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Context: Primary adrenal insufficiency (PAI) is a life-threatening condition that is often due to

monogenic causes in children. Although congenital adrenal hyperplasia occurs commonly, several

other important molecular causes have been reported, often with overlapping clinical and bio-

chemical features. The relative prevalence of these conditions is not known, but making a specific

diagnosis can have important implications for management.

Objective: The objective of the study was to investigate the clinical and molecular genetic char-

acteristics of a nationwide cohort of children with PAI of unknown etiology.

Design: A structured questionnaire was used to evaluate clinical, biochemical, and imaging data.

Genetic analysis was performed using Haloplex capture and next-generation sequencing. Patients

with congenital adrenal hyperplasia, adrenoleukodystrophy, autoimmune adrenal insufficiency,

or obvious syndromic PAI were excluded.

Setting: The study was conducted in 19 tertiary pediatric endocrinology clinics.

Patients: Ninety-five children (48 females, aged 0–18 y, eight familial) with PAI of unknown eti-

ology participated in the study.

Results: A genetic diagnosis was obtained in 77 patients (81%). The range of etiologies was as

follows: MC2R (n � 25), NR0B1 (n � 12), STAR (n � 11), CYP11A1 (n � 9), MRAP (n � 9), NNT (n �

7), ABCD1 (n � 2), NR5A1 (n � 1), and AAAS (n � 1). Recurrent mutations occurred in several genes,

such as c.560delT in MC2R, p.R451W in CYP11A1, and c.IVS3ds�1delG in MRAP. Several important

clinical and molecular insights emerged.

Conclusion: This is the largest nationwide study of the molecular genetics of childhood PAI un-

dertaken. Achieving a molecular diagnosis in more than 80% of children has important transla-

tional impact for counseling families, presymptomatic diagnosis, personalized treatment (eg, min-

eralocorticoid replacement), predicting comorbidities (eg, neurological, puberty/fertility), and

targeting clinical genetic testing in the future. (J Clin Endocrinol Metab 101: 284–292, 2016)
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Primary adrenal insufficiency (PAI) is a potentially life-

threatening condition that requires accurate diagno-

sis and urgent treatment with glucocorticoid and often

mineralocorticoid replacement. Because the symptoms

and signs of adrenal insufficiency are often nonspecific,

the diagnosis may be easily overlooked (1).

In contrast to the predominance in autoimmune etiol-

ogies in adults, most causes of PAI in childhood have an

inherited, monogenic origin (1–3). Genetic causes of pe-

diatric PAI can be classified into four major groups

according to the underlying pathogenesis; 1) impaired ste-

roidogenesis, 2) adrenal hypoplasia, 3) familial glucocor-

ticoid deficiency (FGD) and FGD-like disorders, and 4)

adrenal destruction.

Congenital adrenal hyperplasia (CYP21A2, CYP11B1,

HSD3B2, CYP17A1, POR deficiencies) constitutes the

largest subgroup of impaired steroidogenesis and is the

most common cause of PAI in children (1, 2, 4). In con-

trast, there are other individually rare causes of PAI.

Several genetic causes of adrenal hypoplasia (NR0B1/dos-

age-sensitive sex reversal, adrenal hypoplasia congenita

critical region, on the X chromosome, gene 1 [DAX-1],

NR5A1/SF-1, CDKN1C gene defects), congenital lipoid

adrenal hyperplasia (CYP11A1, STAR gene defects), fa-

milial glucocorticoid deficiency (FGD) and FGD-like con-

ditions (MC2R [FGD1], MRAP [FGD2], STAR, MCM4,

NNT, TXNRD2 gene defects) and adrenal destruction

(AIRE, ABCD1, PEX1, LIPA gene defects) are now well

established (5–16). However, it is also emerging that there

is considerable overlap in the clinical and biochemical pre-

sentation of these conditions. For example, FGD/FGD-

like conditions (MC2R, MRAP, NNT gene defects) can

present with salt loss suggestive of adrenal hypoplasia, and

alterations in STAR and CYP11A1 resulting in partial loss

of protein function may have a predominant FGD-like

phenotype (17–20).

