

Abstract—This research aims at proposing a method to

induce a classification model of minority data cases that are

always predominant by a much larger majority cases. Our

proposed method applies feature selection technique to choose

25% of attributes that show highly correlation between

classes. Then use over-sampling technique on minority cases

before making a classification. We have found from the

experimental results that data of rare cases, which is normally

disappeared, can be detected through our proposed method.

In this research, we use R language for implementing our

proposed method and other four discovery techniques.

Index Terms—Data Mining, Rare Class, Imbalanced Data,

Data Classification, R Language.

I. INTRODUCTION

resent computer technology has progressed at a very

rapid speed and it has tremendous effect to the storage

of electronic data. With enormously increasing data,

conventional method to analyze data is inappropriate. Data

mining is thus an essential technology and has been proven

useful for automatic analysis of large data [5], [7]. Data

mining is the discovery of interesting patterns from large

data. Discovered patterns can be in various forms such as a

tree model for classification, a set of rules for association,

or a group of representative centroids for data clustering. In

this paper, we focus on the discovery of a tree model. This

model can be used to predict events in the future.

 Decision tree induction is normally a powerful technique

to discover a tree model for future event prediction. But for

a highly imbalanced data in which the number of data

instances in one class is extremely smaller than the number

of instances in other classes. Dataset of a smaller group is

called a rare class [2], [6] or a minority class. A dataset

with high imbalance between majority and minority classes

can cause much trouble to the tree induction algorithm.

During the tree building process data instances from a

minority class are normally pruned and disappear from the

final tree model. This makes the tree model predict the

majority class correctly, but minority class tends to be

Manuscript received December 5, 2012; revised January 10, 2013. This

work was supported in part by grant from Suranaree University of Technology

through the funding of Data Engineering Research Unit.

K. Chomboon is a master student with the School of Computer

Engineering, Suranaree University of Technology, Nakhon Ratchasima

30000, Thailand (e-mail: chomboon.k@gmail.com).

K. Kerdprasop is an associate professor with the School of Computer

Engineering, Suranaree University of Technology, Nakhon Ratchasima

30000, Thailand.

N. Kerdprasop is an associate professor with the School of Computer

Engineering, Suranaree University of Technology, Nakhon Ratchasima

30000, Thailand.

incorrectly predicted. This is a challenging problem known

as a rare class mining.

 In this research, we comparatively study five data

preparation techniques to help decision tree induction

algorithm creating a model that can predict rare class data.

The various data preparation techniques include clustering,

over-sampling, correlation analysis, outlier detection, and a

mixture of correlation and outlier analyses. The

experimentation has been performed on the RStudio

environment and the program is implemented with the R

language. Source code of our implementation is available in

the Appendix.

II. RARE CLASS CLASSIFICATION

Rare class classification is the data mining task aiming at

building a model that can correctly classify both the

majority and minority classes. Classifying minority or rare

class is difficult because size of the rare class is too small.

Many researchers have tried to solve this problem.

Alhammady and Ramanohanarao [1] proposed an

algorithm called EPDT (Emerging Pattern Decision Tree)

to train a decision tree that can classify rare class.

He and Ghodsi [3] proposed a classification algorithm

based on the SVM (Support Vector Machine) for

classifying rare objects. Wu et al. [8] proposed a technique

called COG (Classification using lOcal clusterinG) that also

based on the SVM classifier. McCarthy et al. [4] proposed

the algorithm called Cost-Sensitive and compared the

algorithm with the under-sampling and over-sampling

techniques.

Over-sampling and clustering techniques as applied in

several work seem to give a good result. We then perform a

comparative study by applying these techniques together

with the correlation and outlier detection methods. These

techniques are applied in the data preparation step, whereas

the tree induction is our classification method. The research

methodology and the experimental results are explained in

the following sections.

III. METHODOLOGY

In this section we present the discovery process of rare

class on imbalanced dataset. We use SECOM dataset from

the UCI (http://archive.ics.uci.edu/ml/datasets/SECOM)

SECOM is data from a semi-conductor manufacturing

process. It is highly-skewed. The dataset contains 1567 data

instances taken from a wafer fabrication production line.

Each data instance contains 590 sensor measurements. The

data are labeled as -1 (means pass the test), or 1 (means fail

the test). There are only 104 fail cases, whereas the pass

Rare Class Discovery Techniques for Highly

Imbalanced Data

Kittipong Chomboon*, Kittisak Kerdprasop, and Nittaya Kerdprasop

P

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

case are 1463. This is a 1:14 proportion. The goal of

SECOM dataset is a good or bad semi-conductor from

manufacturing process. The overview our techniques show

as Fig. 1.

Fig. 1 The overview of five techniques to discover rare class

 Then we will describe these techniques step by step. Step

one: we manage missing values in SECOM dataset by

replacing with median value and create a new dataset called

D1, graphically show in Fig. 2.

