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ABSTRACT

relative risk aversion,  

although LRR makes a moderate contribution. We think the required  
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Models of rare macroeconomic events, denoted RE, provide one approach to understanding 

the high average equity premium and other asset-pricing puzzles.  Another approach, called 

long-run risks or LRR, emphasizes variations in the long-run growth rate and the variance of 

shocks to the growth rate (stochastic volatility).  An extensive literature has studied the separate 

roles of RE and LRR in asset pricing but has not considered them jointly.  This simultaneous 

perspective is important because the two approaches are complementary for analyses of asset 

pricing.  In addition, the joint approach allows for a conceptual and empirical distinction between 

RE and LRR.  Moreover, although we prefer a model that incorporates both features, we can 

assess the relative contributions of RE and LRR for explaining the average equity premium, the 

volatility of rates of return, and other patterns in asset prices. 

One finding is that the joint model with RE and LRR does well in explaining the average 

equity premium and risk-free rate.  In this part of the analysis, RE is the main contributor, but the 

inclusion of LRR produces a moderate improvement in the results.  Further refinements of the 

model would likely produce better results, and we think that a key element is the allowance for 

incomplete current information about the nature of the shocks hitting an economy.  For volatility 

of rates of return, the joint model with RE and LRR falls short of a satisfactory explanation.  

Modifications of the model to include time variation of disaster probabilities may improve this 

part of the analysis. 

Similar to previous research, this study treats rare events, RE, and long-run risks, LRR, as 

unobserved latent variables.  Our specification views RE as comprising sporadic, drastic, and 

jumping outbursts, whereas LRR exhibits persistent, moderate, and smooth fluctuations.  Our 

formalization of this distinction provides the basis for separately identifying the two forces in 

long-term panel data.  The results show that periods labeled as RE (based on posterior 
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probability distributions) typically correspond to familiar historical events, such as the world 

wars and the Great Depression.  The evolution of variables corresponding to LRR is harder to 

identify with historical events.  However, there is some correspondence with commonly held 

views about moderation (reduced volatility) in some decades and with persistently low or high 

rates of economic growth in some non-disaster periods. 

To estimate the model, we extend the long-term annual national-accounts information from 

Barro and Ursúa (2010) to include the period up to 2012.  We use observations on per capita 

consumer expenditure (henceforth, called C) for 42 economies for up to 160 years.  We use these 

data to estimate the time-series structure of consumption.  This structure reflects the underlying 

elements of rare events, RE, and long-run risks, LRR.  The resulting macroeconomic patterns for 

individual countries are of interest for their own sake and for other applications, and they also 

provide the basis for asset-pricing results. 

To carry out asset pricing, we embed the estimated time-series process for C into an 

endowment economy with a representative agent that has Epstein-Zin-Weil (EZW) preferences 

(Epstein and Zin [1989] and Weil [1990]).  This analysis generates predictions for the average 

equity premium, the volatility of equity returns, and so on.  Then we compare these predictions 

with averages found in the long-term data for a group of countries. 

The rest of the paper is organized as follows.  Section I relates our study to the previous 

literature on rare macroeconomic events and long-run risks.  Section II lays out our formal model, 

which includes rare events (partly temporary, partly permanent) and long-run risks (including 

stochastic volatility).  Section III discusses the long-term panel data on consumption, describes 

our method of estimation, and presents empirical results related to the time evolution of 

consumption in each country.  The analysis includes a detailed description for six illustrative 
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countries of the evolution of posterior means of the key variables related to rare events and long-

run risks.  Section IV presents the framework for asset pricing.  We draw out the implications of 

the estimated processes for consumption for various statistics, including the average equity 

premium and the volatility of equity returns.  Section V has conclusions, focusing on further 

refinements that seem promising for resolving remaining issues. 

I. Relation to the Literature 

Rietz (1988) proposed rare macroeconomic disasters, particularly potential events akin to 

the U.S. Great Depression, as a possible way to explain the “equity-premium puzzle” of Mehra 

and Prescott (1985).  The Rietz idea was reinvigorated by Barro (2006) and Barro and Ursúa 

(2008), who modeled macroeconomic disasters as short-run cumulative declines in real per 

capita GDP or consumption of magnitude greater than a threshold size, such as 10%.  Using the 

observed frequency and size distribution of these disasters for 36 countries, Barro and Ursúa 

(2008) found that a coefficient of relative risk aversion, γ, around 3.5 was needed to match the 

observed average equity premium of about 7% (on levered equity).  Barro and Jin (2011) 

modified the analysis to gauge the size distribution of disasters with a fitted power law, rather 

than the observed histogram.  This analysis estimated the required γ to be around 3, with a 95% 

confidence interval of 2 to 4. 