Establishing a specific genetic diagnosis of PAI is ex-

tremely valuable for identifying presymptomatic children

who could benefit from treatment before the onset of po-

tentially life-threatening symptoms and for counseling

family members appropriately about the risk of passing

the condition on to their children (1, 3, 20, 21). Knowing

the genetic etiology can also help to modify treatments,

such as the need for long-term mineralocorticoid replace-

ment, and can predict potential comorbidities, such as im-

paired puberty or fertility and neurological dysfunction.

Next-generation sequencing (NGS) approaches are

revolutionizing our ability to sequence large numbers of

genes quickly and cost effectively. In this study, a custom

panel-based NGS approach has been used to sequence all

known PAI-associated genes in a national cohort of 95

children with PAI of unknown etiology.

Patients and Methods

Patients
A pediatric cohort study was performed with PAI patients

recruited from 19 pediatric endocrinology clinics in Turkey. In-
clusion criteria of a PAI phenotype was defined as the presence
of signs and symptoms of adrenal insufficiency together with
high plasma ACTH and low serum cortisol and intermediary
glucocorticoid metabolites at initial presentation. Exclusion cri-
teria were as follows: 1) congenital adrenal hyperplasia (21�-
hydroxylase, 11�-hydroxylase, 3�-hydroxysteroid dehydroge-
nase 2, 17�-hydroxylase, or cytochrome P450 reductase
deficiencies) diagnosed by a distinctive serum steroid hormone
profiles; 2) X-linked adrenoleukodystrophy in boys with neuro-
logical findings and elevated very long-chain fatty acids, or a
family history of affected males with adrenoleukodystrophy; 3)
clinical and biochemical evidence of autoimmune adrenal fail-
ure; and 4) known syndromic causes of PAI (specifically, classic
Triple A syndrome or Xp deletion syndrome involving NR0B1/
DAX-1 with Duchenne muscular dystrophy) (Figure 1).

All patients were assessed by a pediatric endocrinologist. A
structured questionnaire was used to systematically evaluate all
clinical, biochemical, and imaging data related to the diagnosis
and treatment of PAI and all other relevant medical and family
history. Studies were performed with the approval of the Ethics
Committee of the Marmara University Faculty of Medicine
(Istanbul, Turkey; B.30.2.MAR.0.01.02/AEK/108). Patients
and/or parents provided written informed consent, and all stud-
ies were conducted in accordance with the principles of the Dec-
laration of Helsinki.

A total of 95 PAI patients (48 females and 47 males) from 85
families and their unaffected siblings and parents were included
(Figure 1). The most common presenting features were hyper-
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pigmentation (94%), salt-wasting crisis/electrolyte imbalance
(51%), hypoglycemia with/without convulsions (47%), vomit-
ing/abdominal pain (26%), prolonged jaundice (24%), fatigue
(18%), neonatal respiratory distress (17%), frequent infections
(11%), and failure to thrive or weight loss (7%). Seven patients
had 46,XY disorders of sex development (DSD). Detailed clinical
findings are provided in Supplemental Table 1.

Parents of patients were consanguineous in 63 (74%) fami-
lies, whereas 22 families did not report consanguinity. A total of
51 patients were on hydrocortisone treatment alone, whereas 44
were also commenced on mineralocorticoid replacement due to
salt wasting, high plasma renin activity, or low aldosterone.
Eight families had multiple affected siblings (six pairs, two trios,
n � 18).

Molecular analyses

DNA samples
Genomic DNA was extracted from whole blood of patients,

parents, and available unaffected siblings using a QIAamp DNA
blood maxikit (QIAGEN Inc).

Design of targeted gene panel
A custom HaloPlex DNA target enrichment panel (Agilent

Technologies Inc) was designed (SureDesign) to capture 160
known and candidate genes involved in adrenal development
and function. All coding exons and 100 base pairs of intronic
flanking sequence were included. The panel covered known

genes potentially causing PAI, congenital adrenal hyperplasia-

related genes, potential syndrome-related genes and candidate

genes based on data from biochemical/biological pathways,

mouse models of adrenal dysfunction, and gene expression (Sup-

plemental Methods).

