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W e consider the problem of precise estimation of service-level measures in multistage 
production-inventory systems when the system is managed for high levels of service. 

Precisely because the service level is high, stockouts, large backorders, and unfilled demands 
are rare and thus difficult to estimate by straightforward simulation. We propose and analyze 
alternative estimators, based on changing the demand distribution to make these rare events 
less rare. Whereas straightforward simulation for a fixed relative error results in computational 
requirements that grow exponentially in certain stock-level parameters, the requirements for our 
importance sampling estimators remain bounded for all parameter values. We provide bounds 
making it possible to determine the maximum number of replications required before any are 
generated. Numerical examples illustrate the effectiveness of our method. 
(Capacity-constrained Inventory Models; Multiechelon Inventory Systems; Service-level Estimation; 
Rare Events; Tail Probabilities) 

1. Introduction 
A primary objective of production and inventory man- 
agement is the attainment of a high level of service. Im- 
portant indicators of service level include the frequency 
of stockouts, the average number of unfilled orders, and 
the proportion of demands not met from stock; an ef- 
fective inventory policy keeps each of these quantities 
low without incurring excessive holding hosts. In a 
complex, multistage production system, the evaluation 
of service measures and costs often requires simulation. 
Somewhat ironically, the very effectiveness of an inven- 
tory policy can make accurate estimation of service 
measures difficult by making deviations from ideal ser- 
vice exceedingly rare. 

We investigate the problem of precise service-level 
estimation in a class of multistage production-inventory 
systems for which simulation is the only available nu- 
merical method. We consider multiple facilities in se- 
ries, each intermediate node drawing raw material from 
its predecessor and supplying its successor, the lowest 
node supplying external demands. Production deci- 
sions and the movement of inventory are determined 

by a base-stock policy for echelon inventory in which each 
node attempts to restore cumulative downstream in- 
ventory to a target level, called the base-stock level. The 
model is rendered analytically intractable primarily by 
the presence of production capacity limits at each stage. 
Actual production at each stage may fall short of target 
production because of either the unavailability of up- 
stream inventory or the production capacity constraints. 
Clark and Scarf (1960), Rosling (1989), and Langenhoff 
and Zijm (1992) study similar models, but without ca- 
pacity constraints. Federgruen and Zipkin (1986) and 
Tayur (1992) study the single-stage capacitated case. 
Our simulation analysis starts from recursions intro- 
duced in Glasserman and Tayur (1994) and builds on 
asymptotics and bounds in Glasserman (1993). 

We summarize the evolution of the system through a 
vector shortfall process recording the production deficit 
for each stage. From the stationary shortfall distribution 
we can obtain various measures of performance-in 
particular, the stockout probability, the average back- 
log, and the fill rate, which is the proportion of demands 
met directly from stock. At high base-stock levels, stock- 
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outs are rare and all these measures of service become 
difficult to estimate. Indeed, we show that using 
straightforward simulation the number of replications 
required to achieve a fixed accuracy grows exponen- 
tially in the lowest base-stock level. We address this 
problem by introducing importance sampling estimators. 
Our method simulates shortfalls with a new demand 
distribution, under which stockouts become less rare 
and all three service measures are efficiently estimated. 
Our estimators are unbiased and have bounded relative 
error, meaning that the number of replications required 
to achieve a fixed accuracy is independent of the base- 
stock levels. We provide bounds that make it possible 
to determine a priori the maximal number of replica- 
tions required. 

Our use of importance sampling continues a line of 
development that includes Siegmund (1976), Asmussen 
(1987, ?XII.7, and 1990), Sadowsky (1991), Lehtonen 
and Nyrhinen (1992), and Chang et al. (1994), among 
others; see Heidelberger (1995) for an overview of rare- 
event simulation. These results exploit exponential 
asymptotics to identify effective importance sampling 
distributions, as we do. (Different asymptotics corre- 
sponding to a different class of rare events are used for 
the same purpose in Shahabuddin 1994, where the con- 
cept of bounded relative error is introduced.) Much of 
this work deals with level-crossing probabilities for one- 
dimensional processes. Our application differs in that 
the shortfall process we study is vector-valued and, ex- 
cept for the stockout probability, the quantities we es- 
timate are not expressible as level-crossing probabilities. 
These differences result in somewhat different argu- 
ments to establish bounded relative error and to identify 
explicit bounds. 

Although we consider only a specific class of models, 
our approach should be applicable to other production- 
inventory systems. A relatively minor extension of our 
analysis could be used to treat models with variable 
production capacity, fixed leadtimes, and assembly to- 
pologies, because the asymptotics in Glasserman (1993) 
apply to these systems. More generally, our implemen- 
tation of importance sampling through a particular 
change in the demand distribution seems likely to be 
effective for many systems with limited production ca- 
pacity. It is also worth noting that though our analysis 

is asymptotic, numerical experiments suggest that our 
estimators result in substantial improvement in simu- 
lation efficiency even at moderate parameter values. 

The rest of this paper is organized as follows. Section 
2 specifies the model details and gives the shortfall re- 
cursions on which our analysis is based. Section 3 ex- 
plains the problem of rare events and shows that 
straightforward simulation is inadequate. We present 
our estimators and state our main results in ?4. The 
analysis of the estimators and all proofs are deferred 
to ?5. 

2. The Model 
We consider a multistage production-inventory system 
with d nodes in series. Time is divided into periods of 
fixed length, with inventory levels reviewed and pro- 
duction decisions made once in each period. Node i, i 
= 1, ..., d - 1, draws material from node i + 1, and 
node d draws from an unlimited source of raw material. 
Each node has limited production capacity. Let ci denote 
the capacity at node i, and In the net inventory at stage 
i at the end of period n. Demands for finished goods 
arrive in each period and are either filled or backlogged, 
depending on the net inventory In at stage 1. After the 
total demand Dn in period n is revealed, node i sets its 
production level to try to restore the cumulative inven- 
tory = II, to a specified level si, called the base-stock 
level for echelon i. (Echelon i refers to the subsystem con- 
sisting of stages 1 through i.) In short, node i follows a 
base-stock policy for echelon inventory with base-stock 
level s' for all i. However, two constraints potentially 
limit production: either the production capacity or the 
unavailability of upstream inventory can prohibit a full 
restoration of target inventory in a single period. 
Closely related variants of this model include systems 
with imperfect production, fixed leadtimes between 
stages, and an assembly system with more general to- 
pologies. See Glasserman and Tayur (1994) and Glas- 
serman (1993) for discussions of these variants. 