Fig. 2 Step 1: manage missing value

 Step 2: we split D1 into train and test data. TrainData

and TestData has ratio 70:30. Then create model from train

data and evaluate accuracy with TestData, shown in Fig. 3.

Fig. 3 Step 2: evaluate accuracy of Traindata.

 Step 3: find top 25% of correlation between the class

attribute and other attributes of TrainData then union with

outliers. Outliers are found from each attribute and include

all outliers into the TrainData. Create new dataset called

D2 with correlated feature selection and outliers inclusion.

Then create model form D2 and examine accuracy with

TestData, show as Fig. 4.

Fig. 4 Step 3: feature selection by correlation analysis and

inclusion of outliers

 Step 4: apply over-sampling technique on the minority

class (that is, the fail cases) D2 dataset. The new dataset is

called D3. Then create model from D3 and evaluate

accuracy with TestData, shown in Fig. 5.

Fig. 5 Step 4: oversampling the fail cases

 Step 5: find top 25% of correlation between the class

attribute and other attributes of TrainData, then create new

dataset with selected features and call this dataset D4. After

that create a model from D4 and evaluate its accuracy with

TestData, as shown in Fig. 6.

Fig. 6 Step 5: feature selection with correlation analysis

 Step 6: clustering dataset D4 with the pamk function

available in the RStudio program. Function pamk returns a

group of two clusters. Then create model of each cluster

and evaluate accuracy of each model with TestData, shown

in Fig. 7.

TrainData TestData

D4 M4 R4

Correlation

Outlier

TrainData TestData

D2 M2 R2

Correlation & Outlier

SECOM

D1

D1

TrainData TestData

70% 30%

M1 R1

D2 TestData

D3 M3 R3

Over-Sampling

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Fig. 7 Step 6: cluster data then create model from each

cluster

 After design techniques, we implemented by using

decision tree algorithm for classification with R language

by RStudio. RStudio is an open source program and easy to

use as there are several statistical and data mining functions

available in the library.

IV. EXPERIMENTAL RESULTS

This research experimentation used SECOM (semi-

conductor manufacturing process) dataset from UCI

Machine Learning Repository. SECOM dataset has 591

attributes and 1567 data instances.

For rare class discovery technique comparison, we used

decision tree algorithm for classification on imbalanced

dataset and used R language coding on RStudio program.

The classification models of the designed techniques are

shown in Fig. 8. Evaluation results of the 5 models (M1,

M2, M3, M4, M5) can be displayed as a confusion matrix

as shown in Fig. 9.

Fig. 8 Classification models of the designed techniques

Fig. 9 Results of classification model evaluation

A comparative performance of each model can be

summarized and shown in Table 1. It can be seen from the

result that model M3 that has been built from the top 25%

correlated attributes and data in rare class have been over-

sampling shows the best rare class detection rate of 10 from

the total 30 rare data instances. Other techniques have zero

rare class detection rate.

TABLE 1

COMPARATIVE RESULTS OF DESIGNED TECHNIQUES

Model Accuracy Rare class,

detection rate

Recall Precision

M1 0.93 0 0.93 1

M2 0.93 0 0.93 1

M3 0.85 0.33 0.95 0.89

M4 0.93 0 0.93 1

M5 0.93 0 0.93 1

M6 0.93 0 0.93 1

V. CONCLUSION

This research aims to study rare class discovery

techniques for highly imbalance data using decision tree

algorithm as a classification method. The results show that

the best model is model 3 that used correlation-based

feature selection, outlier and over-sampling techniques to

prepare data for classification. Model 3 has rare class

detection rate at 33%, whereas other models cannot detect

rare class.

References
[1] H. Alhammady, and K. Ramamohanarao. (2004). “Using Emerging

Patterns and Decision Trees in Rareclass Classification,” In

Proceedings of the Fourth IEEE International Conference on Data

Mining (ICDM ’04), pp.315-318.

[2] N.V. Chawla. (2005). “Data Mining for Imbalanced Datasets: An

Overview,” The Data Mining and Knowledge Discovery Handbook,

pp.853-867.

[3] H. He, and A. Ghodsi. (2010). “Rare Class Classification by Support

Vector Machine,” In Proceedings of the 20th International

Conference on Pattern Recognition, pp.548-551.

[4] K. McCarthy, B. Zabar, and G. Weiss (2005). “Does Cost-sensitive

Learning Beat Sampling for Classifying Rare Classes?” In Proceedings

of the 1st International Workshop on Utilitybased Data Mining,

pp.69–77.

[5] K. Thearling (2012). “An Introduction to Data Mining,” Retrieved

November 3, 2012, from

http://www.thearling.com/text/dmwhite/dmwhite.htm

D4 TestData

Clustering

 D5… M5… R5…

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

[6] G. Weiss. (2004). “Mining With Rarity: A Unifying Framework,”

ACM-SIGKDD Explorations Vol. 6 Issue 1, pp.7-19.