Sequence capture and NGS

Sequence capture was performed according to the HaloPlex

Target Enrichment Protocol version D.5 (Agilent Technologies

Inc) for Illumina sequencing (Supplemental Methods). Patient

genomic DNA aliquots (225 ng) were processed in batches of 24

samples at a time with an enrichment control DNA sample as a

positive control. Sequencing was performed on a MiSeq next-

generation sequencer (Illumina Inc).

Variant analysis

Sequence alignment and variant calling were performed using

SureCall (version 2.0) software (Agilent Technologies Inc). All

potential disease causing variants were confirmed by PCR and

Sanger sequencing. Variants in known disease genes were con-

sidered highly likely to be pathogenic if they segregated with the

phenotype with an appropriate inheritance pattern within fam-

ilies, were determined damaging or likely damaging by several

bioinformatic prediction models (Ensembl Variant Effector Pre-

dictor; SIFT; PolyPhen2; and Mutation Taster) and if they had

been reported previously. In addition, novel missense changes

were absent in at least 200 Turkish control samples and had a

Figure 1. Overview of the study design, recruitment, and outcome of genetic analysis. ALD, adrenoleukodystrophy.
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minor allele frequency less than 1:100 000 in the Exome Aggre-
gation Consortium (ExAC) browser (ExAC; Cambridge, MA,
http://exac.broadinstitute.org; accessed July 2015).

More detailed description of methods, workflows, coverage,
and quality control are provided in Supplemental Methods.

Results

A molecular genetic diagnosis was obtained in 81% chil-

dren with PAI (77 of 95) using this targeted NGS ap-

proach. A total of 43 different deleterious nonsynony-

Table 1. Sequence Variations Detected in Our Cohort of 95 Children With Primary Adrenal Insufficiency

Gene
(Chromosome)

Familial,
n

Sporadic,
n

Total,
n Variants n Consanguinity

Mineralocorticoid
Treatment

MC2R (18p11.21) 4 21 25 22/25 (88%) 2/25 (8%)
p.D103N 1
p.G116V 2
p.R137W 1
p.V142L 1
p.T143S 1
p.L225R 1
p.G226R 1
p.A233P 2
p.C251W 2
c.560delT (p.V187Afs*29) 10
Deletion 3

NR0B1 (Xp21.2)a 6b 6 12 3/12 (25%) 12/12 (100%)
p.W235* 3
p.W236* 1
p.E256* 3
p.W291C 1
p.L299R 1
p.Y378* 1
p.C396* 1
p.V269del 1

STAR (8p11.23) 2 9 11 8/11 (72%) 11/11 (100%)
p.S13P 3
p.W96C 2
p.L157P 1
p.E169K 1
p.R182H 1
p.W250*/p.I166M 1
p.S12Afs*9 1
p.K159del 1

CYP11A1 (15q24.1) 2 7 9 8/9 (89%) 6/9 (67%)
p.R451W 9

MRAP (21q22.11) 2 7 9 5/9 (56%) 2/9 (22%)
p.L53P 1
c.IVS3ds � 1insT 1
c.IVS3ds � 1delG 5
p.K30del 2

NNT (5p12) 2 5 7 7/7 (100%) 2/7 (29%)
p.D178G 1
p.H370R 1
c.1769dupA (p.D590Efs*29) 1
c.2396delC (p.P799Qfs*22) 1
c.127_128delTG (p.W43Vfs*2) 2
Deletion (exon 2–3) 1

ABCD1 (Xq28)a 0 2 2 0/2 1/2
p.G512S 1
p.Y547C 1

NR5A1 (9q33.1) 0 1 1 0/1 1/1
p.R92Q 1

AAAS (12q13.13) 0 1 1 1/1 0/1
p.R445* 1

Total 18 59 77 54/77 (70%) 37/77 (48%)

Novel variants are marked in bold. All mutations are homozygous except for hemizygous mutations in X-linked genes and p.W250*/p.I166M in

STAR which was compound heterozygous.
a Hemizygous mutations in X-linked genes.
b Familial cases included sibling pairs except for NR0B1 in which two sibling trios were identified. Nucleotide position of variants is shown in

Supplemental Table 1.
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mous variations were detected in nine different genes

(Table 1). These changes were all confirmed by Sanger

sequencing and included missense mutations (n � 24),

nonsense mutations (n � 7), frameshift mutations (n � 5),

in-frame single codon deletions (n � 3), splice site disrup-

tions (n � 2), and whole gene/exon deletions (n � 2). Of

these variations, 22 (51%) had not been reported previ-

ously but were considered to be causative because they

segregated with the phenotype in the family, they were

classed as damaging or probably damaging by several

bioinformatic predictions, and they were not found in the

control samples or databases (Supplemental Table 2). The

remaining 21 mutations have been reported (Supplemen-

tal Table 1). A molecular diagnosis was reached in all eight

families with multiple affected siblings, including novel

changes in five families (Table 1).