Define the shortfall Y' for echelon i to be the 
amount by which the net echelon inventory falls short 
of the target level s' at the end of period n; that is, 
Yn = si - =j II. Under a base-stock policy, stage i sets 
production to drive Y' to zero, while not exceeding 
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its production capacity ci or the available upstream 
inventory IXt`. 

The dynamics of the system can be fully captured by 
the shortfall vector process Y = .yl,.. ., yd), n } 01. 

Glasserman and Tayur (1994) show that the shortfalls 
satisfy 

n= max{O, Y'_1 + Dn - Cd}; (1) 

= max{O, Y,1 + D, I - ci, Y'j+1 + D,, - (s'+l - si)}, 

(2) 

= 1,.. ., d - 1, and that the vector process {Y,1, n 2 11 
admits a finite stationary distribution to which it con- 
verges from all initial distributions, provided that the 
demands {Dn, n 2 11 are (nonnegative and) i.i.d. with 
distribution FD and 

E[D1] < c* min{c': 1 < i < dl. (3) 

This result underlies our use of the regenerative method 
in ?4. 

As shown in Glasserman (1993), various key mea- 
sures of performance can be represented in terms of Y1, 
a random variable with the stationary distribution of 
W, n 2 01. The stockout probability, or the long-run av- 
erage proportion of periods in which stockout occurs, 
is 

a(s1) = P{Y1 > s1). 

The long-run expected average backlog is 

b(sl) = E(Y1 - ST- 

where x + max{0, x}. The fill rate, or the long-run av- 
erage proportion of demands met from stock, can be 
seen to be 

(Si ) =1_ Et{min(Y1 + D - s1, D)1+] 
f30) E[D] 

Though we focus exclusively on these service-level mea- 
sures, it is worth noting that our analysis is relevant to 
cost measures as well. If, for example, echelon-i inven- 
tory is charged a holding cost hi and if backorders are 
penalized at rate p, then the long-run average cost per 
period is 

d d 

-hi(s' E[YI) + p + I hi E(Y' - s- 1, 
i=l i= 

so evaluation of b(s1) is essential to the evaluation of the 
average cost. (Evaluation of E[Yi] does not pose a par- 
ticular problem for simulation.) 

3. The Problem of Rare Events 
As the base-stock level sl becomes large, stockouts be- 
come infrequent, the average backlog becomes almost 
negligible, and in the long run most demands can be 
filled from stock. Thus, with a high base-stock level s5, 

each of these measures is related to a rare event. (Only 
a(sl) is the probability of an event, but we use the term 
rare event loosely to refer to quantities that vanish as sl 
increases.) The degree of rarity is characterized by 
asymptotics and bounds in Glasserman (1993) for 
single- and multistage systems. Under conditions to be 
spelled out shortly, Theorem 1 of Glasserman asserts 
that for a single-stage system with capacity c and target 
level s, there are constants y > 0 and C > 0 such that 

* the stockout probability satisfies a(s) Ce-y'; 
* the average backlog satisfies b(s) (C/ y)e-s; 
* the fill rate satisfies 1 - /3(s) (C/yE[D])(eYc 

- 1)e-7. 

The notation f(x) g(x) means that f(x)/g(x) con- 
verges to unity as x -+ oo. 

To see the implications of these asymptotics for sim- 
ulation, consider the case of a(s). The relation a(s) 

Ce-Ys means that a (s) drops off exponentially at rate 
y as the base-stock level s increases, making stockouts 
exceedingly rare for large s. The most straightforward 
method of estimating a(s) generates independent real- 
izations of the indicator 1jy>sI and averages them (as- 
suming, for simplicity, that Y can be sampled directly). 
Let a_n(s) be the sample mean of n such realizations. 
Evidently, E[a-n(s)] = a(s) and 

Var[a-n(s)] = n-11(s) - (a(s))2] t n-la(s), 

because a(s) is small. Define the relative error, RE, of an 
estimator to be the ratio of its standard error to its mean. 
Then 

RE(a-n(S)) = V arkiXn(s)] exp{ysI 
a(s) nC 
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according to the asymptotic approximation for a(s) 
given above. For fixed n, as the event becomes rarer (i.e., 
s -+ oo) the RE becomes unbounded. For fixed s, suppose 
we want to choose n to achieve a relative error of 6, 0 
< 6 < 1; then, by settingexp(ys)/nC = 6, we find that 
we must have roughly exp(ys)/(62C) replications of 
lfy,s1. Thus, as the target level s increases, the number 
of runs required grows exponentially, rendering the 
method infeasible. This is the major problem with 
straightforward simulation. 

We address this problem by using importance sam- 
pling to develop estimators for which the RE is bounded 
uniformly in s. The number of runs required to achieve 
a specified accuracy thus remains bounded as s in- 
creases. Our estimators are based on simulating the sys- 
tem with a new demand distribution under which 
stockouts become less rare. To make this precise, we 
introduce some additional assumptions on the original 
demands. By supposing that P{D1 > c*}I > 0 we exclude 
the trivial case where demands may always be met from 
the current period's production. For simplicity we also 
assume that D1 - c* is nonarithmetic; otherwise, the 
asymptotics given above hold only through appropriate 
subsequences. Our most important assumption is that 
there exists a positive 00 at which 

1 < 'P(9o)--EIe9(DI-c*)] < 0(4) 

This condition, together with the convexity of the mo- 
ment generating function 4, and the properties 4(0) 
= 1 and 4'(0) = E[D1 - c*] < 0, guarantees the existence 
of a unique y > 0, called the conjugate point for the dis- 
tribution of D1 - c*, which solves 

+(y) = 1. (5) 

From FD and y we define a new distribution FD by set- 
ting 

FD(t) =Jey(u-*F() t > O. 

Condition (5) ensures that FD is indeed a probability 
distribution. Condition (4) is satisfied by most standard 
distributions with exponential tails. 

Our estimators rely on the distribution FD and an as- 
sociation between shortfall processes and random 
walks. Specifically, let Xn = Dn - c*, and 

Sn = X1 + * +Xn, n 2 1, with S0 = 0. (6) 

Because E[X1] = E[D1] - c* < 0, the random walk Sn 
has negative drift. If we let {DI), n 2 11 have distribution 
ED, and set Xn = Dn - c*, then {Xt,, n 2 11 is a sequence 
of i.i.d. random variables with distribution Fx(X) = FD(X 

+ c*), and 

gn?=1+ + Xn,n:1, withgo=0, (7) 

is the conjugate random walk associated with {Sn, n 
2 01. The conjugate walk Sn has positive drift because 
E[Xl1] = +'(y) > 0. (Condition (4) ensures that X1 has 
finite moments of all order; that is, E[gk] = E[XkeyXl] 
= ?>(k)(#y) < oo for every positive integer k.) Thus, de- 
mands drawn from FD have mean greater than c* and 
lead to frequent stockouts. 

