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Summary 

Large-scale gene sequencing studies for complex traits have the potential to 
identify causal genes with therapeutic implications. We performed gene-based 
association testing of blood lipid levels with rare (minor allele frequency<1%) 
predicted damaging coding variation using sequence data from >170,000 individuals 
from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 
16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 
genes associated with circulating lipid levels. Ten of these: ALB, SRSF2, JAK2, 
CREB3L3, TMEM136, VARS, NR1H3, PLA2G12A, PPARG and STAB1 have not 
been implicated for lipid levels using rare coding variation in population-based 
samples. We prioritize 32 genes identified in array-based genome-wide association 
study (GWAS) loci based on gene-based associations, of which three: EVI5, SH2B3, 
and PLIN1, had no prior evidence of rare coding variant associations. Most of the 
associated genes showed evidence of association in multiple ancestries. Also, we 
observed an enrichment of gene-based associations for low-density lipoprotein 
cholesterol drug target genes, and for genes closest to GWAS index single 
nucleotide polymorphisms (SNP). Our results demonstrate that gene-based 
associations can be beneficial for drug target development and provide evidence that 
the gene closest to the array-based GWAS index SNP is often the functional gene for 
blood lipid levels.  
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Introduction 

Blood lipid levels are heritable complex risk factors for atherosclerotic cardiovascular 
diseases.1 Array-based genome-wide association studies (GWAS) have identified 
>400 loci as associated with blood lipid levels, explaining 9-12% of the phenotypic 
variance of lipid traits.2-8 These studies have identified mostly common (minor allele 
frequency (MAF)>1%) noncoding variants with modest effect and helped define the 
causal roles of different lipid fractions in cardiovascular disease.9-13 Despite these 
advances, the mechanisms and causal genes for most of the identified variants and 
loci have not yet been determined. 

Conventional GWAS with array-derived or imputed common variants are 
unlikely to directly implicate causal genes, while genetic association studies testing 
rare variants in coding regions have this potential. Advances in next generation 
sequencing over the last decade have facilitated increasingly larger studies with 
improved power to detect associations of rare variants with complex diseases and 
traits.14,15 However, most exome sequencing studies to date have been insufficiently 
powered for rare variant discovery; for example, Flannick et al. estimated that it 
would require 75,000 to 185,000 sequenced cases of type 2 diabetes (T2D) to detect 
associations at known drug target genes at exome-wide significance.15 

Identifying rare variants with impact on protein function has helped elucidate 
biological pathways underlying dyslipidemia and atherosclerotic diseases such as 
coronary artery disease (CAD).14,16-25 Successes using this approach have led to the 
development of novel therapeutic targets to modify blood lipid levels and lower risk of 
atherosclerotic diseases.26,27 The vast majority of participants in these studies have 
been of European ancestry, highlighting the need for more diverse study sample. 
Such diversity can identify associated variants absent or present at very low 
frequencies in European populations and help implicate new genes with 
generalizability extending to all populations. 

We have assembled exome sequence data from >170,000 individuals across 
multiple ancestries and systematically tested the association of rare variants in each 
gene with six circulating lipid phenotypes: low-density lipoprotein cholesterol (LDL-C), 
high density lipoprotein cholesterol (HDL-C), non-HDL-C, total cholesterol (TC), 
triglycerides (TG), and the ratio of TG to HDL-C (TG:HDL). We find 35 genes 
associated with blood lipid levels, show evidence of gene-based signals in array-
based GWAS loci, show enrichment of lipid gene-based associations in LDL-C drug 
targets and genes in close proximity with GWAS index variants, and test lipid genes 
for association with CAD, T2D, and liver enzymes. 
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Results 

 

Sample and variant characteristics 

Individual-level, quality-controlled data were obtained from four sequenced study 
sources with circulating lipid data for individuals of multiple ancestries (Figure 1). 
Characteristics of the study samples are detailed in Supplementary Table 1. We 
analyzed data on up to 172,000 individuals with LDL-C, non-HDL-C (a calculated 
measure of TC minus HDL-C), TC, HDL-C, TG, and TG:HDL ratio (a proxy for insulin 
resistance).28,29  56.7% (n=97,493) of the sample are of European ancestry, 17.4% 
(n=30,025) South Asian, 9.6% (n=16,507) African American, 9.6% (n=16,440) 
Hispanic, 6.1% (n=10,420) East Asian, and 0.7% (n=1,182) Samoan, based on 
genetically-estimated and/or self-reported ancestry. 

After sequencing, we observed 15.6 M variants across all studies; 5.0 M 
(32.6%) we classified as transcript-altering coding variants based on an annotation of 
frameshift, missense, nonsense, or splice site acceptor/donor using the Variant Effect 
Predictor (VEP).30 A total of 340,214 (6.7%) of the coding variants were annotated as 
high confidence loss-of-function (LOF) using the LOFTEE VEP plugin,31 238,646 
(4.7%) as splice site altering identified by Splice AI,32 729,098 (14.3%) as damaging 
missense as predicted by the MetaSVM algorithm33, and 1,106,309 (21.8%) as 
damaging missense as predicted by consensus in all five prediction algorithms (SIFT, 
PolyPhen-2 HumVar, PolyPhen-2 HumDiv, MutationTaster and LRT).34 As expected, 
we observed a trend of decreasing proportions of putatively deleterious variants with 
increasing allele count (Supplementary Figure 1, Supplementary Table 2). 

 

Single-variant association 

We performed inverse-variance weighted fixed-effects meta-analyses of single-
variant association results of LDL-C, non-HDL-C, TC, HDL-C, TG and TG:HDL ratio 
from each consortium and ancestry group. Meta-analysis results were well controlled 
with genomic inflation factors ranging between 1.01 and 1.04 (Supplementary Table 
3). Single-variant results were limited to the 425,912 protein-altering coding variants 
with a total minor allele count (MAC) > 20 across all 172,000 individuals. We defined 
significant associations by a previously established exome-wide significance 
threshold for coding variants (P<4.3×10-7)35 which was additionally corrected for 
testing six traits (P=4.3×10-7 divided by 6) within all study samples or within each of 
the five major ancestries (Supplementary Tables 4-9); this yielded in each analysis 
a significance threshold of P<7.2×10-8. A total of 104 rare coding variants in 57 genes 
were associated with LDL-C, 95 in 54 genes with non-HDL-C, 109 in 65 genes with 
TC, 92 in 56 genes with HDL-C, 61 in 36 genes with TG, and 68 in 42 genes with 
TG:HDL. We identified six missense variants in six genes (TRIM5 p.Val112Phe, 
ADH1B p.His48Arg, CHUK p.Val268Ile, ERLIN1 p.Ile291Val, TMEM136 p.Gly77Asp, 
PPARA p.Val227Ala) >1Mb away from any index variant previously associated with a 
lipid phenotype (LDL-C, HDL-C, TC, or TG) in previous genetic discovery efforts 
(Supplementary Tables 4-9).3,7,8 PPARA p.Val227Ala has previously been 
associated with blood lipids at a nominal significance level in East Asians (P < 0.05), 
where it is more common than in other ancestries.36 Both TRIM5 and ADH1B LDL-C 
increasing alleles have been associated with higher risk of CAD in a recent GWAS 
from CARDIOGRAM (OR: 1.08, P=2×10-9; OR=1.08, P=4×10-4).37 
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Gene-based association 