The range of genetic etiologies found in this cohort were

as follows: MC2R (n � 25), NR0B1 (n � 12), STAR (n �

11), CYP11A1 (n � 9), MRAP (n � 9), NNT (n � 7),

ABCD1 (n � 2), NR5A1 (n � 1), and AAAS (n � 1)

(Figure 2). Most patients were homozygous for recessive

changes (62 of 77, 80%), one patient carried compound

heterozygous changes (1 of 77, 1.3%), and 14 patients had

hemizygous mutations in X-linked genes (NR0B1,

ABCD1) (14 of 77, 18%). As expected, consanguinity

rates were much higher in families of patients harboring

mutations in recessive genes (51 of 63, 81%) compared

with X-linked genes (3 of 14, 21%; P � .0001) (Table 1).

Recurrent mutations were detected in several genes, such

as c.560delT in MC2R (10 patients from nine unrelated

families), p.R451W in CYP11A1 (nine patients from eight

unrelated families), c.IVS3ds�1delG in MRAP (five pa-

tients from five unrelated families), and p.S13P in STAR

(three patients from two unrelated families). Geographical

hot spots were found for the p.R451W CYP11A1 muta-

tion in eastern Turkey and for the c.IVS3ds�1delG MRAP

mutation in the west (Figure 3, A and B).

Although there was considerable overlap in the clinical

and biochemical features of children within this cohort

(Supplemental Table 1), several notable findings have

emerged. For example, most patients with MC2R, MRAP,

and STAR mutations presented in the first weeks or

months of life, whereas children with the p.R451W mu-

tation in CYP11A1 presented in early childhood (1–6 y)

(Figure 4). Children with nicotinamide nucleotide trans-

hydrogenase (NNT) changes presented at different ages in

the first 2 years, whereas boys with NR0B1 (DAX-1) mu-

tations had a bimodal pattern, presenting either in the first

month of life or else after 18 months.

Most children had extremely high ACTH levels at di-

agnosis and almost all children, even babies, were clini-

cally hyperpigmented. Hypoglycemia was a frequent find-

ing, and hypoglycemic convulsions at presentation were

more common in children with MC2R (22 of 25, 88%)

and MRAP (five of nine, 56%) mutations than in children

with an alternative diagnosis (5 of 43, 12%) (P � .0001).

Salt-wasting states requiring mineralocorticoid replace-

ment occurred in all children with NR0B1 (DAX-1) and

STAR mutations and in most children with the CYP11A1

p.R451W change (six of nine, 66%) (Table 1). Fewer chil-

dren with NNT (two of seven, 28%), MRAP (two of nine,

22%), and MC2R (2 of 25, 8%) mutations required min-

eralocorticoid replacement, although four additional

children with MC2R defects had transient hyponatremia

(sodium 117–133 mmol/L) that resolved without fludro-

cortisone treatment (Supplemental Table 1). Adrenal im-

aging was generally uninformative, showing normal sized

or hypoplastic glands for most of these diagnoses, includ-

ing many children with STAR mutations (congenital li-

poid adrenal hyperplasia) in which enlarged adrenals are

reported (22).

Additional clinical features were seen in many children

in this cohort, such as altered growth, neuromotor delay,

learning difficulties, and cardiac defects (Supplemental

Table 1). Abnormalities in thyroid function such as sub-

clinical hypothyroidism were common (n � 20, 26%),

whereas thyroglossal cysts (n � 2), primary hypothyroid-

ism (n � 2), and transient hypothyroidism (n � 1) were

also found. DSD occurred in all six 46,XY infants with

STAR mutations. Five of these children were phenotypic

females who presented with a salt-losing crisis, and in two

cases a karyotype was not available prior to this genetic

analysis. The one boy with severe hypospadias due to

STAR deficiency developed hypergonadotropic hypogo-

nadism in puberty and needed T replacement. One of the

four boys with the p.R451W mutation in CYP11A1 had a

small penis and cryptorchidism. One boy with a NR0B1

mutationandX-linkedadrenalhypoplasia congenita (AHC)

had macrophallia and another one had cryptorchidism. Co-

incidental hypospadias and unilateral cryptorchidism was

found in one boy with disruption of MC2R.