4. Main Results 
We now present estimators with bounded relative error 
for the performance measures defined in ?2. Each of our 
algorithms simulates shortfalls with the new demand 
distribution FD until some stopping time T, then either 
stops or continues with the original demand distribu- 
tion FD. The choice of stopping time depends on the 
problem at hand. In an effort to unify notation we in- 
troduce three auxiliary systems of recursions. First, we 
let the vector process (Yn, ..., Yd) with (YO, ..., YO) 
= (0, ... , 0) mirror the form of (1)-(2) with Dn replaced 
by Dn up to some stopping time r; that is, 

d max{O, Yn-1 + Dn-cd1 for 1 < n , 

I=max{O, Yn-1 + Dn-cd} for n > T, 

and 

max{O, Yin_ + Dn-C', Yn?1 

+ Dn - (si+ -si)} for 1 < n < , 
Y~~~~~l = ~~~~~~~~(9) 

= max{O, iY + Dn- Ci, kni+'1 

+ n- (s4+' - si)} for n > T, 

fori= ,...,d- 1. 
The second and the third sets of recursions corre- 

spond to unreflected shortfalls, meaning that the zero 
components in the recursions are left out. Let 

(Si,S s) = (gos,tife the follow 

The vector (Sn, . , Sdn) satisfies the following: 
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1= SI_, + D,, - C; (10) 

St = maxIsX_1 + D,, - Ci, Si+1 + D, - (s'l -s 

(11) 

for i = 1,..., d - 1 and all n 1. Similarly, we set 

SZ = n -1 + D- C; (12) 

I = max{S',X1 + 
DI,-c', 

Sl+lI + D,1c-l 

(13) 

for i = 1,... , d - 1. The one-dimensional random walk 

ISJ (respectively, (S9n) is not to be confused with the 
vector process (St, ..., Sd) (respectively, (?, .... 

?'n)), though SI, coincides with Sd (respectively, Sn with 

?d,) in the important special case that c* = cd. All the 
recursions (8)-(13) are easily implemented in a simu- 
lation algorithm. (The question of how best to sample 
from FD depends, of course, on the original distributions 
FD. Acceptance-rejection schemes for some particular 
cases are analyzed in Nakayama 1992.) 

4.1. Stockout Probability 
Because of a nice link to a stopping time, the stockout 
probability a (s1) = PIY1 > sl I admits a straightforward 
simulation procedure involving the unreflected short- 
falls (?1, . . ., gdn) in (12)-(13) and the random walk Sn 
in (7). Specifically, from recursions (1)-(2) and (10)- 
(11), it follows that Yl =d maxn:0 Sn, where =d denotes 
equality in distribution. Let 

T(sl) = infIn 2 1: Sn > s1}, (14) 

and define T(sl) analogously for S1. Then 

PlY1 > s1} = PIT(sl) < oo} = E[e-6Ysts1), (15) 

the last equality following from Wald's likelihood ratio 
identity (as in Asmussen 1987, p. 266). (See the proof of 
Theorem 1 for details.) An unbiased estimator now 
emerges: 

Stockout Estimation. 
1. Simulate (gl, . . ., gdn) until T(s1). 
2. Return the estimator expI - yST(,1) I. 
In this algorithm the demands are always generated 

from FD. It is worth noting that the resulting estimator 
differs in an essential way from related estimators for 
one-dimensional random walks (such as the one in Sieg- 

mund 1976): the process S1 defining the level-crossing 
event in (14) is not a random walk, nor does it coincide 
with the process S appearing in the estimator. Never- 
theless, we have 

THEOREM 1. The estimator exp{-ySTr(s1)I is unbiased 
and has bounded RE. The RE is bounded above by 
;eA+-4-'/C_, for constants C, C+, 4_ and 4+ given in 
(30)-(33). 

REMARK 1. (i) The availability of an explicit upper 
bound on the relative error is useful in simulation plan- 
ning: if the RE for one replication is bounded by a con- 
stant A, then the number of replications required to 
achieve a relative error of 6 is bounded by (A/6)2, and 
this can be determined before any replications are gen- 
erated. Of course, the efficiency of the estimator does 
not rely on the availability of an explicit upper bound. 
(ii) In certain exceptional cases, the constant C_ may be 
zero, rendering the bound in the theorem vacuous. Even 
in this case, a finite bound is available. We postpone the 
details of this case to Remark 4 of ?5. 

4.2. Average Backlog 
We give two estimators for the average backlog. The 
first uses a randomization procedure; the second uses a 
regenerative representation. 

By recalling the definition of the average backlog, we 
find that it can be written as 

b(sl) E(Y1 - sT)+ = f PlY1 > x}dx. 

The rightmost expression, combined with the estimator 
for stockout probability given earlier, suggests a first 
estimator. To obtain an implementable procedure, we 
replace the infinite upper limit of integration with a ran- 
dom upper limit L, thus adapting a method introduced 
by Asmussen (1990) for heavy-traffic simulation. The 
algorithm is as follows. 

Backlog Estimation: Randomization Method. 
1. Generate L from an exponential distribution with 

rate y. 
2. Simulate (Si, ..., dn) independently of L until 

T(sl + L), where 
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T(s1 + L) = inf{n 2 1: S' > s1 + LI. (16) 

3. Return the estimator 

e-ys f YJ+ eY(t(x,x)`dx. (17) 

The integral in (17) can be written as a sum for pur- 
poses of implementation. To make this explicit, we de- 
fine 

tk = inf{In > tk-1: gln > St1l k =1 ,m 

Set T(sl) = to and T(sl + L) = tn. Then 

St,-x for s1 < x < ?l 

- X {Stk X for Sk l x < tk, 
STP(X ) X = 

Sty,- x forSt, -, X < s1+L. 

By substituting these back into the estimator, it then fol- 
lows that (17) admits the simpler expression 

-ysi m 
e 

e-Ysto(eySto - eYsl) + s eYStk(eYSk - etSNk) 

y k=1 

+ e-YSt,,,(eY(s'+L) - 

For estimator (17) we have the following result. 

THEOREM 2. The estimator (17) is unbiased and 
has bounded RE. The RE is bounded above by 

yey(4+ --)/C-,for constants C_, C+, 4_ and 4+ given in 
(30)-(33). 