Next we performed gene-based testing of transcript-altering variants in aggregated 
burden and sequence kernel association tests (SKAT)38 tests in all study participants 
and within each of the six main ancestries for six lipid traits: LDL-C, HDL-C, non-
HDL-C, TC, TG, and TG:HDL. We excluded the Samoans from the single-ancestry 
analysis given the small number of individuals. We limited attention to variants with 
MAF≤1% for each of six variant groups: 1) LOF, 2) LOF and predicted splice-site 
altering variants using Splice AI, 3) LOF and MetaSVM missense variants, 4) LOF, 
MetaSVM missense and predicted splice-site altering variants, 5) LOF and damaging 
5 out 5 missense variants, and 6) LOF, damaging 5 out 5 missense and predicted 
splice-site altering variants. Meta-analyses results were well controlled 
(Supplementary Table 10). 

We identified 35 genes reaching exome-wide significance (P=4.3×10-7) for at 
least one of the six variant groupings (Figure 2 and Supplementary Tables 11-17). 
Most of the significant results were from the multi-ancestry analysis, with multiple 
ancestries contributing to the top signals (Figure 2A) and most of the 35 genes were 
associated with more than one lipid phenotype (Figure 2B). Ten of the 35 genes did 
not have prior evidence of gene-based links with blood lipid phenotypes (Table 1), 
and seven genes, including ALB, SRSF2, CREB3L3, NR1H3, PLA2G12A, PPARG, 
and STAB1 have evidence for a biological connection to circulating lipid levels (Box 
1).  

We also investigated which of the 35 genes were outside GWAS regions 
defined as those within ±200kb flanking regions of GWAS indexed Single nucleotide 
polymorphisms (SNPs) for TC (487 SNPs), LDL-C (531 SNPs), HDL-C, and TG (471 
SNPs).8 We identified 1,295 unique genes included in these lipid GWAS regions. 
Eight out of the 35 associated genes (23%) were not within a GWAS region 
(Supplementary Table 11).  

To understand whether the gene-based signals were driven by variants that 
could be identified through single variant analyses, we looked at the proportion of the 
35 genes that were associated with each trait that have at least one single 
contributing variant that passed the genome-wide significance threshold of 5×10-8. 
Seventeen genes were associated with HDL-C at exome-wide significance 
(Supplementary Table 11); eight genes had at least one variant with P<5×10-8. 
Similarly, we observed 4/9 for LDL-C, 4/10 non-HDL-C, 4/14 TC, 7/18 TG, and 6/17 
TG:HDL genes with at least one genome-wide significant variant.  

 

Comparison of gene-based associations across ancestries 

The gene-based associations were mostly consistent across the six ancestry 
groupings: European, South Asian, African, Hispanic, and East Asian. Three of the 
17 HDL-C genes showed association in at least two different ancestries at exome-
wide significance level (P=4.3×10-7). Similarly, 3/9 LDL-C, 4/10 non-HDL-C, 5/14 TC, 
2/18 TG and 2/17 TG:HDL genes showed association in at least two difference 
ancestries at a exome-wide significance level. Using a less stringent significance 
level (P<0.01), across the six lipid traits, 59-89% of associated genes from the joint 
analysis were associated in at least two different ancestries.  
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We additionally tested the top 35 genes for heterogeneity across all 303 gene-
trait-variant grouping combinations passing the exome-wide significance threshold 
(P<4.3×10-7). We observed heterogeneity in effect estimates (PHet<1.7×10-4, 
accounting for 303 combinations) in 19 (6%) different gene-trait-variant grouping 
combinations and in six different genes: LIPC, LPL, LCAT, ANGPTL3, APOB, and 
LDLR (Supplementary Table 18). Although the LOF gene-based effect sizes were 
largely consistent across ancestries, there were differences in the cumulative 
frequencies of LOF variants for several genes including PCSK9, NPC1L1, HBB and 
ABCG5 (Supplementary Figures 2-4). 

We observed LOF and predicted damaging variants in the TMEM136 gene 
associated with TG and TG:HDL only among individuals of South Asian ancestry 
(PSKAT=3×10-9 and 2×10-11, respectively) (Table 1, Figure 2A). With the same variant 
grouping and ancestry, we observed associations with reduced TG by burden tests 
(�=-15%, P=3×10-4) and TG:HDL (�=-20%, P=6×10-5) (Supplementary Tables 16 
and 17). Additionally, a single missense variant was associated only among South 
Asians (rs760568794,11:120327605-G/A, p.Gly77Asp) with TG (�=-36.9%, P=2×10-

8) (Supplementary Table 11). This variant was present only among South Asian 
(MAC=24) and Hispanics (MAC=8), but showed no association among Hispanics 
(P=0.86). This gene encodes a transmembrane protein of unknown function. 

 

Gene-based associations in GWAS loci 

We investigated whether genes near lipid array-based GWAS signals8 were 
associated with the corresponding lipid measure using gene-based tests of rare 
variants with the same traits. We obtained genes from 200 Kb flanking regions on 
both sides of each GWAS signal; 487 annotated to LDL-C GWAS signals, 531 to 
HDL-C signals, and 471 to TG signals. We analyzed genes within these three sets 
for gene-based associations with their associated traits. A total of 13, 19, and 13 
genes were associated (P<3.4×10-5, corrected for the number of genes tested for the 
three traits) with LDL-C, HDL-C or TG, with 32 unique genes identified in the GWAS 
loci (Supplementary Tables 19-24). 