Figure 2. Pie chart showing the percentage of mutations in each

gene in this cohort of children with PAI.
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Stature was variable in the 25 children with MC2R

mutations with seven children (28%) having tall stature

(�2 SD score or two percentile lines above parental target

height), four having short stature (��2 SD score) and the

rest being within the normal range. There was no history

of preterm birth associated with CYP11A1 mutations, but

there were reports of multiple stillbirths in three families

in which a child had severe disruption of MC2R (deletion

or c.560delT frameshift). Despite the range of neurolog-

ical and other features seen, the two boys with mutations

in ABCD1 (causing X-linked adrenoleukodystrophy) and

one boy with disruption of AAAS (causing Triple A syn-

drome) appeared to have adrenal only phenotypes and

would not have been diagnosed without genetic testing.

Discussion

The past 20 years has seen significant progress in our under-

standing of the genetic causes of childhood PAI. However, it

is unclear how much these genes con-

tribute to pediatric adrenal disease in

theclinicalsettingasmostreportshave

focused on specific categories of adre-

nal disease such as FGD or adrenal hy-

poplasia (6, 9).

In this study, an unbiased nation-

wide cohort of almost 100 children

with PAI was recruited from 19 pedi-

atric endocrinology centers across

Turkey, and a molecular diagnosis

was reached in more than 80% of the

children. This represents the largest

clinical cohort of children with this

rare condition assembled. Because

children could die from convulsions,

respiratory distress, or salt-losing cri-

ses before reaching the hospital or get

misdiagnosed with sepsis, the condi-

tion may be underdiagnosed. In fact, a

history of unexplained death in in-

fancy or childhood in the extended

family was common in many of those

questioned.

Targeted panel-based capture and

high-throughput sequencing proved

very effective in reaching a molecular

diagnosis in a relatively quick and

comprehensive manner. A total of 43

known and novel mutations in nine

genes were discovered in 77 patients,

with 73 of 77 mutations (95%) oc-

curring in six genes (MC2R, NR0B1,

STAR, CYP11A1, MRAP, and NNT). Several recurrent

mutations were discovered, which likely represent

founder effects. Some of these are localized to certain geo-

graphical areas (eg, p.R451W in CYP11A1 in eastern Tur-

key, c.IVS3ds�1delG in MRAP inwesternTurkey),which

could lead to focused cost-effective clinical genetic testing

for patients and families at risk of adrenal insufficiency in

these regions (Figure 3A). Other recurrent changes, such

as the c.560delT in MC2R showed more diverse geograph-

ical distribution across the country, possibly reflecting mi-

gration toward the west (Figure 3B). Indeed, this MC2R

mutation has been reported previously in the father of two

siblings with FGD1 who originated from northern Iran,

close to the Turkish border (17). Sanger sequencing for

just the three changes in MC2R, CYP11A1, and MRAP

would have diagnosed 22 of 85 different families recruited

in this nationwide cohort (26%), which could represent a

cost-effective approach to first-line clinical genetic anal-

ysis. Of note, no mutations were found in MCM4 or

Figure 3. Geographical distribution of recurrent mutations identified in this study. A, The MRAP

c.IVS3ds�1delG mutation was identified mainly in patients from west Turkey, whereas the

CYP11A1 p.R451W mutation was found in patients who originated from east Turkey. The first

report of the CYP11A1 p.R451W mutation was in a family from Germany who were originally

from Elazig (shown in light pink) (20). B, The MC2R c.560delT mutation showed a wider

distribution most likely reflecting migration from the east to west of Turkey and has been

described previously in a family from northern Iran (17).
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TXNRD2, which to date have been described only in Irish

Traveler and Kashmiri families, respectively (12, 14, 23)

In addition to defining the population genetics of PAI,

this study has provided some useful clinical and novel mo-

lecular insight into several of these specific conditions.