In a related setting, Asmussen (1990) recommends 
using the random horizon L as a control variate. We 
examine this option numerically in ?4.4. 

Our next estimator uses a regenerative framework, so 
we proceed by identifying regeneration points. This re- 
quires a closer examination of the shortfall recursions. 

For each k, 1 < k < d, let the sequence {rk, n 2 01 
denote the length of the shortest n-step path through 
Figure 1, starting from the lowest node in column k; e.g., 

r2 = min{2c2, c2 + (S3 - S2), (S3 - S2) + C3 

(S3 - S2) + (S4 -S3) 

Figure 1 Each Vertical Arc in Column i has Length cd; Each Diagonal 
Arc from Column ito Column i + 1 has Length si+1 - S 

s d~cd 
, z S1 s/-s2 . dd 1 

' 1 < o 3 ^ nC3 d 

and r d = nCd for all n 2 0. For convenience we write rn 
= r' for all n. For large n, the sequence {rn, n 2 01 even- 
tually follows a pattern, in spite of an initial irregularity. 
Indeed, if stages il, i2, . . ., im,(jl < * < ij,) all have 
capacity c*, Glasserman (1993) argues that rn - nc* = 

for all n 2 n*, where 

n min[(s' - s1) - (j - 1)c*], (18) 

and n* are constants. This means that, for sufficiently 
large n, the length rn of the shortest n-step path differs 
from nc* only by a constant, which depends on the min- 
imal capacity and the base-stock levels. We use these 
observations in the following result. We state it for 
(Yn, * Ydn), but it applies as well to (Y', ..., Ydj) de- 
fined through (8)-(9). 

LEMMA 1. (i) For k = 1, . . ., d - 1, we have for all n 

yk + minr_ jcd] < Y < yk + maxr jcd]. 
O?jmn O?jmn 

(ii) In particular, if 

cd < min{c1) and (19) 
i*d 

c s2 _ s1, sd -sd- (20) 

then Yk < Yd , for all n and all k. 

While the vector process (Yn, n 2 01 is a regenerative 
process whenever the demands satisfy (3), we nonethe- 
less require (19) and (20) to help identify regeneration 
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points. Under these conditions, it follows from Lemma 
1 (ii) and the nonnegativity of the shortfalls that the vec- 
tor process (Y', ..., Yd) regenerates whenever yd re- 
turns to 0. This justifies the representation 

Td_ 
1 - To-1I 

EY -ST)] = ErI XY - ST (21) 
1_n=O 

in which Tgd inf{n 2 1: yd = 01. The finiteness of 
E[rd] follows from (1), (3), and standard results on re- 
flected random walks. 

Because E[rd] does not depend on the si, its estima- 
tion is straightforward and does not raise any rare-event 
issues; hence, we focus on the numerator in (21). The 
numerator is nonzero only if Yl exceeds s1 in a cycle- 
a rare event. To make this level-crossing less rare, we 
first simulate with the new demand distribution FD, 

thus driving the shortfalls upward. Once sl is reached, 
we suspend the importance sampling to facilitate com- 
pletion of the cycle. Goyal et al. (1992) call this type of 
approach dynamic importance sampling. The simulation 
can be carried out as follows. 

Backlog Estimation: Regenerative Method 
1. Simulate (il, ..., id) until T, min{rg, i(sDI, 

where 

0 = inf{n n1 yd = 01, and (22) 

i-(sl) = inf{n 2 1: yl > si). (23) 

2. If i(sl) < 5d, continue simulating (Yl, ..., d 

but now using FD, until T0. 
3. Return the estimator 

d_ 

e-eS;Sl) , (yl _ST) (24) 

In this setting the stopping time T, plays the role 
played by r in recursions (8)-(9). The algorithm pre- 
scribes that in case i(sl) < Id, meaning that the process 
yl attains level sl in a cycle, we switch from PD to FD 

when the level crossing occurs, simulate until -d, and 
then evaluate (24). Otherwise, we must have r 
< (s1) resulting in an estimator value of zero. In ?5 we 
verify that r is almost surely finite. 

Paralleling earlier results, we have 

THEOREM 3. Estimator (24) is unbiased and has bounded 
RE under conditions (19)-(20). The RE is bounded above by 

YBe"4+ /C_, for constants C_, 4+ and B given in (30), (33), 
and (46). 

A regenerative importance sampling estimator for 
stockout probability could be defined through a minor 
modification of (24). However, such an estimator seems 
inferior to the one defined in ?4.1. On any cycle in which 
a stockout occurs, the estimator of ?4.1 terminates a rep- 
lication before the regenerative cycle would be com- 
pleted. So, there is no incentive to simulate the rest of 
the cycle. 

4.3. Fill Rate 
As for the average backlog, we present two estimators 
for the fill rate. One exploits an integral representation; 
the other uses the regenerative framework. 

First, we use the definition of the fill rate to express 
the expected demands not filled in a period as 

(E[D])(1 - ,6(sl)) 

= E[(Y1 + D - s')+11y1?s1j] + E[D11y1>s1j] 

= ERY1 + D - sl)+] - E[(Y1 - s1)+1 
00 

- f (P(Y1 + D > x} - P{Y1 > xD)dx. (25) 

From the recursions (1)-(2) and (10)-(11) it follows 
that 

Yn + Dn =d max [SiJ1 + Dj] 

and therefore 

Yl + D =d max[S_1 + Dn]. 
n21 

By defining T'(x) = inf{n 2 1: S 1- + Dn > XI and T'(x) 
=inf{n 2 1: ?ll_ + Dn > x}, we have 

P{Y1 + D > x} = P{T'(x) < oo} = E[e-st'(x)]. (26) 

The last equality follows from Wald's likelihood ratio 
identity and the finiteness of T'(x). A combination of 
(25), (26), and (15) leads to the following algorithm for 
estimating (E[D])(1 - 63(sl)). 
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Fill-rate Estimation: Randomization Method 
1. Generate L from an exponential distribution with 

rate y. 
2. Simulate ( 9,... ., S") independently of L until T(s' 

+ L). 
3. Return the estimator 

's1+L 

e-s [e-((x,x) e-Y(9T(xr-x)idx. (27) 

An argument parallel to the one used for (17) ex- 
presses the integral in (27) as a sum. 

THEOREM 4. The estimator (27) is unbiased and has 
bounded RE. If (20) holds, the RE is bounded above by 

VyC+ (e2yc + 1)ey(4+-4-)10 - C+) 

for constants C+, 4_ and 4+ given in (31)-(33). 