Three of the 32 genes had no prior aggregate rare variant evidence of blood 
lipid association. Variants annotated as LOF or predicted damaging in EVI5 were 
associated with LDL-C (PSKAT=2×10-5). The burden test showed association with 
higher LDL-C levels (�=1.9 mg/dL, P=0.008) (Supplementary Table 19). Variants 
annotated as LOF or predicted damaging in SH2B3 were associated with lower HDL-
C (�=-2.5 mg/dL, P=1×10-6) among Europeans. Variants that were annotated as LOF 
in PLIN1 were associated with higher HDL-C (�=3.9 mg/dL, P=1×10-5) 
(Supplementary Table 20). Other genes in the regions of EVI5, SH2B3, and PLIN1 
did not show an association with the corresponding lipid traits (P>0.05) in multi-
ancestry analyses. A previous report implicated two heterozygous frameshift 
mutations in PLIN1 in three families with partial lipodystrophy.39 The gene encodes 
perilipin, the most abundant protein that coats adipocyte lipid droplets and is critical 
for optimal TG storage.40 We observed a nominal associations of PLIN1 with TG (�=-
7.0%, P=0.02). Our finding is contrary to what would be expected with 
hypertriglyceridemia in a lipodystrophy phenotype given the association with lower 
TG. This gene has an additional role where silencing in cow adipocytes has been 
shown to inhibit TG synthesis and promote lipolysis,41 which may explain those 
contradictions. 
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Enrichment of Mendelian-, GWAS-, and drug targets genes 

We next sought to test the utility of genes that showed some evidence for association 
but did not reach exome-wide significance. Within the genes that reached a sub-
threshold level of significant association in this study using burden or SKAT tests (p < 
0.005), we investigated the enrichment of i) Mendelian dyslipidemia (N=21 genes)-;2 
ii) lipid GWAS (N=487 for LDL-C, N=531 for HDL-C and N=471 for TG)8; and iii) drug 
target genes (N=53).42 We stratified genes in GWAS loci according to coding status 
of the index SNP and proximity to the index SNP (nearest gene, second nearest 
gene, and genes further away). We tested for enrichment of gene-based signals 
(P<0.005) in the gene sets compared to matched genes (Figure 3). For each gene 
within each gene set, the most significant association in the multi-ancestry or an 
ancestry specific analysis was obtained and then matched to 10 genes based on 
sample size, total number of variants, cumulative MAC, and variant grouping. The 
strongest enrichment was observed for Mendelian dyslipidemia genes within the 
genes that reached P < 0.005 in our study. For example, 52% of the HDL-C 
Mendelian genes versus 1.4% of the matched set reached P < 0.005 (OR:71, 95% 
CI: 16-455). We also observed that 45.5% of the set of genes closest to an HDL-C 
protein-altering GWAS variant reached P < 0.005 versus 1.4% in the matched gene 
set (OR:57, 95% CI: 13-362). Results were significant but much less striking for 
genes at non-coding index variants.  We observed that 8.9% of the set of genes 
closest to an HDL-C non-protein altering GWAS variant reached P < 0.005 versus 
2.3% in the matched set (OR:4.1, 95% CI: 1.8-8.7).  While it was 8% versus 2.6% for 
the set of second closest genes to an HDL-C non-protein altering GWAS variant (OR: 
3, 95% CI: 1.1-8.3). There was no significant enrichment in second closest or >= third 
closest genes to protein altering GWAS signals and in >= third closest genes to non-
protein altering GWAS signals. Drug target genes were significantly enriched in LDL-
C gene-based associations (OR: 5.3, 95% CI: 1.4-17.8) but not in TG (OR: 2.2, 95% 
CI: 0.2-11.2) or HDL-C (OR: 1.0, 95% CI: 0.1-4.3) (Figure 3 and Supplementary 
Tables 26-28). 

 

Association of lipid genes with CAD, T2D, glycemic traits, and liver enzymes 

We tested the genes identified through our main (35 genes) and GWAS loci (32 
genes) for associations with CAD or T2D in our gene-based analyses (40 genes 
across the two sets). The CAD analyses were restricted to a subset of the overall 
exome sequence data with information on CAD status which included the MIGen 
CAD case-control, UK Biobank (UKB) CAD nested case-control, and the UKB cohort 
with a total of 32,981 cases and 79,879 controls. We observed four genes 
significantly associated with CAD (PCAD<0.00125, corrected for 40 genes). The four 
genes associated with lipids and CAD were all primarily associated with LDL-C: 
LDLR (OR: 2.97, P=7×10-24), APOB (PSKAT=4×10-5), PCSK9 (OR: 0.5, P=2×10-4) and 
JAK2 (PSKAT=0.001). Several other known CAD associated genes (NPC1L1, CETP, 
APOC3, and LPL) showed nominal significance for association with lipids (P<0.05). 
We observed nominal associations with CAD for two of the newly-identified lipid 
genes:  PLIN1 (PSKAT=0.002) and EVI5 (OR: 1.29, P=0.002; Supplementary Table 
29). None of the 40 lipid genes reached significance for association with T2D in the 
latest AMP-T2D exome sequence results. We observed nominal associations of T2D 
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with STAB1 (OR: 1.05, PT2D=0.002) and APOB (OR: 1.08, PT2D=0.005) 
(Supplementary Table 30).15 

We additionally tested the 40 genes for association with six glycemic and liver 
biomarkers in the UKB: blood glucose, HbA1c, alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), and albumin. 
Using an exome-wide significance threshold of P=0.0012, we found associations 
between PDE3B and elevated blood glucose, JAK2 and SH2B3 and lower HbA1c, 
and APOC3 and higher HbA1c. We found associations between CREB3L3 and lower 
ALT, ALB, and higher AST, and between A1CF and higher GGT. ALB and SRSF2 
were associated with lower and higher albumin levels, respectively (Supplementary 
Tables 31-36).   
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Discussion 

We conducted a large multi-ethnic study to identify genes in which protein-
altering variants demonstrated association with blood lipid levels. First, we confirm 
previous associations of genes with blood lipid levels and show that we detect 
associations across multiple ancestries. Second, we identified gene-based 
associations that were not observed previously. Third, we show that along with 
Mendelian lipid genes, the genes closest to both protein altering and non-protein 
altering GWAS signals, and LDL-C drug target genes have the highest enrichment of 
gene-based associations. Fourth, of the new gene-based lipid associations, PLIN1 
and EVI5 showed suggestive evidence of an association with CAD. 