Nakamura, Steinsson, Barro, and Ursúa (2013), henceforth NSBU, modified the baseline 

rare-disasters model in several respects:  (1) the extended model incorporated the recoveries 

(sustained periods of unusually high economic growth) that typically followed disasters;  

(2) disasters were modeled as unfolding in a stochastic manner over multiple years, rather than 

unrealistically occurring as a jump over a single “period;” and (3) the timing of disasters was 

allowed to be correlated across countries, as is apparent for world wars and global depressions. 
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 The empirical estimates indicated that, on average, a disaster reached its trough after six 

years, with a peak-to-trough drop in consumption averaging about 30% and that, on average, half 

of the decline was reversed in a gradual period of recovery.  With an intertemporal elasticity of 

substitution (IES) of two, NSBU found that a coefficient of relative risk aversion, γ, of about 6.4 

was required to match the observed long-term average equity premium.  Although the NSBU 

model improved on the baseline rare-disasters models in various ways, the increase in the 

required γ was a negative in the sense that a value of 6.4 seems unrealistically high.  The main 

reason for the change was the allowance for recoveries from disasters; that is, disasters had a 

smaller impact on asset pricing than previously thought because they were less than permanent.  

In the present formulation, we improve in several respects on the NSBU specification of rare 

events. 

The notion of rare macroeconomic events has been employed by researchers to explain a 

variety of puzzles and phenomena in asset and foreign-exchange markets; see, for example, 

Gabaix (2012), Gourio (2008, 2012), Farhi and Gabaix (2015), Farhi et al. (2015), Wachter 

(2013), Seo and Wachter (2015), and Colacito and Croce (2013).  Barro and Ursúa (2012) 

provide a review of this literature. 

Bansal and Yaron (2004), henceforth BY, introduced the idea of long-run risks.  The 

central notion is that small but persistent shocks to expected growth rates and to the volatility of 

shocks to growth rates are important for explaining various asset-market phenomena, including 

the high average equity premium and the high volatility of stock returns.  The main results in BY 

and in the updated study by Bansal, Kiku, and Yaron (2010) required a coefficient of relative risk 

aversion, γ, around 10, even higher than the values needed in the rare-disasters literature.  (BY 

assumed an intertemporal elasticity of substitution of 1.5 and also assumed substantial leverage 
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in the relation between dividends and consumption.)  In our study, we incorporate the long-run 

risks framework of BY, along with an updated specification for rare macroeconomic events. 

The idea of long-run risks has been applied to many aspects of asset and foreign-

exchange markets.  This literature includes Bansal and Shaliastovich (2013); Bansal, Dittmar, 

and Lundblad (2005); Hansen, Heaton, and Li (2008); Malloy, Moskowitz, and Vissing-

Jorgensen (2009); Croce, Lettau, and Ludvigson (2015); Chen (2010); Colacito and Croce (2011); 

and Nakamura, Sergeyev, and Steinsson (2015).  Beeler and Campbell (2012) provide a critical 

empirical evaluation of the long-run-risks model. 

There is a large literature investigating separately the implications for asset pricing of 

rare events, RE, and long-run risks, LRR.  However, our view is that—despite the order-of-

magnitude increase in the required numerical analysis—it is important to assess the two core 

ideas, RE and LRR, in a simultaneous manner. 1  This study reports the findings from this joint 

analysis. 

II. Model of Rare Events and Long-Run Risks 

The model allows for rare events, RE, and long-run risks, LRR.  The RE part follows 

Nakamura, Steinsson, Barro, and Ursúa (2013) (or NSBU) in allowing for macroeconomic 

disasters of stochastic size and duration, along with recoveries that are gradual and of stochastic 

proportion.  We modify the NSBU framework in various dimensions, including the specification 

of probabilities for world and individual country transitions between normal and disaster states.  

Most importantly, we expand on NSBU by incorporating long-run risks, along the lines of 

Bansal and Yaron (2004).  The LRR specification allows for fluctuations in long-run growth 
                                                 
1Nakamura, Sergeyev, and Steinsson or NSS (2015, section 3) filter the consumption data for crudely estimated disaster effects 
based on the results in Nakamura, Steinsson, Barro, and Ursua (2013) or NSBU.  Thus, NSS do not carry out a joint analysis of 
rare events and long-run risks.  This joint analysis was also not present in NSBU (which neglected long-run risks). In their 
analysis of asset pricing, NSS consider only the role of long-run risks (applied to their disaster-filtered data), whereas NSBU 
allowed only for effects from rare events.  Thus, neither NSS nor NSBU carried out an asset-pricing analysis that allows for both 
rare events and long-run risks. 
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rates and for stochastic volatility. 

