
 

 

Abstract—This research aims at proposing a method to 

induce a classification model of minority data cases that are 

always predominant by a much larger majority cases. Our 

proposed method applies feature selection technique to choose 

25% of attributes that show highly correlation between 

classes. Then use over-sampling technique on minority cases 

before making a classification. We have found from the 

experimental results that data of rare cases, which is normally 

disappeared, can be detected through our proposed method. 

In this research, we use R language for implementing our 

proposed method and other four discovery techniques. 

Index Terms—Data Mining, Rare Class, Imbalanced Data, 

Data Classification, R Language. 

 

I. INTRODUCTION 

resent computer technology has progressed at a very 

rapid speed and it has tremendous effect to the storage 

of electronic data. With enormously increasing data, 

conventional method to analyze data is inappropriate. Data 

mining is thus an essential technology and has been proven 

useful for automatic analysis of large data [5], [7]. Data 

mining is the discovery of interesting patterns from large 

data. Discovered patterns can be in various forms such as a 

tree model for classification, a set of rules for association, 

or a group of representative centroids for data clustering. In 

this paper, we focus on the discovery of a tree model. This 

model can be used to predict events in the future. 

 Decision tree induction is normally a powerful technique 

to discover a tree model for future event prediction. But for 

a highly imbalanced data in which the number of data 

instances in one class is extremely smaller than the number 

of instances in other classes. Dataset of a smaller group is 

called a rare class [2], [6] or a minority class. A dataset 

with high imbalance between majority and minority classes 

can cause much trouble to the tree induction algorithm. 

During the tree building process data instances from a 

minority class are normally pruned and disappear from the 

final tree model. This makes the tree model predict the 

majority class correctly, but minority class tends to be 
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incorrectly predicted. This is a challenging problem known 

as a rare class mining. 

 In this research, we comparatively study five data 

preparation techniques to help decision tree induction 

algorithm creating a model that can predict rare class data. 

The various data preparation techniques include clustering, 

over-sampling, correlation analysis, outlier detection, and a 

mixture of correlation and outlier analyses. The 

experimentation has been performed on the RStudio 

environment and the program is implemented with the R 

language. Source code of our implementation is available in 

the Appendix. 

 

II. RARE CLASS CLASSIFICATION 

Rare class classification is the data mining task aiming at 

building a model that can correctly classify both the 

majority and minority classes. Classifying minority or rare 

class is difficult because size of the rare class is too small. 

Many researchers have tried to solve this problem. 

Alhammady and Ramanohanarao [1] proposed an 

algorithm called EPDT (Emerging Pattern Decision Tree) 

to train a decision tree that can classify rare class. 

He and Ghodsi [3] proposed a classification algorithm 

based on the SVM (Support Vector Machine) for 

classifying rare objects. Wu et al. [8] proposed a technique 

called COG (Classification using lOcal clusterinG) that also 

based on the SVM classifier. McCarthy et al. [4] proposed 

the algorithm called Cost-Sensitive and compared the 

algorithm with the under-sampling and over-sampling 

techniques. 

Over-sampling and clustering techniques as applied in 

several work seem to give a good result. We then perform a 

comparative study by applying these techniques together 

with the correlation and outlier detection methods. These 

techniques are applied in the data preparation step, whereas 

the tree induction is our classification method. The research 

methodology and the experimental results are explained in 

the following sections. 

III. METHODOLOGY 

In this section we present the discovery process of rare 

class on imbalanced dataset. We use SECOM dataset from 

the UCI (http://archive.ics.uci.edu/ml/datasets/SECOM) 

SECOM is data from a semi-conductor manufacturing 

process. It is highly-skewed. The dataset contains 1567 data 

instances taken from a wafer fabrication production line.  

Each data instance contains 590 sensor measurements. The 

data are labeled as -1 (means pass the test), or 1 (means fail 

the test). There are only 104 fail cases, whereas the pass 
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case are 1463. This is a 1:14 proportion.  The goal of 

SECOM dataset is a good or bad semi-conductor from 

manufacturing process. The overview our techniques show 

as Fig. 1. 

 

 

Fig. 1 The overview of five techniques to discover rare class 

 

 Then we will describe these techniques step by step. Step 

one: we manage missing values in SECOM dataset by 

replacing with median value and create a new dataset called 

D1, graphically show in Fig. 2. 