 Our study found that evidence of gene-based associations for the same gene 
in multiple ancestries. The heterogeneity in genetic association with common traits 
and complex diseases has been discussed extensively. A recent study has shown 
significant heterogeneity across different ancestries in the effect sizes of multiple 
GWAS identified variants.43 However, our study shows that gene-based signals are 
detected in multiple ancestries with limited heterogeneity in the effect sizes. 

Our study highlights enrichment of gene-based associations for Mendelian 
dyslipidemia genes, genes with protein-altering variants identified by GWAS, and 
genes that are closest to non-protein altering GWAS index variants. A previous 
transcriptome-wide Mendelian randomization study of eQTL variants indicated that 
most of the genes closest to top GWAS signals (>71%) do not show significant 
association with the respective phenotype.44 In contrast, our study provides evidence 
from sequence data that the closest gene to each top non-coding GWAS signal is 
most likely to be the causal one, indicating an allelic series in associated loci. This 
has implications for GWAS results, suggesting the prioritization of the closest genes 
for follow-up studies. We also observed enrichment of drug target genes only among 
LDL-C gene-based associations and not for HDL-C and TG gene-based 
associations, consistent with the fact that most approved therapeutics for 
cardiovascular disease targeting LDL-C 

The gene-based analyses of lipid genes with CAD confirmed previously 
reported and known associations (LDLR, APOB, and PCSK9). Using a nominal P 
threshold of 0.05 we also confirmed associations with NPC1L1, CETP, APOC3, and 
LPL. Of the novel lipid genes, we observed borderline significant signals with EVI5 
and higher risk of CAD and between PLIN1 and lower risk of CAD. The putative 
cardio-protective role of PLIN1 deficiency is supported by previous evidence in mice 
which has indicated reduced atherosclerotic lesions with Plin1 deficiency in bone 
marrow derived cells.45 This suggests PLIN1 as a putative target for CAD prevention; 
however, replication of the CAD association would be needed to confirm those 
signals.  

There are some limitations to our results. First, we had lower sample sizes for 
the non-European ancestries, limiting our power to detect ancestry-specific 
associations. However, we find consistency of results across ancestries, and when 
we relax our significance threshold, the majority of associations (59-89%) are 
observed in more than one ancestry. Second, it has been reported that there was an 
issue with the UKB functionally equivalent WES calling.46 This mapping issue may 
have resulted in under-calling alternative alleles and therefore should not increase 
false positive findings. Third, we relied on a meta-analysis approach using summary 
statistics to perform our gene-based testing due to differences in sequencing 
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platforms and genotyping calling within the multiple consortia contributing to the 
results. This approach has been shown to be equivalent to a pooled approach for 
continuous outcomes.47 

 In summary, we demonstrated association between rare protein-altering 
variants with circulating lipid levels in >170,000 individuals of diverse ancestries. We 
identified 35 genes associated with blood lipids, including ten genes not previously 
shown to have gene-based signals. Our results support the hypothesis that genes 
closest to a GWAS index SNP are enriched for evidence of association.  
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Figure titles and legends 

Figure 1. Study samples and design 

Flow chart of the different stages of the study. Exome sequence genotypes were 
derived from four major data sources: The Myocardial Infarction Genetics consortium 
(MIGen), the Trans-Omics from Precision Medicine (TOPMed), the UK Biobank and 
the Type 2 Diabetes Genetics (AMP-T2D-GENES) consortium. Single-variant 
association analyses were performed by ancestry and case-status in case-control 
studies and meta-analyzed. Single-variant summary estimates and covariance 
matrices were used in gene-based analyses using 6 different variant groups and in 
multi-ancestry and each of the five main ancestries. AFR=African ancestry, 
EAS=East Asian ancestry, EUR=European ancestry, HIS=Hispanic ancestry, 
SAM=Samoan ancestry, SAS=South Asian ancestry 

 

Figure 2. Exome-wide significant associations with blood lipid phenotypes 

A) Circular plot highlighting the evidence of association between the exome-wide 
significant 35 genes with any of the six different lipid traits (P < 4.3 × 10-7). The most 
significant associations from any of the six different variant groups are plotted. For 
almost all of the genes the most significant associations were obtained from the 
multi-ancestry meta-analysis. B) Strength of association of the 35 exome-wide 
significant genes based on the most significant variant grouping and ancestry across 
the six lipid phenotypes studied. Most of the genes indicated associations with more 
than one phenotype. Sign(beta)*-log10(p) displayed for associations that reached a P 
< 4.3 × 10-7. When the Sign(beta)*-log10(p) > 50, they were trimmed to 50. 

 
Figure 3. Enrichment of Mendelian, GWAS, and drug target genes in the gene-
based lipid associations 

Enrichment of gene sets of Mendelian genes (n=21), GWAS loci for LDL-C (n=487), 
HDL-C (n=531), and triglycerides (TG) (n=471) genes and drug target genes (n=53). 
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Table 1. Novel Genes Associated with Blood Lipids 

Gene Name Trait N cMAC nVAR beta se P Mask Test Ancestry 

ALB Albumin 

LDL-C 165,003 51 18 29.51 5.11 7.76E-09 LOF Burden Multi-ancestry 

Non-HDL-C 166,327 50 17 33.91 6.07 2.27E-08 LOF Burden Multi-ancestry 

TC 172,103 54 18 33.37 5.89 1.48E-08 LOF Burden Multi-ancestry 

SRSF2 

Serine And Arginine Rich Splicing 
Factor 2 

 

TC 172,103 59 14 -30.59 5.49 2.46E-08 LOF/DAM5of5/SPLICE AI Burden Multi-ancestry 

JAK2 Janus Kinase 2 TC 975,33 441 136 -7.10 1.98 1.71E-07 LOF/DAM5of5/SPLICE AI SKAT EUR 

CREB3L3 
CAMP Responsive Element Binding 
Protein 3 Like 3 

TG 1702,39 874 71 0.12 0.02 2.43E-15 LOF/DAM5of5/SPLICE AI Burden Multi-ancestry 

TG/HDLC 165,380 855 69 0.14 0.02 5.76E-13 LOF/DAM5of5/SPLICE AI Burden Multi-ancestry 

TMEM136 Transmembrane Protein 136 
TG 29,571 157 24 -0.15 0.04 3.39E-09 LOF/DAM5of5/SPLICE AI SKAT SAS 

TG/HDLC 29,517 157 24 -0.20 0.05 1.76E-11 LOF/DAM5of5/SPLICE AI SKAT SAS 

VARS Valyl-TRNA Synthetase 1 TG 56,140 67 51 0.32 0.06 4.30E-07 LOF/MetaSVM Burden EUR 

