE 53 Panama PA

27 Greece GR 54 Peru PE

series comprising at least 30 days with new infec-

tions, which yields the number M = 79 listed in

Table 1.

For characterizing the evolution of daily infections

per country, we calculate the log return:

ri (t) = ln

[

xi (t)

xi (t − 1)

]

, t = 2, . . . , T, (1)

and we approximate the histogram of ri (t) by a sym-

metric α-stable distribution [29].

We recall that a probability distribution (PD) (and

the corresponding random variable ξ ) is said to be

‘stable’ if a linear combination of 2 independent

random variables with such PD has also an identi-

cal PD, up to the scale and location parameters, c

and µ, respectively [29,30]. A given family of sta-

ble distributions is often called Lévy alpha-stable dis-

tribution, after Paul Lévy [31]. The Lévy, Gaussian

and Cauchy PD of a random variable ξ are partic-

ular cases of the α-stable distribution family with

the parameter value α = 1
2
, 1 and 2, respectively

[32]. The α-stable distribution is a four parameter

family of distributions and is (usually) denoted by

S(α, β, c, µ). The first parameter α is of particular

relevance and describes the tail of the distribution.

We have α ∈ (0, 2] for the stability (or character-

istic exponent), β ∈ [−1, 1] representing the skew-

ness, c ∈ (0,∞) standing for the scale, and µ ∈
(−∞,+∞) for location parameters. With exception
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Fig. 2 The histogram of the the log returns ri , i = 14, and α-

stable approximation, with tail characteristic exponent α = 0.26,

for China during the period τ

of the cases when α ≤ 1 and β = ±1, we have that

for α < 2 the asymptotic behavior is described by

[33,34]:

f (ξ) ∼ 1

|ξ |1+α

(

cα(1 + sign(ξ)β) sin
(πα

2

) Γ (α + 1)

π

)

, (2)

where Γ denotes the Gamma function. We verify the

presence of the so-called heavy or fat tails that cause

the variance to be infinite for α < 2.

Figure 2 depicts the histogram and the α-stable

approximation for China, r14, in the period τ . Twelve

bins were considered for having statistical significance.

In this case, we have approximately f (r) ∼ 1/|r |1.26,

that is, α = 0.26 corresponding to an extremely small

value, which entails a huge probability for extreme val-

ues of the return. The alternative of an asymmetrical PD

was tested, but the resulting improvement was minor

and by consequence merely the symmetrical version is

depicted for the sake of simplifying.

3 Regression models for describing the spread of

COVID-19

Let yi (t) represent the time series of cumulative num-

ber of infections of xi (t), that is yi (t) =
∑t

n=1 xi (n).

We adopt the nonlinear least-squares [35,36] to exam-

ine the behavior of yi (t) for a variety of functions. We

selected the ‘Logistic’ and ‘Richards’ models:

ŷi (t) = a

1 + be−ct
, (3)

ŷi (t) = a
(

1 + eb−ct
)

1
d

, (4)

for approximating the data of China (i = 14) and Italy

(i = 36), respectively, where a, b, c, d ∈ R are param-

eters adjusted by means of a nonlinear least square fit

numerical algorithm.

These models were selected from a large number

of heuristic functions simply because they (i) adjust

adequately to real data, and (ii) involve a limited

number of parameters. Therefore, no special biolog-

ical meaning was intended when using such func-

tions.

Figure 3 illustrates the data time series, y14(t) and

y36(t) and the corresponding approximations ŷ14(t)

and ŷ36(t) for the parameters {a, b, c} = {8.15 ×
104, 9.59 × 103, 2.22 × 10−1} and {a, b, c, d} =
{1.79 × 105, 6.87, 9.55 × 10−2, 2.42 × 10−1}, respec-

tively.