Mutations in MC2R (encoding the ACTH receptor) are

well established as the cause of FGD1, and approximately

40 different missense changes have been reported (9).

Children typically present with hypoglycemia or hyper-

pigmentation in early infancy or in childhood, but com-

plete lossof functionmutationsare rare (17,24).Although

diverse missense mutations were common in our cohort,

severely disruptive changes in MC2R were found in more

than half of the children (13 of 25), all of whom presented

in the first 6monthsof lifewithhypoglycemic convulsions,

respiratory distress, or both. In addition to the c.560delT

mutation discussed above, the first complete deletions of

the MC2R locus were found in three patients. Although

ACTH plays a facilitative role in supporting mineralocor-

ticoid release, children with FGD1 do not typically have

salt loss. However, transient hyponatremia has been re-

ported in several children with severe disruption of the

receptor, sometimes leading to a misdiagnosis of adrenal

hypoplasia (17, 25). Similar observations were seen in this

cohort, with 5 of 25 children having evidence of hypona-

tremia (sodium 117–133 mmol/L) but only two of them

receiving long-term fludrocortisone replacement. On the

basis of the genetic diagnosis, it is likely the need for this

treatment can be reviewed. The significance of recurrent

stillbirths in three families with severe loss of MC2R func-

tion is unclear. Although tall stature at diagnosis has been

suggested for MC2R mutations, any effects on growth are

difficult to interpret because most of our cohort were di-

agnosed and treated in infancy (26).

Hemizygous mutations in NR0B1 (encoding the nu-

clear receptor DAX-1) were found in 12 boys, including in

two families in which three sons were affected. Mutations

in NR0B1 cause X-linked AHC and more than 100 dif-

ferent mutations are reported (5). Most are frameshift or

nonsense mutations that disrupt protein function, with a

clustering of missense changes in three regions of the li-

gand-like binding domain (27). The three missense

changes identified here (p.V269del, p.W291C, p.L299R)

are located in a loop region of helix 3 to helix 5 that in-

teracts with NR5A nuclear receptors (such as steroido-

genic factor-1) (28). The novel p.L299 lies adjacent to the

frequently mutated p.A300 residue, whereas codons

p.V269 and p.W291 have been mutated previously in non-

Turkish pedigree (5). All DAX-1-deficient boys presented

with salt loss and showed a bimodal distribution pattern

of age at presentation as reported previously (Figure 4)

(29). Although currently preadolescent, they are likely to

develop hypogonadotropic hypogonadism and infertility

as part of their condition, so establishing the diagnosis in

childhood will help plan endocrine management of pu-

berty, counseling, and potential assisted reproduction

(30). Macrophallia in infancy, found in one boy, is emerg-

ing as a rare feature of X-linked AHC (31).

True CYP11A1 deficiency (encoding P450 side chain

cleavage [P450scc]) is a relatively recently established

endocrine condition because it was thought that disrup-

tion of this enzyme, which facilitates the first three steps in

conversion of cholesterol to pregnenolone, would be in-

compatible with fetal survival in humans (4). However,

several children with this condition are now reported (32,

33). Severe loss of CYP11A1/P450scc function is usually

associated with severe salt-losing adrenal failure in the

neonatal period and a female phenotype in 46,XY children

(46,XY DSD). Milder changes can present later with ad-

renal insufficiency and a history of hypospadias in boys

(34, 35). The p.R451W variant found in all our patients

was described recently in two brothers of Turkish origin

residing in Germany who had normal genitalia and child-

hood-onset PAI (20). Their family originated from the

Elazig region of Eastern Anatolia, a province bordering

two regions where our patients lived (Figure 3A). The

p.R451W mutation disrupts hydrogen bonds with resi-

dues F428 and Y449 in the K-L loop of the enzyme, caus-

ing partial loss of function consistent with the late pre-

sentation and normal genitalia in three of the four boys

(20). Nevertheless, all children will need careful follow-up

through puberty and into adult life to monitor sex hor-

mone production and fertility. These findings confirm that

mild loss of CYP11A1/P450scc function can present with

isolated adrenal insufficiency and normal male genitalia,

similar to mild loss of function of STAR (18–20).