NR1H3 
Nuclear Receptor Subfamily 1 Group 
H Member 3 

HDLC 93,044 521 111 3.47 0.60 1.45E-11 LOF/MetaSVM/SPLICE AI SKAT EUR 

PLA2G12A Phospholipase A2 Group XIIA 

HDLC 166,441 1975 47 -2.28 0.31 8.12E-14 LOF/DAM5of5 Burden Multi-ancestry 

TG 170,239 2047 47 0.06 0.01 1.17E-08 LOF/DAM5of5 Burden Multi-ancestry 

TG/HDLC 165,380 1969 46 0.11 0.01 7.56E-13 LOF/DAM5of5 Burden Multi-ancestry 

PPARG 
Peroxisome Proliferator Activated 
Receptor Gamma 

HDLC 166,441 147 72 -6.24 1.07 4.71E-09 LOF/DAM5of5/SPLICE AI Burden Multi-ancestry 

STAB1 Stabilin 1 HDLC 166,441 6550 804 0.83 0.16 2.58E-07 LOF/MetaSVM/SPLICE AI Burden Multi-ancestry 

cMAC=cumulative minor allele count; nVAR=number of variants in test; AFR=African ancestry, EAS=East Asian ancestry, 
EUR=European ancestry, HIS=Hispanic ancestry, SAS=South Asian ancestry.
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Box 1. Genes with biological links to lipid metabolism 
 

ALB 

The association between mutations in the albumin gene and elevated cholesterol levels 
has been previously observed in rare cases of congenital analbuminemia.48 This has 
been mainly suggested to result from compensatory increases in hepatic production of 
other non-albumin plasma proteins to maintain colloid osmotic pressure particularly 
apolipoprotein B-100 leading to elevations in TC and LDL-C but normal HDL-C levels – 
which is consistent with our findings – although the exact mechanisms remain 
uncertain.49 A lipodystrophy-like phenotype has also been linked to analbuminemia which 
is consistent with the suggestive tendency for increased risk of T2D with LOF and 
predicted damaging variants in albumin in the population (OR=1.85; P=0.007) 
(Supplementary Table 30). 

SRSF2 

The SRSF2 gene encodes a highly conserved serine/arginine-rich splicing factor and has 
previously been linked to acute liver failure in liver-specific knockout in mice with 
accumulation of TC in the mutant liver.50 Thus, this gene could be linked to a non-
alcoholic fatty liver phenotype with accumulation of lipids in the liver as observed with 
other genes as PNPLA3 and TM6SF2.7 Therefore, we looked at association with liver 
function markers and we found an association between SRSF2 and higher albumin levels 
(P = 1 × 10-4) and a suggestive tendency for higher gamma glutamyl transferase (GGT) 
(P = 0.05), consistent with potential liver involvement (Supplementary Table 33-36). 

CREB3L3 

The association between CREB3L3 and higher TG supports previous evidence from a 
single family and cohorts with severe hypertriglyceridemia but not sufficient evidence to 
be classified as a Mendelian lipid gene (ref).51-53 This has been additionally supported by 
functional studies where Creb3l3 knockout mice showed hypertriglyceridemia partly due 
to deficient expression of lipoprotein lipase coactivators (Apoc2, Apoa4, and Apoa5) and 
increased expression of activator Apoc3.52 

NR1H3 

The observed association of NR1H3 with higher HDL-C and lower TG is supported by 
previous evidence of a role in non-alcoholic fatty liver disease in mice.54 This gene 
encodes a liver X receptor alpha (LXR�) which is a nuclear receptor that acts as a 
cholesterol sensor and protects from cholesterol overload.55,56 It has previously been 
shown that disrupting the LXR� phosphorylation at Ser196 in mice prevents non-
alcoholic fatty liver disease.54 

PLA2G12A 

PLA2G12A is in the secretory phospholipase A2 (sPLA2) family, which liberates fatty 
acids in the -sn2 position of phospholipids. This pattern suggests a previously unreported 
possible lipolytic role of this phospholipase in a manner similar to another member of the 
adipose-specific phospholipases, PLA2G16, which has been shown to have a lipolytic 
role in mice.57,58 Further studies are needed to confirm whether PLA2G12A has a lipolytic 
role. 

PPARG 
Rare loss of function mutations in PPARG have been previously found to be associated 
with reduced adipocyte differentiation, lipodystrophy and increased risk of T2D.59-61 

STAB1 

The STAB1 gene is a scavenger receptor that has been shown to mediate uptake of 
oxidized LDL-C.62,63 There was a suggestive association between LOF variants and 
higher LDL-C (� = 4.3 mg/dL, P = 2 × 10-3) consistent with its role in LDL-C uptake. 

 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.22.423783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423783


 23

STAR Methods 
 

Informed consent was obtained from all subjects and committees approving the 
studies are available in the supplement. 

 

Corresponding Author and Lead Contact:  

Request for further information should be directed to and will be fulfilled by the Lead 
Contact, Gina Peloso (gpeloso@bu.edu). 

 

Materials Availability  

This study did not generate new unique reagents. 

 

Data and Code Availability  

Controlled access of the individual-level data are available through dbGAP (please 
refer to the Supplementary Information), and the individual-level UK Biobank data are 
available upon application to the UK Biobank. 

 

Study Overview 

Our study samples were derived from four major data sources with exome or 
genome sequence data and blood lipid levels: CAD case-control studies from the 
Myocardial Infarction Genetics Consortium (MIGen, n = 44,208) and a UKB nested 
case-control study of CAD (n = 10,689); T2D cases-control studies from the AMP-
T2D-GENES exomes (n = 32,486); population-based studies from the TOPMed 
project freeze 6a data (n = 44,101) restricted to the exome, and the UKB exome 
sequence data (n = 40,586) (see Supplementary Note). Within each data source, 
individuals were excluded if they failed study-specific sequencing quality metrics, 
lacked lipid phenotype data, or were duplicated in other sources. We additionally 
removed first- and second-degree relatives across data sources while we kept 
relatives within each data source since we were able to adjust for relatedness within 
each data source using kinship matrices in linear mixed models. If samples from the 
same study were present in different data sources, we used the samples in the data 
source which has the largest sample size from the study and removed the 
overlapping set from the other data source. For instance, samples from the 
Atherosclerosis Risk in Communities (ARIC) Study were removed from TOPMed and 
kept in MIGen which had more sequenced samples from ARIC. Similarly, samples 
from the Jackson Heart Study were kept in TOPMed and removed from MIGen. To 
obtain duplicate and kinship information across data sources we used 14,834 
common (MAF>1%) and no more than weakly dependent (r2 < 0.2) variants using the 
make-king flag in PLINK v2.0. Single-variant association analyses were performed 
within each data source, case-status, and ancestry combination. The data were 
sequenced and variant calling performed separately by data source and this allowed 
us to look for effects by case-status and genetically-inferred and/or self-reported 
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ancestry groups. We performed gene-based meta-analyses by combining single-
variant summary statistics and covariance matrices generated from RVTESTS.64  We 
performed ancestry-specific gene-based meta-analyses by combining single-variant 
summary data from five major ancestries with >10,000 across all data sources: 
European, South Asian, African, Hispanic, and East Asian ancestries. 