We verify a good fit in both cases, with coefficient of

determination R2 = 0.99, but a single model with lim-

ited number of parameters is not able to fit well the time

series ŷi (t) for all countries. Obviously, we can adopt

other models involving a larger number of parameters

for achieving a better fitting to a given ŷi (t). Nonethe-

less, only analytical expressions requiring a limited set

of parameters are of relevance [37]; otherwise, their

comparison and interpretation becomes unclear. On the

other hand, the use of distinct models for different coun-

tries lack generality when comparing results.

4 Global comparison of the COVID-19 spreading

We now analyze the COVID-19 spreading data of M =
79 countries both in the time and frequency domains.

In the time domain, we compare the pair (i, j) of coun-

tries by the corresponding time series of the cumulative

number of infections [yi (t), y j (t)], i, j = 1, . . . , M ,

with t = 1, . . . , T . In the frequency domain, the pairs

of countries are compared by the daily number of infec-

tions [X i (ıω), X j (ıω)], where X i (ıω) = F{xi (t)},
ω = ω1, . . . , ωK , F{·} denotes the Fourier transform,

ω represents the angular frequency and ı =
√

−1.

We adopt the Canberra distance to measure the dis-

similarity between pairs (i, j) for the time and fre-

quency domains:
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Fig. 3 The time series of

the cumulative number of

infections and the model

approximations ŷ14(t) and

ŷ36(t) during the period τ

for: a China; b Italy
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d t
C (yi , y j ) = d

t,y
Ci j

=
T

∑

t=1

|yi (t) − y j (t)|
|yi (t)| + |y j (t)|

, (5)

d
f

C (X i , X j ) = d
f,X

Ci j

=
K

∑

k=1

|Re{X i (ıωk)} − Re{X j (ıωk)}|
|Re{X i (ıωk)}| + |Re{X j (ıωk)}|

+
K

∑

k=1

|Im{X i (ıωk)} − Im{X j (ıωk)}|
|Im{X i (ıωk)}| + |Im{X j (ıωk)}|

,

(6)

that is, distances based on the variables yi (t) =
∑t

n=1 xi (n) and X i (ıω), respectively, where Re{·} and

Im{·} denote the real and imaginary parts. The Can-

berra distance has the relevant property of being rela-

tively insensitive to the simultaneous presence of large

and small values.

Obviously, other distances are possible [38] and sev-

eral of them were also tested. However, further dis-

tances are not included herein for sake of parsimony,

since d
t,y

Ci j
and d

f,X

Ci j
illustrate adequately the proposed

concepts.
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4.1 Hierarchichal clustering and visualization of

COVID-19

For visualizing the relationships between the 79 coun-

tries, we first adopt the HC computational approach.

The HC is a technique that groups similar objects

[39]. Given M objects in a q-dimensional real-valued

space and a dissimilarity metric, a M × M-dimensional

matrix, ∆ = [δi j ], with δi j ∈ R
+ for i �= j and δi i = 0,

(i, j) = 1, . . . , M , of object to object dissimilarities is

determined [40]. The HC generates a structure of object

clusters, using ∆ as input, that is represented graphi-

cally either by a hierarchical tree or a dendrogram. We

have two alternatives to generate a hierarchy of clus-

ters, namely the agglomerative and divisive clustering

iterative techniques. In the first, each object starts in its

own cluster and the successive iterations merge the pair

of most similar clusters until there is a single cluster. In

the second technique all objects start in one cluster and,

during the iterations, the ‘outsiders’ are removed from

the least cohesive cluster, until each object is in a sepa-

rate cluster. In both cases the HC requires a linkage cri-

terion, that is a function of the distances between pairs

of items, for quantifying the dissimilarity between clus-

ters. Metrics such as the maximum, minimum and aver-

age linkages are often used. The distance d (xR, xS)

between two objects xR ∈ R and xS ∈ S, in the clus-

ters R and S, respectively, can be assessed by means

of several metrics such as the average-linkage given by

[41]:

dav (R, S) = 1

‖R‖ ‖S‖
∑

xR∈R,xS∈S

d (xR, xS). (7)

For assessing the clustering quality, the index cc is

mostly used [42]. Let us consider that the original object

X i is described by a HC representation Ti . Additionally,

let x(i, j) and t (i, j) stand for the the distances between

the X i and X j original observations and the HC points

Ti and T j , respectively. If we have x̄ = av (x (i, j))

and t̄ = av (t (i, j)), where av(·) denotes average, then

cc is given by:

cc =
∑

i< j (x(i, j) − x̄)
(

t (i, j) − t̄
)

√

[

∑

i< j (x(i, j) − x̄)2
] [

∑

i< j

(

t (i, j) − t̄
)2

]

.