REMARK 2. (i) Without Condition (20) an upper 
bound is still available, as explained in Remark 5 of ?5. 
(ii) For a single-stage system with capacity c and base- 
stock level s, the shortfall recursion Yn = max{0, Yn-1 

+ Dn - Cl (cf. (1)) implies that the steady-state shortfall 
Y satisfies (see Glasserman 1993) 

Y=dmax(0,Y+ D-cl. (28) 

This enables us to write the fill rate as 

f(s) = 1 - E[D] fI P{Y > xldx, 

which in turn suggests a simplified estimator for the fill 
rate in a single-stage case: 

1 - E[D] f e-7Y'xdx, 

where Tx is the first time the conjugate random walk S,, 
exceeds level x. It is easy to verify that this estimator is 
unbiased and has bounded RE. 

For our second approach we require assumptions 
(19)-(20) in order to use a regenerative framework as 
we did for the average backlog. Let the notation a A b 
stand for min(a, b). The expected demands not filled in 
a period can then be written 

E[D](1 - ,8(sl)) 

- E[(Y1 + D - s1)+ A D] 
d 

- EL1g] E{ , [(Ynl + D1, - ST A Dn]J} 

where Td is again the first time the vector process re- 
turns to the origin. We use dynainic importance sam- 
pling to simulate the numerator as follows: 

Fill-rate Estimation: Regenerative Method 
1. Simulate (i'b ..., Yd) until T2 = min{ g, d'(sl) , 

with Td as in (22), and 

'(sl) = inf{n 2 1: i-1l + V1, > S1i. 

2. If ~'(s1) < Td, continue simulating (Y , ...,d 

but now using FD, until 0. 
3. Return the estimator 

d 

e-ss , [(kn-l + Dn -ns) A D], (29) 
n=- (sl) 

where yd and i' satisfy the recursions (8)-(9) with r 

T2 

THEOREM 5. The estimator (29) is unbiased and has 
bounded RE under conditions (19)-(20). The RE is bounded 
above by yVBey(4++cd)/(l - C+), for constants 4+, C+, and 
B given in (33), (31), and (46). 

REMARK 3. In light of (28) the fill rate in a single- 
stage system has the simpler representation 

1 
,B(s) = []E[(Y- (s - c))+ A C], 

E(D] 

from which a simplified regenerative estimator follows. 

4.4. Numerical Results 
We have experimented at several parameter settings 
with the estimators of ??4.1-4.2 for stockout probability 
and average backlog. In the case of average backlog, we 
can compare the performance of the randomization and 
regenerative estimators; in all cases we compare the per- 
formance of our importance sampling estimators with 
a standard estimate of steady-state performance based 
on regenerative cycles. All experiments were carried out 
on a 386 PC using the SIMAN simulation language. Ta- 
bles 1 and 2 summarize the estimates obtained from the 
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Table 1 Comparison of Importance Sampling and Standard Estimates 
for Stockout Probability in a Two-stage System with 
Exponential Demands. The Execution Time is about 14 
Minutes for p = 0.60, 17 Minutes for p = 0.8, and 25 
Minutes for p = 0.98 

IS Standard 

p S1 Exact Est. S.D. Est. S.D. 

0.60 1 0.01561 0.01663 6.42E-4 0.00848 4.16E-3 
3 0.00132 0.00135 4.53E-5 N/A N/A 
5 0.000128 0.000127 3.87E-6 N/A N/A 

0.80 1 0.1649 0.1662 2.20E-3 0.1901 3.76E-2 
3 0.0624 0.0622 7.95E-4 0.0810 2.81 E-2 
7 0.00964 0.00955 1.26E-4 0.01274 1.01 E-2 

0.98 30 0.2623 0.2599 2.76E-3 0.2191 9.90E-2 
45 0.14276 0.13885 2.59E-3 0.13605 9.07E-2 
60 0.0777 0.07564 1.62E-3 0.07052 5.90E-2 

different methods using a fixed computing time for each 
estimator. The model under consideration is a two-stage 
system with cl = 2, c2 = c = 1, = s2 - s1 = 3 and 
exponential demands. For this model, the exact value of 
both measures, dependent on s1, could be computed an- 
alytically. The tables show results for three levels of the 
utilization parameter p A E[D] /c *. 

In Table 1, our importance sampling (IS) estimator for 
stockout probability is contrasted to the standard regen- 

erative estimator. Each row shows results for the value 
of s' specified in the second column. The exact value is 
given in the third column. Each cell records a point 
estimate and estimated standard error. The notation 
"N/A" indicates that all regenerative cycles yielded a 
value of zero. The results in Table 1 indicate substantial 
variance reduction from importance sampling. The im- 
pact of bounded relative error is most notable at p 
= 0.6, where each order-of-magnitude decrease in the 
stockout probability is accompanied by an order-of- 
magnitude decrease in the standard deviation, keeping 
the ratio roughly constant. 

Table 2 reports results for average backlog. Four es- 
timators are compared: the regenerative importance 
sampling estimator (IS/Reg), the randomized impor- 
tance sampling estimator (IS/Rand), the randomized 
estimator with L as a control variate (IS/Rand/CV), 
and the standard regenerative method. Though it might 
be argued that a control variate could be used with any 
of the methods, it seems most natural to examine its 
effectiveness in the randomized method. Randomiza- 
tion introduces new variability into the simulation; us- 
ing L as a control removes this extra variability. 

Table 2 again shows the potential for significant vari- 
ance reduction via importance sampling, with the pos- 
sible exception of the IS/Reg estimate at the extreme 
utilization of p = 0.98. When backorders are rare (the 
primary focus of this study), the three importance sam- 

Table 2 Comparison of Three Importance Sampling Estimates and a Standard Estimate for Average Backlog in a Two-stage System with Exponential 
Demands. The Execution Time is About 16 Minutes for p = 0.60, 24 Minutes for p = 0.8, and 30 Minutes for p = 0.98 

IS/Reg IS/Rand IS/Rand/CV Standard 

p Si Exact Est. S.D. Est. S.D. Est. S.D. Est. S.D. 