Figure 4. Age at presentation of the patients with PAI.
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Defects in STAR (encoding steroidogenic acute regu-

latory protein) disrupt the transport of cholesterol into

mitochondria and classically lead to congenital lipoid ad-

renal hyperplasia (4, 22). A range of mutations were

found, including recurrent p.S13P changes in three pa-

tients including two siblings. This is by far the most ami-

noterminal STAR mutation reported to date and affects

the mitochondrial leader that is involved in targeting and

localizing STAR to the outer mitochondrial membrane

(36). Classic congenital lipoid adrenal hyperplasia is as-

sociated with severe salt-losing adrenal failure and 46,XY

DSD due to a block in both adrenal and testicular steroid-

ogenesis. The two-hit hypothesis suggests that after an

initial reduction in steroid production and increased

ACTH drive, accumulation of intracellular lipid has a sec-

ondary toxic effect on cells (22). Interestingly, nine of the

children presented between 3 weeks and 3 months of age,

consistent with the two-hit hypothesis, whereas only two

presented in the first week (22). Two girls were found to

have 46,XY DSD only after genetic analysis revealed

STAR deficiency, highlighting the importance of obtain-

ing a karyotype in phenotypic girls with salt-losing adrenal

failure. As with CYP11A1/P450scc deficiency, these chil-

dren all need endocrine follow-up for life to monitor pu-

berty and ovarian function in 46,XX girls and for puberty

induction and sex steroid replacement in 46,XY DSD. In-

deed, the one patient with hypospadias raised male is now

showing evidence of hypergonadotropic hypogonadism in

adolescence.

Mutations in MRAP (encoding melanocortin 2 recep-

tor-associated protein) and NNT (encoding nicotinamide

nucleotide transhydrogenase) cause adrenal insufficiency

without other features and can only be diagnosed by ge-

netic analysis, as shown here. MRAP is essential for traf-

ficking the ACTH receptor (melanocortin 2 receptor) to

the cell membrane, and mutations causing FGD2 were

first described in 2005 (9, 10, 24). The intron 3 splice site

is especially vulnerable, often resulting in early-onset ad-

renal insufficiency. Patients with novel aminoterminal

point mutations (p.K30del, p.L53P) presented unusually

late (3.5–13 y) (Figure 4), consistent with reports of chil-

dren with p.V26A and p.Y59D changes (37).

NNT mutations affect cellular oxidation and were

first decribed in 2012; approximately 20 children have

been reported to date (9, 13, 38). The six novel changes

found here include familial homozygous deletions of

exons 2–3 and homozygous missense mutations in the

mitochondrial matrix region (p.D178G, p.H370R).

These findings confirm the importance of NNT for ad-

renal function in an independent cohort. Unlike in other

studies, compound heterozygous mutations were not

found (13).

Heterozygous mutations in NR5A1 (encoding the nu-

clear receptor steroidogenic factor-1) usually cause 46,XY

DSD or primary ovarian insufficiency (5). Adrenal insuf-

ficiency is extremely rare and has been reported only once,

in a 46,XX girl (39). The homozygous p.R92Q mutation

found here in a 46,XX girl with early-onset PAI is fasci-

nating because the same homozygous change was reported

in a 46,XY phenotypic female with adrenal failure from

central Turkey in 2002 (40). This finding reinforces the

importance of the A-box motif of steroidogenic factor 1 in

monomeric binding to DNA and provides conclusive ev-

idence that severe disruption of steroidogenic factor 1 can

cause adrenal insufficiency in humans.

Finally, mutations identified in AAAS (typically caus-

ing Triple A syndrome: achalasia, alacrima, Addison dis-

ease) and ABCD1 (typically causing X-linked adrenoleu-

kodystrophy) in three children without other features

shows how genetic screening can identify adrenal-only

phenotypes in young people who may be at risk of devel-

oping other symptoms in later life (11, 15).

This nationwide cohort study of high-throughput ge-

netic screening of children with rare causes of PAI has

provided many novel and supportive clinical and molec-

ular insights and has significant impact on the manage-

ment of these patients and their families. New genetic tech-

nologies are a powerful tool in defining population

genetics of rare conditions and will allow more focused

clinical genetic screening programs to be established.
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