(8)

The closer the value of cc is to 1, the better the clus-

tering reflects the original data. The results are rep-

resented in a Shepard chart that compares the origi-

nal and the cophenetic distances. The closer to the 45

degree line the points, the better the obtained clustering.

For example, in MATLAB, the cophenetic correlation

coefficient can be obtained by means of the command

cophenet.

Herein, the agglomerative clustering and average-

linkage method are adopted for visualizing the two

resulting matrices of item-to-item distances based on

Eqs. (5) and (6), respectively [43]. Figures 4 and 5

depict the HC trees for d
t,y
Ci j

and d
f,X

Ci j
, respectively, dur-

ing the period τ . The size of the ‘leafs’ is proportional

to the logarithm of the total number of infections at

time T (i.e., ln[yi (T )]) and the color is proportional to

the time of appearance of the first case in each coun-

try up to T . We verify, in both cases, the emergence of

2 clusters. For the d
t,y
Ci j

we have Gt
1 = Gt

11 ∪ Gt
12 and

Gt
2 = Gt

21 ∪Gt
22. For d

f,X
Ci j

we have G
f

1 = G
f

11 ∪G
f

12 and

G
f

2 = G
f

21 ∪ G
f

22.

In Fig. 4, we see a clear position of China fol-

lowed by the sub-cluster formed by Iran, Italy, Spain,

Korea, United States, France and Germany. On the

other hand, the tree based on the frequency response

gives more importance to a sub-cluster formed by the

United States and China, followed by a second group

including United Kingdom, Italy, Germany, France,

Spain, and Iran. Moreover, the second tree separates

better those countries with a smaller impact from the

virus spread. In Fig. 4, the countries with a smaller

(larger) number of occurrences and a smaller (larger)

number of days since the first case are to the left (right).

In Fig. 5, the distribution for smaller (medium/larger)

values is located on the right (left/middle bottom) sides.

Figure 6 represents the Shepard plot for assessing

the HC tree for the 74 countries and the item-to-item

dissimilarities d
t,y
Ci j

. The chart reflects an accurate clus-

tering of the original data. For the index d
f,X

Ci j
, the Shep-

ard plot is identical to the one in Fig. 6 and, therefore,

is not presented.

4.2 Multidimensional scaling and visualization of the

COVID-19 dataset

The MDS is a computational technique for clustering

and visualizing multidimensional data [44]. As for the
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Fig. 4 The HC tree for the 79 countries using the item-to-item

dissimilarities in the time-domain d
t,y
Ci j

during the period time

τ . The size of the ‘leafs’ is proportional to the logarithm of

the total number of infections and the color is proportional to

the time elapsed since the first reported case in each country up to

T
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Fig. 5 The HC tree for the 79 countries using the item-to-item

dissimilarities in the frequency-domain d
f,X

Ci j
during the period

of time τ . The size of the ‘leafs’ is proportional to the logarithm

of the total number of infections and the color is proportional to

the time elapsed since the first reported case in each country up

to T
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with d
t,y
Ci j

. The cophenetic correlation coefficient is cc = 0.82

HC, the input of the MDS numerical scheme is the

matrix ∆ = [δi j ], (i, j) = 1, . . . , M , of object to

object dissimilarities. The main idea of the MDS is to

have points for representing objects in a d-dim space,

with d < q, while trying to reproduce the original

dissimilarities, δi j . Subsequently, the MDS evaluates

distinct configurations for optimizing a given fit func-

tion. The result of successive numerical iterations is

a set of point coordinates (and, therefore, a symmet-

ric matrix Φ = [φi j ] of the reproduced dissimilarities)

approximating δi j . A fit function used frequently is the

raw stress S =
[

φi j − f (δi j )
]2

, where f (·) stands for

some type of linear or nonlinear transformation.