0.60 1 0.0125 0.0126 1.82E-3 0.0125 5.34E-4 0.0127 4.01 E-4 0.0083 4.99E-3 
3 0.0011 0.0010 8.88E-5 0.0012 5.11 E-5 0.0012 3.41 E-5 N/A N/A 
5 0.000112 0.000083 7.19E-6 0.000105 4.35E-6 0.00011 2.93E-6 N/A N/A 

0.80 1 0.3434 0.3609 5.43E-2 0.3580 1.15E-2 0.3490 2.99E-3 0.3568 1.11E-1 
3 0.1335 0.1474 2.19E-2 0.1339 4.45E-3 0.1338 1.30E-3 0.1409 7.1 OE-2 
7 0.02076 0.01651 2.30E-3 0.02109 6.97E-4 0.02052 2.1 E-4 0.02349 2.20E-2 

0.98 30 6.4680 5.5657 5.5348 6.0654 1.0018 6.4660 0.00999 5.9622 3.8870 
45 3.5204 3.3125 3.1286 3.8530 0.651534 3.5062 0.008123 5.3580 3.1089 
60 1.9161 1.3255 1.2427 1.4485 0.25553 1.9106 0.002058 2.9082 1.8018 
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pling estimators are roughly equally effective. The IS/ 
Rand estimator appears to outperform the IS / Reg es- 
timator as p increases. The impact of the control variate 
becomes most dramatic in heavy traffic (the case stud- 
ied by Asmussen 1990), precisely when the effective- 
ness of importance sampling seems to diminish. 

5. Analysis of the Estimators 
In this section, we prove Theorems 1-5. We begin with 
two lemmas. The following lemma affirms that the stop- 
ping times appearing in various algorithms are, in fact, 
almost surely finite. 

LEMMA 2. For all x > 0, 
(i) T(x) = inf{n 1 Sn > xI is a.s. finite, 
(ii) T'(x) = inf{n 2 1: S9-_ + Dn > x} is a.s. finite, 
(iii) 5-(x) = inf{n 2 1: Yln > x} is a.s. finite, 
(iv) '(x) = inf{n 2 1 ?' + DO > x} is a.s. finite, 

and 
(v) 0 = inf{n n 1: Ydn = 01 is a.s. finite. 

Each of the assertions in Lemma 2 (i)-(iv) follows 
from the fact that a positive-drift random walk reaches 
any finite positive level in finite time, with probability 
1 (Theorem III.1.1 of Gut 1988). The details are straight- 
forward and therefore omitted. To argue the finiteness 
of ro appearing in (24), we consider these two cases. If 
the stopping time d occurs before i(s%), the finiteness 
of the latter (as claimed in Lemma 2(iii)) certainly im- 
plies the finiteness of the former. If i(sl) < l d, the pro- 
cess {idl iT(s1) < n < -od} is a negative-drift random 
walk, ensuring that the origin is reached in finite time 
for any s'. The same argument applies for d in (29). 

Our next lemma, giving bounds on various quanti- 
ties, is central to the upper bounds on the RE of our 
estimators. Define 

C_ =rinf I E[ey(DI-r) I D1 > r]-1, (30) 

c+ 
=rsup{E[eY(Dl-r) 

1 D > r]1, (31) 

= min[rn - nc*], and (32) 
n21 

= max[rn - nc*], (33) 
n21 

in which e min[c*, s - s1, , s- sd] 

LEMMA 3. With the constants C_, C+, 4_, and 4+ above 
and stopping times T(x) and T'(x) defined in Lemma 2, we 
have for all x > 0 

(i) C_e-(X++) c E[e-'YT(x)] c C+e-?Y`+4-) 

(ii) E[e-7'Y'(X) - e-'YS(x)] 2 (1 - C+)e"(x+`+) under con- 
dition (20), 

(iii) E[e- 2yS)] C C+e 2Y(x+C_) and 
(iv) E[e2St(x)] +e 

The proof of each case follows from an argument in 
Ross (1974). For instance, to derive (i) we condition on 
T(x) and Sr(X)-1, use the renewal property of the as- 
cending ladder heights of Sn, and apply Wald's likeli- 
hood ratio identity. A little algebraic simplification eas- 
ily brings out the result. The remaining parts work sim- 
ilarly. 

Now we are ready to turn to 
PROOF OF THEOREM 1. Based on recursions (10)-(11) 

it is not hard to see S' = In Di - rn. Expanding (1)-(2) 
and using the i.i.d. property of demands gives rise to 

n=d max [Di - rj for n 0 O, (34) 

as in Lemma 2 of Glasserman (1993). Passing to the limit 
yields Yl =d maxn 1oW Di - r11] = maxnz0 Si; that is, 
the steady-state shortfall Yl is equal in distribution to 
the maximum over all time of the sequence {S',, n 2 01. 
If we define T(sl) = inf{n 2 0: S, > s1l, then P{Y1 > slI 
= P{maxn20 Sl > s 1 = P{T(s1) < oo}. An application of 
Wald's likelihood ratio identity gives P{T(s1) < oo} 
- E[e- ST(s', establishing unbiasedness. 

Because the RE of an estimator is the ratio of its stan- 
dard error to its mean, it is bounded by the square root 
of the second moment divided by the mean. Thus, put- 
ting Lemma 3(i) and (iii) together, we have for all s 
>0 

RE _EE[-2ST)] VC+e-2y(s +l) C+ 
E[e-sA(s)] C-e(s'+4+) - 

provided that C_ > 0. LI 
REMARK 4. (i) It has been pointed out that C_ could 

be zero in some exceptional cases. To circumvent the 
problem of a zero denominator, we make use of an as- 
ymptotic result developed in Glasserman (1993): 
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a(s1) = P{Y1 > s1- Ce-1(sl+q) 

where r1 is defined in (18) and 

C = lim E[e-Y(s's)-sl)I. (35) 

We claim that 

P{Y1 > s11 2 (C/2) exp[-y(max[sl, s'I + q7)] 

for some constant s4. There always exists an s such that 
for all sl sO 

P{Yl > s1} 2 (C12)e'7?) 

On the other hand, for all 0 < sl < sb, 

PIYl > s') 2: P(Y' > So} 2: (C12)e-'Y(s1+?). 

Therefore, by properly incorporating this alternative 
lower bound, we find that the RE in Theorem 1 is 
bounded above by 2+e for 5 2 So and by 
2iC+e'Y(s1+ --/C for sl < sj. Similar modifications ap- 
ply to our other bounds. 

(ii) The constants C_, C+ are evaluated for some com- 
monly used distributions (including Erlang and hyper- 
exponential) in Glasserman (1993). 