 
 

Fig. 2 Step 1: manage missing value 

 

 Step 2: we split D1 into train and test data. TrainData 

and TestData has ratio 70:30. Then create model from train 

data and evaluate accuracy with TestData, shown in Fig. 3. 

 
 

Fig. 3 Step 2: evaluate accuracy of Traindata. 

 Step 3: find top 25% of correlation between the class 

attribute and other attributes of TrainData then union with 

outliers. Outliers are found from each attribute and include 

all outliers into the TrainData. Create new dataset called 

D2 with correlated feature selection and outliers inclusion. 

Then create model form D2 and examine accuracy with 

TestData, show as Fig. 4. 

 
 

Fig. 4 Step 3: feature selection by correlation analysis and 

inclusion of outliers 

 

 Step 4: apply over-sampling technique on the minority 

class (that is, the fail cases) D2 dataset. The new dataset is 

called D3. Then create model from D3 and evaluate 

accuracy with TestData, shown in Fig. 5. 

 
 

Fig. 5 Step 4: oversampling the fail cases 

 

 Step 5: find top 25% of correlation between the class 

attribute and other attributes of TrainData, then create new 

dataset with selected features and call this dataset D4. After 

that create a model from D4 and evaluate its accuracy with 

TestData, as shown in Fig. 6. 

 
 

Fig. 6 Step 5: feature selection with correlation analysis 

 

 Step 6: clustering dataset D4 with the pamk function 

available in the RStudio program. Function pamk returns a 

group of two clusters. Then create model of each cluster 

and evaluate accuracy of each model with TestData, shown 

in Fig. 7. 

TrainData TestData 

D4 M4 R4 

Correlation 

Outlier 

TrainData TestData 

D2 M2 R2 

Correlation & Outlier 

SECOM 

D1 

D1 

TrainData TestData 

70% 30% 

M1 R1 

D2 TestData 

D3 M3 R3 

Over-Sampling 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

 
 

Fig. 7 Step 6: cluster data then create model from each 

cluster 

 

 After design techniques, we implemented by using 

decision tree algorithm for classification with R language 

by RStudio. RStudio is an open source program and easy to 

use as there are several statistical and data mining functions 

available in the library. 

 

IV. EXPERIMENTAL RESULTS 

This research experimentation used SECOM (semi-

conductor manufacturing process) dataset from UCI 

Machine Learning Repository. SECOM dataset has 591 

attributes and 1567 data instances.  

For rare class discovery technique comparison, we used 

decision tree algorithm for classification on imbalanced 

dataset and used R language coding on RStudio program. 

The classification models of the designed techniques are 

shown in Fig. 8. Evaluation results of the 5 models (M1, 

M2, M3, M4, M5) can be displayed as a confusion matrix 

as shown in Fig. 9. 

 

 

Fig. 8 Classification models of the designed techniques 

 
 

Fig. 9 Results of classification model evaluation 

 

A comparative performance of each model can be 

summarized and shown in Table 1. It can be seen from the 

result that model M3 that has been built from the top 25% 

correlated attributes and data in rare class have been over-

sampling shows the best rare class detection rate of 10 from 

the total 30 rare data instances. Other techniques have zero 

rare class detection rate.  

 
TABLE 1 

COMPARATIVE RESULTS OF DESIGNED TECHNIQUES 

 

Model Accuracy Rare class, 

detection rate 

Recall  Precision 

M1 0.93 0 0.93 1 

M2 0.93 0 0.93 1 

M3 0.85 0.33 0.95 0.89 

M4 0.93 0 0.93 1 

M5 0.93 0 0.93 1 

M6 0.93 0 0.93 1 

 

V. CONCLUSION 

This research aims to study rare class discovery 

techniques for highly imbalance data using decision tree 

algorithm as a classification method. The results show that 

the best model is model 3 that used correlation-based 

feature selection, outlier and over-sampling techniques to 

prepare data for classification. Model 3 has rare class 

detection rate at 33%, whereas other models cannot detect 

rare class. 
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Appendix 

 Source code of R language for comparing rare class 

discovery techniques is given below. Start the program by 

calling “my.fn” function. 

my.fn <- function(data.f, seed=0){ 

    library("party") 

    library("DMwR") 

    library("fpc") 

    ## initial variable 

    stats <- list() 

    model <- list() 

    result <- list() 

    outlier <- vector() 

    cluster <- list() 

    n.col <- ncol(data.f) 

    decition.name <- names(secom)[n.col] 

    my.formula <- formula(paste(decition.name, "~.")) 