 

Phenotypes 

We studied six lipid phenotypes; total, LDL-C, HDL-C, non-HDL-C, TG and TG:HDL. 
TC was adjusted by dividing the value by 0.8 in individuals reporting lipid lowering 
medication use after 1994 or statin use at any time point. If LDL-C levels were not 
directly measured, then they were calculated using Friedewald equation for 
individuals with TG levels < 400 mg/dl using adjusted TC levels. If LDL-C levels were 
directly measured then, their values were divided by 0.7 in individuals reporting lipid 
lowering medication use after 1994 or statin use at any time point.5 TG and TG:HDL 
levels were natural logarithm transformed. Non-HDL-C was obtained by subtracting 
HDL-C from adjusted TC levels. Residuals for each trait in each cohort, ancestry, and 
case status grouping were created after adjustment for age, age2, sex, principal 
components, sequencing platform, and fasting status (when available) in a linear 
regression model. Residuals were then inverse-normal transformed and multiplied by 
the standard deviation of the trait to scale the effect sizes to the interpretable units. 

 

Sequencing and Quality Control 

Myocardial Infarction Genetics Consortium (MIGen) 

A set of common variants was extracted for sample quality control including relative 
inference, principal component analysis, and estimation of heterozygosity. SNPs on 
autosomes and not in low complexity regions or segmental duplications were 
extracted. SNPs with quality of depth (QD)> 2, call rate >98%, self-reported-race-
specific Hardy-Weinberg equilibrium (HWE) p-value >1×10-8, Variant Quality Score 
Recalibration (VQSR) of PASS and MAF>1% were retained. Sample relatedness 
was estimated with KING and duplicate samples removed. Genetically inferred 
ancestry was assigned to each individual by calculating principal components jointly 
with 1000 Genomes phase 3 version 5 and building a 5-Nearest Neighbor classifier 
using the top 6 principal components. Heterozygosity was estimated within each 
genetic ancestry group and samples with F statistic above 0.3 were removed. 
Genetic sex was inferred based on high quality X-chromosome variation including 
variants with call rate >0.95, MAF>2%, a PASS VQSR, QD>3 if the variant is an 
insertion or deletion and QD>2 if it is SNP. Samples with discordant phenotypic sex 
and genetic sex were removed. Finally, sample quality control metrics were 
calculated using Hail and samples with call rate<0.9a mean depth (DP)<30 and 
mean genotype quality (GQ)<0.8 were excluded. A total of 44,240 samples with lipid 
data measurements were included after further excluding duplicates and relatives 
with other data sources. 

Variant quality control was performed amongst remaining samples and a total 
of 8,716,575 autosomal variants were included after removing those that fail HWE as 
calculated by genetic ancestry group (p-value<1×10-8), lie in low complexity regions 
or segmental duplications, with inbreeding coefficient< -0.3, are insertions or 
deletions with QD ≤ 3 or SNPs with QD ≤ 2 or variants where VQSR does not PASS 
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with the exception of singletons where variants with VQSRTrancheSNP99.60to99.80 
were retained (Supplementary Tables 37-38). 

 

Trans-Omics for Precision Medicine (TOPMed) 

Whole genome sequencing at 30X mean depth was performed at one of six 
sequencing centers:Broad Institute of MIT and Harvard, Northwest Genomics Center, 
New York Genome Center, Illumina Laboratory Services, Psomagen, Inc. (formerly 
Macrogen USA), Baylor College of Medicine Human Genome Sequencing Center. 
For most studies, all individuals in the study were sequenced at the same center. 
Sequence reads were aligned to human genome build GRCh37 or GRCh38 at each 
center using similar, but not identical, processing pipelines. The resulting sequence 
data files were transferred from all centers to the TOPMed Informatics Research 
Center (IRC), where they were re-aligned to build GRCh38, using a common pipeline 
to produce a set of ‘harmonized’ .cram files. Processing was coordinated and 
managed by the ‘GotCloud’ processing pipeline. The IRC performed joint genotype 
calling on all samples. Quality control was performed at each stage of the process by 
the Sequencing Centers, the IRC, and the TOPMed Data Coordinating Center 
(DCC). Only samples that passed QC were included in the call set. 

The two sequence quality criteria that were used to pass sequence data on for 
joint variant discovery and genotyping are: estimated DNA sample contamination 
below 3%, and fraction of the genome covered at least 10x 95% or above. DNA 
sample contamination was estimated from the sequencing center read mapping 
using software verifyBamId.65 

The genotype used for analysis are from “freeze 6a” of the variant calling 
pipeline performed by the TOPMed Informatics Research Center (Center for 
Statistical Genetics, University of Michigan, Hyun Min Kang, Tom Blackwell and 
Gonçalo Abecasis). Variant detection (SNPs and indels) from each sequenced (and 
aligned) genome was performed by the vt discover2 software tool. The variant calling 
software tools are under active development; updated versions can be accessed at 
http://github.com/atks/vt, http://github.com/hyunminkang/apigenome, and 
https://github.com/statgen/topmed_variant_calling. 

One individual from duplicate pairs identified by the DCC was removed, 
retaining the individual with lipid levels available when one did not have lipid levels. If 
both individuals had lipid levels, one individual was randomly selected. Individuals 
were excluded when their genotype determined sex did not match phenotype 
reported sex (n=6) and individuals <18 years old were excluded (n=865). Ancestry 
was defined as self-reported ancestry. 