We have several variants of the MDS, such as the

metric, non-metric and generalized MDS. In the case

of the metric MDS, the iterative algorithm minimizes

the stress cost function S. We can have for example the

residual sum of squares:

S =

⎡

⎣

∑

i< j

(

φi j − δi j

)2

⎤

⎦

1
2

. (9)

The Sammon criterion can be also adopted

S =
[

∑

i< j

(

φi j − δi j

)2

∑

i< j φ2
i j

]

1
2

. (10)

The MATLAB command cmdscale and stress cri-

terion Sammonwere adopted. The interpretation of the

MDS locus is based on the patterns of points. Similar

(dissimilar) objects are represented by points that are

close to (far from) each other. Therefore, the informa-

tion retrieval is not based on the point coordinates, nor

the shape of the clusters. This means that it is pos-

sible to magnify, translate and rotate the MDS locus.

The axes of the MDS plot have neither units nor a spe-

cial physical meaning. The quality of the MDS can be

assessed through the stress and Shepard diagrams. The

stress chart represents S versus d. The plot is mono-

tonically decreasing and choosing a given value of d is

a compromise between obtaining low values of S and

d. The values d = 2 or d = 3 are usually adopted,

because they allow a direct representation. The Shep-

ard diagram compares φi j and δi j for a given value of

d. A narrow scatter represents a good fit between φi j

and δi j .

Figures 7 and 8 depict the 3D MDS maps for d
t,y

Ci j
and

d
f,X

Ci j
, respectively, for the period τ . As before, the size

of the dots is proportional to the logarithm of the num-

ber of infections (i.e., ln[yi (T )]) and the color is pro-

portional to the time between the first reported case in

each country and T . The clusters are the same obtained

with the HC, however, for their clear visualization we

need to rotate the 3D maps.

As for the HC we verify that the time domain

approach makes a better distinction of the countries

with a larger number of infections, while the MDS

based on the frequency domain has a more eclectic dis-

tribution, that is with a larger dispersion, and leaves

some room for distinguishing the countries with a

smaller number of infections. In both figures, the coun-

tries to the left (right) have a smaller (larger) number

of infections and more (less) time elapsed since their

first case in each country.

Figure 9 illustrates the Shepard and stress charts of

the MDS obtained with the index d
t,y
Ci j

. The diagrams

obtained with d
f,X

Ci j
are of the same type and are omit-

ted. The limited scatter of the points around the 45

degree line in the Shepard diagram reveals a good per-

formance of the MDS. The curve elbow in the stress

diagram means that both the 2- and 3-dimensional loci

are a good option. Nonetheless, as expected, the 3-

dimensional locus is better at the expense of a slightly

more involved visualization.

The countries with more than 12,000 cases, C =
{AT, BE, BR, CA, CN, FR, DE, IR, IT, NL, PT, KR,

ES, CH, TR, GB, US}, are now compared by means

of a combination of MDS and Procrustes analysis
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Fig. 7 The 3D MDS locus

of the 79 countries using the

item-to-item dissimilarities

in the time-domain d
t,y
Ci j

during the period τ . The size

of the dots is proportional to

the logarithm of the number

of infections and the color is

proportional to the time

elapsed since the first

reported case in each

country up to T
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Fig. 8 The 3D MDS locus

of the 79 countries using the

item-to-item dissimilarities

in the frequency-domain

d
f,X

Ci j
during the period τ .

The size of the dots is

proportional to the

logarithm of the number of

infections and the color is

proportional to the time

elapsed since the first

reported case in each

country up to T
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Fig. 9 Shepard and stress

diagrams of the MDS locus

obtained with d
t,y
Ci j

: a

Shepard; b stress
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when varying time [40,45–48]. Procrustes is a statisti-

cal method that takes a collection of shapes and trans-

forms them (using translation, rotation, and amplifica-

tion/reduction of size) for maximum superposition. The

comparison is performed for a shorter period of time

τ ′ from t = 40 up to t = T , so that there is significant

non null data for the analysis.