[7] Wikipedia, the free encyclopedia (2012). “Data Mining [Online],”

Available URL: http://en.wikipedia.org/wiki/Data_mining

[8] J. Wu, H. Xiong, P. Wu, and J. Chen (2007). “Local Decomposition for

Rare Class Analysis,” In Proceedings of International Conference on

Knowledge Discovery and Data Mining (KDD), pp.814–823.

Appendix

 Source code of R language for comparing rare class

discovery techniques is given below. Start the program by

calling “my.fn” function.

my.fn <- function(data.f, seed=0){

 library("party")

 library("DMwR")

 library("fpc")

 ## initial variable

 stats <- list()

 model <- list()

 result <- list()

 outlier <- vector()

 cluster <- list()

 n.col <- ncol(data.f)

 decition.name <- names(secom)[n.col]

 my.formula <- formula(paste(decition.name, "~."))

 ## initial data

 data.f[,n.col] <- factor(data.f[,n.col])

 for(i in 1:(n.col-1)){

 data.f[is.na(data.f[,i]),i] <- median(data.f[,i], na.rm=T)

 }

 ## split data

 if(seed == 0){

 seed <- sample(1000:9999,1)

 }

 set.seed(seed)

 ind <- sample(2, nrow(data.f), replace=T, prob=(c(0.7,0.3)))

 data.train <- data.f[ind==1,]

 data.test <- data.f[ind==2,]

 print(paste("$$$$ SetSeed ==",seed,"$$$$"))

 print("Split Data Complete")

 ## test for M1 model

 model$M1 <- ctree(my.formula, data=data.train)

 result$M1 <- table(predict(model$M1, newdata=data.test),

data.test[,n.col])

 print("Model M1 Complete")

 ## find outlier by boxplot.stats()

 for(i in 1:(n.col-1)){

 outlier <- union(outlier,which(data.train[,i] %in%

boxplot.stats(data.train[,i])$out))

 }

 outlier <- sort(outlier)

 ## find corelation by cor and select 25%

 cor.sample <- sample(2, ncol(data.train), replace=T,

prob=(c(0.25,0.75)))

 cor.n <- length(cor.sample[cor.sample==1])

 cor.tmp <- cor(data.train[,-n.col],

as.numeric(levels(data.train[,n.col]))[as.numeric(data.train[,n.col]

)])

 cor.name <- dimnames(cor.tmp)[1][[1]][sort(cor.tmp,

decreasing=T, index.return=T)$ix[1:cor.n]]

 ## create data1 from outlier and corelation then create

model&test to M2

 data1 <- data.train[outlier,

c(cor.name,names(data.train)[n.col])]

 model$M2 <- ctree(my.formula, data=data1)

 result$M2 <- table(predict(model$M2, newdata=data.test),

data.test[,n.col])

 print("Model M2 Complete")

 ## create data2 form data1 by decition(A591) -1 == 1 then

create model&test to M3

 data2 <- data1

 data2.n <- nrow(data2)

 data2.bad.rownames <-

rownames(data2[data2[,decition.name]==1,])

 data2.bad.length <- length(data2.bad.rownames)

 data2.inc <- data2.n-(data2.bad.length*2)

 data2.sample <- sample(data2.bad.rownames, data2.inc,

replace=T)

 data2[(data2.n+1):(data2.n+data2.inc),] <- data2[data2.sample,]

 model$M3 <- ctree(my.formula, data=data2)

 result$M3 <- table(predict(model$M3, newdata=data.test),

data.test[,n.col])

 print("Model M3 Complete")

 ## create data3 form data1 by corelation then create

model&test to M4

 data3 <- data.train[,c(cor.name,names(data.train)[n.col])]

 model$M4 <- ctree(my.formula, data=data3)

 result$M4 <- table(predict(model$M4, newdata=data.test),

data.test[,n.col])

 print("Model M4 Complete")

 ## find k form data3

 train.pam <- pamk(data3[,-ncol(data3)])

 for(i in 1:train.pam$nc){

 cluster.name <- paste("c", i, sep="")

 model.name <- paste("M5", rawToChar(as.raw(i+64)),

sep="")

 cluster[[cluster.name]] <-

data3[train.pam$pamobject$clustering==i,]

 model[[model.name]] <- ctree(my.formula,

data=cluster[[cluster.name]])

 result[[model.name]] <- table(predict(model[[model.name]],

newdata=data.test), data.test[,n.col])

 print(paste("Model",paste("M5", rawToChar(as.raw(i+64)),

sep=""),"Complete"))

 }

 print("#### Complete ####")

 stats$seed <- seed

 stats$data <- list(data=data.f, data.train=data.train,

data.test=data.test, data1=data1, data2=data2, data3=data3)

 stats$cluster <- cluster

 stats$model <- model

 stats$result <- result

 stats

}

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