 

AMP-T2D-GENES 

Sequencing and quality control were performed as previously described.15 Following 
sequencing and variant calling, we measured samples and variants according to 
several sequence quality metrics and excluded those that were outliers relative to the 
global distribution. These exclusions produced an “analysis” dataset of 45,231 
individuals and 6.33M variants. We then estimated, within each ancestry, pairwise 
IBD values, genetic relatedness matrices (GRMs), and PCs for use in downstream 
association analysis. We used the IBD values to generate lists of unrelated 
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individuals within each ancestry, excluding 2,157 individuals from an “unrelated 
analysis” set of 43,090 individuals (19,828 cases and 23,262 controls) and 6.29M 
non-monomorphic variants. 

 

UK Biobank 

We used two UKB datasets with exome sequence data. The first is a CAD case 
control study with 12,938 individuals. 29 samples were removed as they had 
discordant genotypes with genotyping array data, 17 showed mismatch between the 
reported and genetically inferred sex, 4 had excess heterozygosity and 6 had a call 
rate <95%. To perform the sex-mismatch analyses, variants on the X-chromosome 
were selected after filtering out low quality genotypes, call rate<95%, MAF<2%, low 
QD score (3 for INDELs and 2 for SNPs), low confidence regions and segmental 
duplications and those that do not have PASS VQSR. A set of high quality common 
autosomal variants were extracted for relative inference, principal component 
analysis, and estimation of heterozygosity after removing low confidence regions and 
segmental duplications, low quality genotypes, QD<2, call rate<98%, self-reported 
ancestry-specific HWE p>1x10-6 among controls, MAF<1% and do not have PASS 
VQSR. Heterozygosity was estimated within each ancestry and samples with F 
statistic>2 were removed. Genetically inferred ancestry was obtained using the 1000 
Genomes as reference. Sample QC metrics were then calculated in HAIL using 
autosomal variants after filtering out low-quality genotypes, variants with ancestry-
specific HWE p<1×10-6, low confidence regions and segmental duplications, low QD 
score (3 for INDELs and 2 for SNPs) and those that do not have PASS VQSR. 
Samples with call rate below 95%, mean DP below 30 and mean GQ below 80 were 
removed. Variant QC was done through filtering out monomorphic variants, call rate 
below 95%, those with HWE (p < 1 × 10-6), lie in low confidence regions or segmental 
duplications, are insertions or deletions with QD <= 3 or SNPs with QD <= 2 or 
variants where VQSR does not PASS unless singleton in which case retain those 
with VQSRTrancheSNP99.60to99.80 (Supplemental Table 39). A total of 11,216 
PC-identified European ancestry participants were included after additional removal 
of duplicates and relatives across data sources. A total of 2,734,519 variants were 
included. 

The second UKB data set is a population-based dataset. Samples were 
filtered out if they showed mismatch between genetically determined and reported 
sex, high rates of heterozygosity or contamination (D-stat > 0.4), low sequence 
coverage (<85% of targeted bases achieving >20X coverage), duplicates, and exome 
sequence variants discordant with genotyping chip. More details are described 
elsewhere.66 The "Functionally Equivalent" (FE) call set was used.67 A total of 43,243 
PC-identified European ancestry individuals were included after additional removal of 
duplicates and relatives across data sources. 

 

Variant Annotation  

We compiled autosomal variants with call rate>95% within each case and ancestry 
specific analysis dataset with MAC≥1 (across the combined data). Variants were 
annotated using the Ensembl Variant Effect Predictor30 and its associated Loss-of-
Function Transcript Effect Estimator (LOFTEE)31 and the dbNSFP34 version 3.5a 
plugins. We limited our annotations to the canonical transcripts. The LOFTEE plugin 
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assesses stop-gained, frameshift, and splice site disrupting variants. Loss-of-function 
variants are classified as either high confidence or low confidence. The dbNSFP is a 
database that provides functional prediction data and scores for non-synonymous 
variants using multiple algorithms.34 This database was used to classify missense 
variants as damaging using two different definitions based on bioinformatic prediction 
algorithms. The first is based on MetaSVM33 which is derived from 10 different 
component scores (SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERP++, 
MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy, PhyloP). The second is 
based on 5 variant prediction algorithms including SIFT, PolyPhen-2 HumVar, 
PolyPhen-2 HumDiv, MutationTaster and LRT score. Additionally, we ran a deep 
neural network analysis (Splice AI) to predict splice-site altering variants.32 Multi-
ancestry and ancestry-specific variant descriptive analyses were performed using 
variant-specific statistics obtained from the largest sample size out of the 6 
phenotypes. 

 

Single-Variant Association Analysis 

Each data source was sub-categorized based on ancestry and CAD or T2D case 
status in the studies ascertained by disease status. Subgrouping data sources 
yielded a total of 23 distinct sample sub-categories. As relatives were kept within 
each sub-group, we performed generalized linear mixed models to analyze the 
association of single autosomal variants with standard-deviation corrected-inverse-
normal transformed traits using RVTESTS.64 RVTESTS was used to generate 
summary statistics and covariance matrices using 500 kilobase sliding windows. To 
obtain the single-variant associations, we performed a fixed-effects inverse-variance 
weighted meta-analysis for multi-ancestry and within each of the five major 
ancestries. An exome-wide significance threshold of P<7.2×10-8 (Bonferroni 
correction for six traits and using previously recommended threshold for coding 
variants P<4.3×10-7)35 was used to determine significant coding variants. 

 

Gene-Based Association Analysis 

We used summary level score statistics and covariance matrices from autosomal 
single-variant association results to perform gene-based meta-analyses among all 
individuals and within each ancestry using RAREMETALS version 7.2.47 Samoan 
individuals only contributed to the overall analysis. Gene-based association testing 
aggregates variants within each gene unit using burden tests and SKAT which allows 
variable variant effect direction and size.68 The “rareMETALS.range.group” function 
was used with MAF<1%, which filters out all variants with combined MAF>1% in all 
meta-analytic datasets. All variants with call rates<95% and not annotated as LOF 
using LOFTEE, splice-site variants or damaging missense as defined by MetaSVM or 
by all SIFT, PolyPhen-2 HumVar, PolyPhen-2 HumDiv, MutationTaster and LRT 
prediction algorithms (Damaging 5 out of 5) were excluded in the gene-based meta-
analyses.  