Let yc(t), c = 1, . . . , 16, denote the data time series

representative of the countries in C for periods of time

starting at t = 40 and increasing up to k ≤ T . The

individual 3D MDS maps (one for each value of k)

are generated using the item-to-item dissimilarities d
t,y
Ci j

and d
f,X

Ci j
, and processed with Procrustes. We must note

that we are now using T −39 matrices ∆ of dimension
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Fig. 10 The 3D MDS

global locus generated for

the 16 countries in C with

the item-to-item

dissimilarities d
t,y
Ci j

and the

period τ ′. The squares and

circles represent the

beginning and end of the

time period, respectively
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Fig. 11 The 3D MDS

global locus generated for

the 16 countries in C with

the item-to-item

dissimilarities d
f,X

Ci j
and the

period τ ′. The squares and

circles represent the

beginning and end of the

time period, respectively
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16 × 16. Therefore, the MDS locus produced for each

k is not a magnification of the previous charts. For each

index, the collection of MDS maps yields one global

chart (Figs. 10, 11, respectively) that represents world

recent evolution of the COVID-19. We verify different

behaviors of the time and frequency domains MDS loci

being, apparently, slightly more representative the first.

In Figs. 12 and 13, we redraw the MDS charts of

Figs. 7 and 8 (for the initial period of time τ ) with

a connection between those countries that lie close to

each other in the MDS locus [49]. Therefore, the lines

do not represent clusters, and, instead they indicate that

in the near future the evolution of a given country will

probably be similar (in the sense of the adopted dis-

tances) to the neighboring countries. We observe also

some discontinuities in the lines. Again they do not

represent different clusters. The discontinuities simply

mean that some neighbor is closer than the other and,

therefore, it is likely that its evolution is closer.

5 Is it possible to foresee?

It is written ‘The future belongs to God, and it is

only he who reveals it, under extraordinary circum-

stances’ [50]. To the authors best knowledge, the HC

and MDS techniques are not designed to make pre-

dictions. Indeed, they allow a better interpretation of

the past and present. Nonetheless, we can take advan-

tage of the MDS computational visualization to trace

some similarities between the items represented in the

loci. From Figs. 10 and 11, where time is a parametric

variable, we verify that we do not obtain our intuitive

feeling of time as a smooth and continuous variable

embedded and synchronizing all events. In fact, we see
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Fig. 12 The 3D MDS locus

of the 79 countries using the

item-to-item dissimilarities

in the time-domain d
t,y
Ci j

during the period τ . The

countries close to each other

are connected by lines
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Fig. 13 The 3D MDS locus

of the 79 countries using the

item-to-item dissimilarities

in the frequency-domain

d
f,X

Ci j
during the period τ .

The countries close to each

other are connected by lines
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that the time instant for the beginning and end of the

trajectories vary considerably from country to coun-

try. Therefore, if we adopt a critical view we can inter-

pret that the 1-dimensional time continuum (if exists) is

not adequately represented by the two technique com-

bination (i.e., MDS and Procrustes). However, it was

already noticed in previous studies [51,52], addressing

a distinct phenomenon and applying only MDS, that

datasets under the influence of social and human factors

phenomena exhibit a relativistic behavior and eventu-

ally different velocities. Let us name the ‘relativistic

time’ to make it distinct from the standard notion of

constant speed physical time.