     

    ## initial data 

    data.f[,n.col] <- factor(data.f[,n.col]) 

    for(i in 1:(n.col-1)){ 

        data.f[is.na(data.f[,i]),i] <- median(data.f[,i], na.rm=T) 

    } 

     

    ## split data 

    if(seed == 0){ 

        seed <- sample(1000:9999,1) 

    } 

    set.seed(seed) 

    ind <- sample(2, nrow(data.f), replace=T, prob=(c(0.7,0.3))) 

    data.train <- data.f[ind==1,] 

    data.test <- data.f[ind==2,] 

    print(paste("$$$$ SetSeed ==",seed,"$$$$")) 

    print("Split Data Complete") 

     

    ## test for M1 model 

    model$M1 <- ctree(my.formula, data=data.train) 

    result$M1 <- table(predict(model$M1, newdata=data.test), 

data.test[,n.col]) 

    print("Model M1 Complete") 

     

    ## find outlier by boxplot.stats() 

    for(i in 1:(n.col-1)){ 

        outlier <- union(outlier,which(data.train[,i] %in% 

boxplot.stats(data.train[,i])$out)) 

    } 

    outlier <- sort(outlier) 

     

    ## find corelation by cor and select 25% 

    cor.sample <- sample(2, ncol(data.train), replace=T, 

prob=(c(0.25,0.75))) 

    cor.n <- length(cor.sample[cor.sample==1]) 

    cor.tmp <- cor(data.train[,-n.col], 

as.numeric(levels(data.train[,n.col]))[as.numeric(data.train[,n.col]

)]) 

    cor.name <- dimnames(cor.tmp)[1][[1]][sort(cor.tmp, 

decreasing=T, index.return=T)$ix[1:cor.n]] 

     

    ## create data1 from outlier and corelation then create 

model&test to M2 

    data1 <- data.train[outlier, 

c(cor.name,names(data.train)[n.col])] 

    model$M2 <- ctree(my.formula, data=data1) 

    result$M2 <- table(predict(model$M2, newdata=data.test), 

data.test[,n.col]) 

    print("Model M2 Complete") 

     

    ## create data2 form data1 by decition(A591) -1 == 1 then 

create model&test to M3 

    data2 <- data1 

    data2.n <- nrow(data2) 

    data2.bad.rownames <- 

rownames(data2[data2[,decition.name]==1,]) 

    data2.bad.length <- length(data2.bad.rownames) 

    data2.inc <- data2.n-(data2.bad.length*2) 

    data2.sample <- sample(data2.bad.rownames, data2.inc, 

replace=T) 

    data2[(data2.n+1):(data2.n+data2.inc),] <- data2[data2.sample,] 

    model$M3 <- ctree(my.formula, data=data2) 

    result$M3 <- table(predict(model$M3, newdata=data.test), 

data.test[,n.col]) 

    print("Model M3 Complete") 

     

    ## create data3 form data1 by corelation then create 

model&test to M4 

    data3 <- data.train[,c(cor.name,names(data.train)[n.col])] 

    model$M4 <- ctree(my.formula, data=data3) 

    result$M4 <- table(predict(model$M4, newdata=data.test), 

data.test[,n.col]) 

    print("Model M4 Complete") 

     

    ## find k form data3 

    train.pam <- pamk(data3[,-ncol(data3)]) 

    for(i in 1:train.pam$nc){ 

        cluster.name <- paste("c", i, sep="") 

        model.name <- paste("M5", rawToChar(as.raw(i+64)), 

sep="") 

        cluster[[cluster.name]] <- 

data3[train.pam$pamobject$clustering==i,] 

        model[[model.name]] <- ctree(my.formula, 

data=cluster[[cluster.name]]) 

        result[[model.name]] <- table(predict(model[[model.name]], 

newdata=data.test), data.test[,n.col]) 

        print(paste("Model",paste("M5", rawToChar(as.raw(i+64)), 

sep=""),"Complete")) 

    } 

    print("#### Complete ####") 

     

    stats$seed <- seed 

    stats$data <- list(data=data.f, data.train=data.train, 

data.test=data.test, data1=data1, data2=data2, data3=data3) 

    stats$cluster <- cluster 

    stats$model <- model 

    stats$result <- result 

    stats 

     

} 
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