We used 6 different variant groupings to determine the set of damaging 
variants within each gene, 1) high-confidence LOF using LOFTEE, 2) LOF and 
predicted splice-site altering variants, 3) LOF and MetaSVM missense variants, 4) 
LOF, MetaSVM missense and predicted splice-site altering variants, 5) LOF and 
damaging 5 out 5 missense variants, and 6) LOF, damaging 5 out 5 missense and 
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predicted splice-site altering variants. An exome-wide significance threshold of 
P<4.3×10-7, Bonferroni corrected for the maximum number of annotated genes 
(n=19,540) and six lipid traits, was used to determine significant coding variants. Two 
gene transcripts, DOCK6 and DOCK7, that overlap with two well-studied lipid genes, 
ANGPTL8 and ANGPTL3, respectively, met our exome-wide significance threshold. 
After excluding variation observed in ANGPTL8 and ANGPTL3, DOCK6 and DOCK7, 
respectively, were no longer significant and have been excluded as associated 
genes. 

Heterogeneity of gene-based estimates in all gene-trait-variant grouping 
combinations passing exome-wide significant levels was assessed across the five 
main ancestries (European, South Asian, African, Hispanic and East Asian) using 
Cochran’s Q.  

 

Gene-Based Analysis of GWAS Loci and Drug Targets 

We performed gene-based analysis using the six variant groups for genes in GWAS 
loci. A locus was defined as the region around each GWAS index variant ± 200kb. 
Top GWAS signals were obtained from a recent meta-analysis of >300,000 
individuals in the Million Veterans Program.8 In-silico lookup of gene-based 
associations for respective lipid traits were then performed for all genes within 
defined GWAS loci. Drug target genes were obtained from the drug bank database42 
using the following search categories: “Hypolipidemic Agents, Lipid Regulating 
Agents, Anticholesteremic Agents, Lipid Modifying Agents and 
Hypercholesterolemia”. A liberal definition for drug targets was used – drugs with any 
number of targets and targets targeted by any number of drugs – and then in-silico 
lookups were performed for gene-based associations. 

 

Gene-set Enrichment Analysis 

Gene-set enrichment analyses were performed for sets of Mendelian-, protein-
altering- and non-protein altering GWAS, and drug target genes with LDL-C, HDL-C 
and TG. 21 Mendelian genes were included based on previous literature2: LDLR, 
APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, CETP, LIPC, LIPG, APOC3, ABCA1, 
APOA1, LCAT, APOA5, APOE, LPL, APOC2, GPIHBP1, LMF1, ANGPTL3, and 
ANGPTL4. We analyzed GWAS gene sets based on their coding status and their 
proximity to the most significant signal in the GWAS. Coding variants were defined as 
missense, frameshift, or stop gained variants. Gene sets for coding or non-coding 
variants were then stratified into three categories based on proximity to the most 
significant variant within each locus – closest-, second closest- and greater than 
second closest gene. For each gene within each set, we obtained the most 
significant association in the multi-ancestry or ancestry specific meta-analysis set 
using any of the six different variant groups. Then each gene within each gene set 
was matched to 10 other genes based on sample size, total number of variants, 
cumulative MAC, and variant grouping nearest neighbors using the matchit R 
function. Then we compared the proportions using Fisher’s exact test between the 
main and matched gene sets by applying different P-value thresholds. 

 

Association of Lipid Genes with CAD and T2D data and liver fat/markers 
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We determined the associations of 40 genes identified in the main and GWAS loci 
analyses with CAD, T2D, and glycemic and liver enzyme blood measurements. The 
association with T2D was obtained from the latest gene-based exome association 
data from the AMP-T2D-GENES consortium.15 The reported associations were 
obtained from different variant groups based on their previous analyses. We 
additionally performed gene-based association analyses with CAD using the MIGen 
case-control, UKB case-control, and UKB cohort samples using the variant groups 
described above. Further, six traits including fasting plasma glucose, HbA1c, alanine 
aminotransferase, aspartate aminotransferase, gamma glutamyl transferase and 
albumin were analyzed in the UKB dataset. Single variant association analyses were 
performed with RVTESTS. Linear mixed models incorporating kinship matrices were 
used to adjust for relatedness within each study. Covariance matrices were 
generated using 500 kilobase sliding windows. RAREMETALS was used to assess 
associations between aggregated variants (MAF<1%) in burden and SKAT tests with 
CAD and each of the six quantitative traits. We used 6 different variant groupings to 
determine the set of damaging variants within each gene, 1) high-confidence LOF 
using LOFTEE, 2) LOF and predicted splice-site altering variants, 3) LOF and 
MetaSVM missense variants, 4) LOF, MetaSVM missense and predicted splice-site 
altering variants, 5) LOF and damaging 5 out 5 missense variants, and 6) LOF, 
damaging 5 out 5 missense and predicted splice-site altering variants. 
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Figure 1. Study samples and design 

 

 

Figure 1: Flow chart of the different stages of the study. Exome sequence genotypes 
were derived from four major data sources: The Myocardial Infarction Genetics 
consortium (MIGen), the Trans-Omics from Precision Medicine (TOPMed), the UK 
Biobank and the Type 2 Diabetes Genetics (AMP-T2D-GENES) consortium. Single-
variant association analyses were performed by ancestry and case-status in case-
control studies and meta-analyzed. Single-variant summary estimates and 
covariance matrices were used in gene-based analyses using 6 different variant 
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groups and in multi-ancestry and each of the five main ancestries. AFR=African 
ancestry, EAS=East Asian ancestry, EUR=European ancestry, HIS=Hispanic 
ancestry, SAM=Samoan ancestry, SAS=South Asian ancestry. 
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Figure 2. Exome-wide significant associations with blood lipid phenotypes 

A.  
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Figure 2: A) Circular plot highlighting the evidence of association between the 
exome-wide significant 35 genes with any of the six different lipid traits (P < 4.3 × 10-

7). The most significant associations from any of the six different variant groups are 
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plotted. For almost all of the genes the most significant associations were obtained 
from the multi-ancestry meta-analysis. B) Strength of association of the 35 exome-
wide significant genes based on the most significant variant grouping and ancestry 
across the six lipid phenotypes studied. Most of the genes indicated associations with 
more than one phenotype. Sign(beta)*-log10(p) displayed for associations that 
reached a P < 4.3 × 10-7. When the Sign(beta)*-log10(p) > 50, they were trimmed to 
50.  
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Figure 3. Enrichment of Mendelian, GWAS, and drug target genes in the gene-
based lipid associations 

 

 

Figure 3: Enrichment of gene sets of Mendelian genes (n=21), GWAS loci for LDL-C 
(n=487), HDL-C (n=531), and triglycerides (TG) (n=471) genes and drug target 
genes (n=53). 
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