A. Components of consumption 

As in NSBU, the log of consumption per capita for country i at time t, 𝑐𝑖𝑖, is the sum of 

three unobserved variables: 

 (1)   𝑐𝑖𝑖 = 𝑥𝑖𝑖 + 𝑧𝑖𝑖 + 𝜎𝜀𝑖𝜀𝑖𝑖, 

where 𝑥𝑖𝑖 is the “potential level” (or permanent part) of the log of per capita consumption and 𝑧𝑖𝑖 

is the “event gap,” which describes the deviation of 𝑐𝑖𝑖 from its potential level due to current and 

past rare events.  The potential level of consumption and the event gap depend on the disaster 

process, as detailed below.  The term 𝜎𝜀𝑖𝜀𝑖𝑖 is a temporary shock, where 𝜀𝑖𝑖 is an i.i.d. standard 

normal variable.  The standard deviation, σεi, of the shock varies by country.  We also allow σεi to 

take on two values for each country, one up to 1945 and another thereafter.2  This treatment 

allows for post-WWII moderation in observed consumption volatility particularly because of 

improved measurement in national accounts—see Romer (1986) and Balke and Gordon (1989). 

B. Disaster probabilities 

 We follow NSBU, but with significant modifications, in assuming that rare 

macroeconomic events involve disaster and normal states.  Each state tends to persist over time, 

but there are possibilities for transitioning from one state to the other.  The various probabilities 

have world and country-specific components. 

For the world component, we have in mind the influence from major international 

catastrophes such as the two world wars and the Great Depression of the early 1930s.  Additional 

possible examples are the Great Influenza Epidemic of 1918-20 and the current threat from 

climate change.3  However, the recent global financial crisis of 2008-09 turns out not to be 

                                                 
2When the data for country i begin after 1936, 𝜎𝜀𝑖 takes on only one value. 
3See Barro (2015) for an application of the rare-events framework to environmental issues. 
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sufficiently important to show up as a world disaster. 

We characterize the world process with two probabilities—one, denoted p0, is the 

probability of moving from normalcy to a global disaster state (such as the start of a world war or 

global depression), and two, denoted p1, is the probability of staying in a world disaster state. 

Thus, (1 − 𝑝1)  is probability of moving from a world disaster state to normalcy (such as the end 

of a world war or global depression).  Formally, if 𝐼𝑤𝑖 is a dummy variable for the presence of a 

world event, we assume: 

 (2)  Pr (𝐼𝑤𝑖 = 1|𝐼𝑊,𝑖−1) = �
𝑝0 if 𝐼𝑊,𝑖−1 = 0,
𝑝1 if 𝐼𝑊,𝑖−1 = 1. 

We expect p1 > p0; that is, a world event at t is (much) more likely if the world was experiencing 

an event at t − 1. 

For each country, we assume that the chance of experiencing a rare macroeconomic event 

depends partly on the world situation and partly on individual conditions.  We specify four 

probabilities—reflecting the presence or absence of a contemporaneous world event and whether 

the country experienced a rare event in the previous period.  Formally, if Iit is a dummy variable 

for the presence of an event in country i, we have 

 (3) Pr(𝐼𝑖𝑖 = 1|𝐼𝑖,𝑖−1, 𝐼𝑊𝑖) =

⎩
⎨

⎧
𝑞00 if 𝐼𝑖,𝑖−1 = 0 and 𝐼𝑊𝑖 = 0,
𝑞01 if 𝐼𝑖,𝑖−1 = 0 and 𝐼𝑊𝑖 = 1,
𝑞10 if 𝐼𝑖,𝑖−1 = 1 and 𝐼𝑊𝑖 = 0,
𝑞11 if 𝐼𝑖,𝑖−1 = 1 and 𝐼𝑊𝑖 = 1.

         

We expect q01 > q00 and q11 > q10; that is, the presence of a world event at time t makes it (much) 

more likely that country i experiences an event at t.  We also expect q10 > q00 and q11 > q01; that 

is, an individual country event at t is (much) more likely if the country experienced an event at t 

− 1. 

 In the present specification, the various disaster probabilities—p0, p1, q00, q01, q10, and 
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q11—are constant over time.  The q-parameters also do not vary across countries.  In subsequent 

research, we plan to allow the disaster probabilities to vary over time and space. 