(iii) Combining the unbiasedness result E[exp 
I-{y t(s1)II = a(sl) with part (i) of Lemma 3 results in 
bounds on the stockout probability a(sl) in multistage 
systems. For a single-stage system (for which 4_ = 

= 0) these bounds are precisely the ones given in Glas- 
serman (1993). Corresponding bounds hold for b(sl) 
and 3(s 1)* 

Next we give 
PROOF OF THEOREM 2. Because 

- si+L- 
E e- J' e-'Yx,-x`dx 

= E[J' e-Ysr(xeY(x-s')1IL>x-s1Idx 

= f E[e-yST(x]ey(x-s'P{L > x - slldx 

= J P{Y1 > xldx = b(sl), 

the estimator is unbiased. For the second assertion, we 

need to find an upper bound on the second moment of 
estimator (17). Since 

E[{e-Ys1 f, e-Y(st(x)-x)dx}21 

- EI f eY-(x)eY(x-s1)1 L>xslIdx} I 

' E[ e 2 T(x)e 2y(xs)1 (L>x-s1jdxI 

- f { E[e-2ys'(x)]e2y(x-sl)p{L >X - slldx 

I f E[e-2ySp(x)jeY(x-s1)Idx, 

it is bounded above by fIl C+e-2y(x+ )ey(x-sl')dx accord- 
ing to Lemma 3(iii). On the other hand, (15) implies that 
the mean has a lower bound foi C_e-7(x+4+dx. It then 
follows that for all s1 > 0, 

C+ e-2y(sl +4) 

RE 
y - = 

-y _C(+-C) 
C_ e-y(s 1+C+) C_ 

y 

We postpone our analysis of the regenerative case 
and next give 

PROOF OF THEOREM 4. The unbiasedness is clear. To 
bound the RE of the estimator is essentially equivalent 
to finding a lower bound on its mean and an upper 
bound on its second moment. Lemma 3(i) implies 
that the mean of estimator (27) is no less than f 1 (1 
- C+)e-Y(x++)dx if condition (20) is imposed. On the 

other hand, the second moment of (27) is bounded 
above by 

~ Si+L- 

e-2YSiE Lfi e2 - eY(X) X2dx 

c e-2ysIE[f le-2Y(yx (X)-x) + e 2y(x-x) ldxl 

Again Lemma 3 is invoked to yield the upper bound 
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(e2yc* + 1)e-2y(s'+C-) 
7 

As a result, we have 

+ (e2yc* + 1)e-2y(sl+C_) 

RE 1 
1-C+ e_Y(Si+W+ 

7 

_yC+ (e2yc* + 1) 

1 - C+ 

under condition (20). D 
REMARK 5. Paralleling the asymptotic expression for 

PlY1 > s1} in Remark 4, we can also show that 

PlY1 + D > x} Ce-y(x+q-c*) 

with , and C given in (18) and (35), respectively. By 
(25)-(26) and (15) it follows that 

00 

(E[D])(1 - 3(sl)) f C(eyc - 1)e-y(x+7)dx 

s Ysly 

- (eyc - 1)e 
V 

Again, we assert that 

(E[D])(1 - 8(sl)) 2 - (ezyc - 1)e- 
2y 

for some constant s*. Therefore, without (20) we still 
have a lower bound on (E[D])(1 - f8(s1)), and therefore 
an upper bound on the RE of the estimator (27). 

We next consider the regenerative estimators (24) and 
(29), beginning with 

PROOF OF LEMMA 1. Let empty sums be zero and let 
a v b and a A b denote maxIa, b} and minIa, b}, respec- 
tively. Expanding the shortfalls in recursions (1)-(2) 
gives 

n n 

n =max Di -jI Di -I 
0-i-n i=n+l-j i=n +1-h 

n n 

n=max , Di - rjk_ Di - rh- 
0- j-n i=n+l-j i=n+l-h 

The random integers 0 < 1, h < n are indices at which 
each maximum is achieved. There are three possible 
cases. 

If 1, h > 0 (where I and h may or may not be the same), 
then 

n n (_ Di lcd) D( i - r ) 
i=n+l-Il=?+- 

? max[rl - jCd]. 
1?j?n 

If 1 = 0, h > 0, then 

n n 0 - Dii- r) ) 

If 1 > 0, h = 0, then 

yd ? - yklCd) 
k ~ Yn Yn - Di lI) Di -ri 

i=n+l-l i=n+l-l 

? max [r - jCd]. 

We then conclude that 

n- n max[rl - jcd] v 0. (36) 
1-jcn 

On the other hand, if the roles of Yd and Yk are reversed, 
we get 

yk _ yd <max jc' - rl] v 0. (37) 

Multiplying each side of (37) by -1 and combining it 
with (36) yield 

min r _ 
jCdd] A O0< yd _ yk < max tr jCd] V 0, 

1?jcn 1?jCpn 

which is the claim in part (i). Part (ii) follows from 
part (i). D 

Our next lemma is useful in bounding the excess of 
shortfalls over some level during a regenerative cycle. 

LEMMA 4. Let the random variable Z satisfy Z > u 
a.s., for some constant u > 0, and let the i.i.d. random 
variables IXn, n 2 11 be independent of Z and have mean 

E[Xl] < 0. Suppose there exists a y > 0 for which 
E[eyxlI] = 1. Define t = infIn > 1: Z + X + + X,, 
c 01. Then 
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E{X (Z+X+ ... +Xn-u)+ } 

32 fj ~ EIX1P 4- 1 24 
(E[Xi])2 { - u 2) ] 4f' 

where A solves E[exp A(X1 - E[X1]/2)}] = 1. 

PROOF. Define NY = maxIn 2 1: X1 + *. + Xn 

2 -y} for y > 0. That is, for a negative-drift random 
walk starting from the origin, Ny is the last-exit time 
over level -y. Then, by applying an argument in Janson 
(1986), we have 

[2 
X 

' NY 2 
EX 

NY - (X1 + + XN, + Y) 

N E[X1 1P\ 

=-y-ma Xi\ (38) n I-_ 2 

The random variable M' -max,joI.=1 (Xi - (E[X1]/ 
2))] is a.s. finite since the increment Xi - (E[Xl]/ 
2) has negative mean. Note that Xi - (E[Xfl/2) 2 Xl 

a.s., so 

0 < M < M' < oo a.s., (39) 

with M -maXn,OMi 1 X]. It then follows from (38) that 

2 
Ny 'yE[XI] (Y + M') a.s. for all y > 0. (40) 

Viewing SI` (Z + Xi + + Xn - u)+ as the area 

above level u under a piecewise constant inter- 
polation of the path of a random walk, it becomes 
evident that this quantity can be no greater than the 
product of Nz-,, + 1 and the maximum height Z - u 
+ M, i.e., 

EL{ (Z+X+ ... +Xn-u)+}1 

? E[(Nz-,, + 1)2(Z - u + M)2]. (41) 

By conditioning on Z - u, we have 

E[(Ny + 1)2(y + M)21Z - u = y] 

' IE[(Ny + 1)41Z - u = y] EIXy + M)4] 

(by Cauchy-Schwarz Inequality 

and independence of M and Z) 

;EX] E[ (y +M -E2X) Z - u =- 

x IE[(y + M)41 (by (40)) 

\(EX ])E y +Ml 2 EI ] X) y + M)4] 

(by independence of M' and Z) 

4 FtE[Xj \4\ 

(E[X1])2 E[ + M - 2 (by (39)) 

(EIX])2 {EL(y - E )1 + E[(M')4]}. 