Let us consider the Canberra and Lorentzian dis-

tances [38] to measure the dissimilarity between the

pairs x̄i (t) and x̄ j (t):

d t
C (x̄i , x̄ j ) = d

t,x̄
Ci j

=
N

∑

n=1

|x̄i (n) − x̄ j (n)|
|x̄i (n)| + |x̄ j (n)| , (11)

d t
L(x̄i , x̄ j ) = d

t,x̄
L i j

=
N

∑

n=1

ln
(

1 +
∣

∣x̄i (n) − x̄ j (n)
∣

∣

)

,(12)

where x̄i (t) = [x(1), . . . , x (N )] represents the i th

vector of N consecutive values of x(t) obtained from

non-overlapping time windows. Therefore, the time

series is subdivided into identical periods of time giv-

ing rise to R = ⌊T/N⌋ windows, where ⌊·⌋ denotes

the integer part of the argument. Obviously, the larger

the width of the window the better the filtering, but the

weaker the notion of time ‘instant’. Now, the MDS has

for input a matrix ∆ of dimension R×R and produces a

single locus that compares the set of N -dimensional R

vectors, corresponding to the different time windows.

The MDS with MATLAB command cmdscale was

adopted.
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Fig. 14 The 3D MDS loci

of China using the

item-to-item dissimilarities

using d
t,x̄
Ci j

and d
t,x̄
L i j

for

non-overlapping vectors of

N = 3 consecutive values

during the period τ . The

point labels correspond to

the first day of each time

window
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Fig. 15 Time series

approximations x36(t)M j
,

j = 1, . . . , 4, and

estimations based on the

number of cases in Italy.

Real data are collected in

the period τ and the

estimation covers the period

τ ′′
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Figure 14 illustrates the concept of relativistic time

for the data set of China for N = 3 consecutive val-

ues and non-overlapping time windows during the time

period τ . The point labels i = 1, . . . , R correspond

to the first day of each time window. The accelera-

tion/deceleration in the relativistic time is captured by

the distance between consecutive points.

We verify again the emergence of areas involving a

large variability, coincident with large transients, and

zones with a smoother evolution, corresponding to a

continuous dynamics. In both cases we observe clearly

four phases: (i) an initial transient, (ii) a fast progress

up to a peak, (iii) a return back (but not exactly to the

initial state), and (iv) the emergence of a new, unclear,

second wave. As usual with the MDS technique the dis-

tinct measures highlight different aspects but the overall

conclusions are similar.

For estimating future outcomes we now propose a

technique embedding the trendline and the MDS data-

driven techniques for estimating the evolution. In what

follows we adopt the case of Italy (i = 36) as our test

bench and we shall tackle the values of the number

of daily infections xi (t). The main idea is to fit a set

of trendlines to the available data and, based on them,

to extrapolate the future behavior. In a second phase

we adopt MDS to compare the real-world data and the

estimations provided by the trendlines.

We consider four models, namely the ‘Hoerl’,

‘Reciprocal quadratic’, ‘Gaussian’ and ‘Vapor’ given

by:

M1 : x̂i (t) = abt tc, (13a)

M2 : x̂i (t) = t

a + bt + ct2
, (13b)

M3 : x̂i (t) = a exp

(

− (t − b)2

2c2

)

, (13c)

M4 : x̂i (t) = exp

(

a + b

t

)

· tc, (13d)

respectively, where a, b, c ∈ R are parameters and

t ∈ τ . We emphasize again that these models have

no specific meaning and are just some functions that fit

adequately the available data.

In fact, the proposed heuristic models follows the

common sense that number of infections will dimin-

ish in the future. However, these trendlines are just

for estimating the near future and we shall consider

M1 and M3 as representing a ‘optimistic’ scenarios,

while M2 and M4 stand for ‘pessimistic’ future out-

comes. Moreover, models M1, M2 and M4 have an

asymmetric evolution about the peak, while M3 con-
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Fig. 16 Stress versus

number of dimensions d of

the MDS loci for Italy using

the distances d
t,x̄
Ci j

and d
t,x̄
L i j

for non-overlapping vectors

of N = 3 consecutive days.