The last expression is an immediate consequence of the 
inequality 

(a + b)P < max(2P-1, 1)(aP + bP) for a, b, p > 0, (42) 

which is taken from Exercise 4.2.1, Chow and Teicher 
(1988). Hence (41) is bounded above by 

(E[X1])2 {EL(Z - 2 ) + E[M')4]} (43) 

On the other hand, by (5) we know that 

ELexp{y(X, - EIXi])} =exp{v( EIIXu])> 1, 
[ { ( ~~2 )}] {( 2)} 

which ensures the existence of a positive 9 at which 

ELexp {(X E[Xil)} ] 1 

By quoting a well-known result that 

P(M' > x} < e-X, 
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(see, e.g., p. 269 of Asmussen 1987) we get 
00 

E[(M')4] = 4 x3P(M' > xldx 

4 J x3ee-xdx -24 

This, together with (43), proves the claim. 
PROOF OF THEOREM 3. According to the algorithm, 

we use new demands D1, up until N(s'), so the likelihood 
ratio is simply 6yST(s'). Also, by definition of r(s%), ?n 
- s' for all n < N(s'). The estimator is thus unbiased, 
by Wald's likelihood ratio identity. For the second as- 
sertion, we observe that Assumption (19) makes the 
conjugate random walk ISn, n 2 01 coincide with the 

process IYdn, n 2 01 prior to T1. Also, we observe that 
Lemma 1(i)-(ii) implies Y d < Y Y1 + II+]+ for all 
n 2 0. Thus, yd cannot cross level s1 + II+]+ before Yl 
crosses level s1. Recall that Ir(sl) given in (23) denotes 
the first time Y1 exceeds level s1. If yd first crosses level 
sl + [K+]+ at 1(s%), we know that Yk(s1) = sl + [K+]+ 
+ Rsi+[G+]+ where Rsi+[G+]+ is the excess of S;(SI) over S 
+ [4+]+. Otherwise, Yk(si) < sl + [I+]+ if yd has not yet 
reached level sl + II+P at r(s'). In any case, the 
relation 

SiL(Si) =YT(Si) - sl + [I+] + Rsi+[C+]+, (44) 

holds on the set 1r(s1) < rd}I. Therefore, the second mo- 
ment of (24) is bounded above by 

-d 

e E[{ E (Yn s )1l(s')<r4I (since Sr(S') = Yi(sl) - Yi(sl) > s1) n 0 
7( 

T( 

d2 

5 e-2YSE[ (jd; - S1)+lT(Sj)<rd} (by Lemma 1(ii)) 

(since Ydn = ?T(sl) + XT(SI)+l + + Xn for i-(s1) ? n < d 

d T-(s') -1 21 

n n=0 

= -2ysiE . (9ST(Si) + X + + Xn S + {(I)<O 

e (EIIXfl)2 {EL(?7(1) - - EX])41 + 74} (see explanation below) 

e (EI[X1])2 
{E([ + Rsl+[4+I+ - 2 )]+-zij} (by (44)) 

32E EIX' 

6 d (E[X=]) ssup E +24 (by (42)) (since n + Xn f [(s s1 n + 

e-2Ys' 32E(I+~- IXJ~ E[1X)5+ T'(eorem 3, 

(EIIXfl)2 ST\ 2/ 5 Ab4odn 17). (5 

The notation X1- is short for -min X1, 01, the negative 
part of X1. On the event (r(sl) < d , the term 

- _ (s1)) in (45) coincides with the first time the 
process IS,(SI) + X1 + . + Xj, takes a value less 
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than or equal to zero. This, combined with the 
relation S,(si) > s1, makes Lemma 4 applicable. By 
setting 

32 
(E[Xl])2 

x {8(I]+ - E[Xu])4 + 48 E[(X] +4}g (46) 

and using a lower bound on the first moment of (24), 
we thus find that 

R e- e2vs'B yey4+F/ 

C- ecy(s'++) 
C- 

y 

The fact that E[X5] is finite, noted in the last paragraph 
in ?3, removes the possibility that this upper bound is 
infinite. D 

PROOF OF THEOREM 5. The unbiasedness is obvious. 
Next, by observing Yd c k_ + D C - cd + [I+]+ for 1 
< n < T2 and paralleling the argument leading to (44), 
we conclude that 

ST (S- (S - C ) C I4+] + Rsi-Cd+[C+]+, (47) 

on the set 1ir'(s1) < od where RS1-Cd+[C+]+ is the over- 
shoot of ST,(SI) over level s1 - Cd + [I+]+. Therefore, the 
upper bound on the second moment of estimator (29) 
can be brought out the same way. The second moment 
of estimator (29) is bounded by 

d 

~2 e- )E[{t [(Yn-l + Dn s n) ] A DJ1 } J 

(since gT (S') Y 2 YT (S1)-1 + fDT (Sl) C > S1 Cd) 

?~~~~~ e 2('~d{ n- (s~ + ) d - 

(since Yln_l + Dn - Cd ? ?'n for n 2?(Si)) 

d 

e2y(scd )Et S(s) + XC(d+l + + X,S - (sj -c)d 

n=,' (s'1) 

(since Ydn = S+(s') + XT(Sd)+d + + Xn for s '(s1) l n < i)) 
-2(sc do- ( - ] 2 

= e 2Y(s -cd)EL{ , [S ( '(s1) + Xl + + XI - (s -C 
n =, ~ ~ (s C) EXs 1 4 

= e_2y(s1 cd) 32 - - ] + 2 (by Lemma 4) 

e-2y(sl cd) 32 IEL (E s+ + R-cd[]+ - E2X ) + 24} (by (47)). 

With B as in (46) we have the upper bound 
Be-27(ys1cd). By virtue of unbiasedness we also 
know that the mean of the estimator (29) has a 
lower bound (1 - C+,/y)e-y(sl+4+). Finally we ob- 
tain' 

RE 
y 

DB _ ) 
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