The data collects values for

the period τ . The models

M j , j = 1, . . . , 4, address

an extended period τ ′′ = 80

days
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Fig. 17 The 3D MDS loci

of Italy using the distance

d
t,x̄
Ci j

for non-overlapping

vectors of N = 3

consecutive days. The data

collect values for the period

τ . The models M j ,

j = 2, 3, address an

extended period τ ′′ = 80

days. The labels correspond

to the first day of each time

window
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Fig. 18 The 3D MDS loci

of Italy using the distance

d
t,x̄
L i j

for non-overlapping

vectors of N = 3

consecutive days. The data

collects values for the

period τ . The models M j ,

j = 1, 3, address an

extended period τ ′′ = 80

days. The labels correspond

to the first day of each time

window
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siders a symmetric behavior. For the data collected on

April 12, we obtain the set of parameters {a, b, c}M1
=

{1.78 × 10−4, 0.82, 6.75}, {a, b, c}M2
= {3.10 ×

10−2,−1.63 × 10−3, 2.63 × 10−5}, {a, b, c}M3
=

{5.63×103, 3.64×101, 1.23×101} and {a, b, c}M4
=

{3.48 × 101,−1.95 × 102,−5.80}.
Figure 15 represents the curve fitting for the period

τ and an estimation up to an extended period of time

τ ′′ = 80 days.

For assessing the quality of the estimations we com-

pare the real data and the results provided by M j ,

j = 1, . . . , 4, for Italy using the Canberra and the

Lorentzian distances defined previously in (11)–(12).

As before, the heuristic models cover an extended

period of τ ′′ = 80 days for providing an estimation

of the near future. We adopt the stress S for assess-

ing the conformity between the data and the trend-

lines including their estimation. The MATLAB com-

mand cmdscale and stress criterion Sammon were

adopted.

Figure 16 depicts the stress yielded by the MDS loci

generated by the Canberra and the Lorentzian and the

models M j , j = 1, . . . , 4 for the case of Italy.

We verify that for d = 3 the models M2 and M3

are superior when considering the Canberra distance.

However, the models M1 and M3 are superior in the

perspective of the Lorenzian distance.

Figures 17 and 18 show the resulting MDS loci for

the Canberra and the Lorenzian distances for the two

best models in each case.

The Lorentzian distance is more sensitive and gives

more space to the artifact represented by the value

x36(t = 23) = 90 (the neighbor values are x36(t =
22) = 2547 and x36(t = 24) = 6230), but, on the

other hand, shows more clearly the recent final phase.

The Gaussian model, M3 seems a good compromise

between the two distances and produces a trajectory

consistent with the data series without exhibiting accel-

eration/deceleration time periods distinct from those

available at the time of writing the paper. Nonetheless,

the authors highlight that the COVID-19 evolution has

an underlying plethora of phenomena going from cul-

tural and economical up to political and geographical

issues. As someone said, ‘Prediction is very difficult,

especially if it’s about the future’ [53].

6 Conclusions

This paper investigated an example of an extreme

event, namely the dynamics of the COVID-19 spread-

ing. Two approaches were considered for the period

from December 31, 2019 up to April 12, 2020. In

a first phase, heuristic models were used to fit the

time series of the number of infections verified in a

set of 79 countries. In a second phase, two metrics

were used for comparing the countries data both in the

time and frequency domains, and the HC and MDS

techniques were adopted for clustering and visualiza-

tion. The time evolution was also considered for a

group of countries exhibiting a more dramatic spread

of the COVID-19. The combination of Procrustes

and MDS showed that besides the number of infec-

tions, the dynamic characteristics play an important

role that is not evident in standard representations.

In fact, the computational and mathematical model-

ing lead to the emergence of patterns both highlight-

ing the main clusters and the similarities or dissimi-

larities between them. Given the potential of the tech-

niques discussed here we can think of their applica-

tion in several research directions such as the sub-

division of data sets according with distinct criteria

such as the age, or the geographical origin of the

patients. Additionally, analysis considering a large set

of influential factors besides merely the casualties can

be tried, such as infected people staying in general or

in intensive care in hospital, or recovered based on

some type of treatment. Therefore, if sufficient and

assertive information is collected, then research can

follow the aforementioned computational methods to

unravel space and time nonlinear dynamics embedded

the data.
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