C. Potential consumption 

The growth rate of potential consumption includes effects from rare events, RE, and 

long-run risks, LRR.  The specification for country i at time t is:  

 (4)   ∆𝑥𝑖𝑖 = 𝜇𝑖 + 𝐼𝑖𝑖𝜂𝑖𝑖 + 𝜒𝑖,𝑖−1 + 𝜎𝑖,𝑖−1𝑢𝑖𝑖,   

where ∆𝑥𝑖𝑖 ≡ 𝑥𝑖𝑖 − 𝑥𝑖,𝑖−1 , 𝜇𝑖  is the constant long-run average growth rate of potential 

consumption, 𝐼𝑖𝑖𝜂𝑖𝑖 picks up the permanent effect of a disaster, 𝜒𝑖,𝑖−1 is the evolving part of the 

long-run growth rate, 𝜎𝑖,𝑖−1 represents stochastic volatility, and 𝑢𝑖𝑖 is an i.i.d. standard normal 

variable. 

D. Rare events 

The RE part of equation (4) appears in the term 𝐼𝑖𝑖𝜂𝑖𝑖, which operates for country i at 

time t when the country is in a disaster state (Iit = 1).  The random shock ηit determines the long-

run effect of a current disaster on the level of country i’s potential consumption.  If ηit < 0, a 

disaster today lowers the long-run level of potential consumption; that is, the projected recovery 

from a disaster is less than 100%.  We assume that ηit is normally distributed with a mean and 

variance that are constant over time and across countries.   In practice, we find that the mean of 

ηit is negative, but a particular realization may be positive.  Thus, although the typical recovery is 

less than complete, a disaster sometimes raises a country’s long-run level of consumption (so 

that the projected recovery exceeds 100%). 

E. Long-run risks 

The LRR part of equation (4) appears in the terms 𝜒𝑖,𝑖−1  and 𝜎𝑖,𝑖−1𝑢𝑖𝑖 .  These terms 

capture, respectively, variations in the long-run growth rate and stochastic volatility.  Our 
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analysis of these variables follows the specification in Bansal and Yaron (2004, p. 1487, 

equation [8]).4 

We think of the sum of μi and 𝜒𝑖,𝑖−1 as a country’s long-run growth rate for period t.  The 

𝜒𝑖,𝑖−1 term is the evolving part of the long-run growth rate and is governed by: 

 (5)  𝜒𝑖𝑖 = 𝜌𝜒𝜒𝑖,𝑖−1 + 𝑘𝜎𝑖,𝑖−1𝑒𝑖𝑖, 

where 𝜌𝜒 is a first-order autoregressive coefficient, with 0 ≤ 𝜌𝜒 < 1.  The shock includes the 

standard normal variable eit, multiplied by the stochastic volatility, 𝜎𝑖,𝑖−1, and adjusted by the 

positive constant, k.  Hence, k is the ratio of the standard deviation of the shock to the long-run 

growth rate, 𝜒𝑖𝑖 in equation (5), compared to the standard deviation of the shock to the growth 

rate of potential consumption, ∆𝑥𝑖,𝑖+1  from equation (4).  The assumption that k is constant 

means that a country’s volatility of these two shocks moves over time in tandem—in accordance 

with the evolution of 𝜎𝑖𝑖. 

F. Stochastic volatility 

 Stochastic volatility, 𝜎𝑖𝑖, enters in equations (4) and (5).  We follow Bansal and Yaron 

(2004, p. 1487) in modeling the evolution of volatility as an AR(1) process for the variance: 

(6)  𝜎𝑖𝑖2 = 𝜎𝑖2 + 𝜌𝜎�𝜎𝑖,𝑖−12 − 𝜎𝑖2� + 𝜎𝜔𝑖𝜔𝑖𝑖, 

where 𝜎𝑖2  is the average country-specific variance, and 𝜌𝜎  is a first-order autoregressive 

coefficient, with 0 ≤ 𝜌𝜎 <1.  The shock includes the standard normal variable 𝜔𝑖𝑖 multiplied by 

the country-specific volatility of volatility, 𝜎𝜔𝑖.  In the estimation, we use a method similar to 

Bansal and Yaron (2004, p. 1495, n. 13) in constraining 𝜎𝑖𝑖2  to be non-negative (see 

Appendix A.3). 

G. Dynamics of event gaps 
                                                 
4The main difference in specification is that Bansal and Yaron (2004) exclude rare-event components.  Another difference, 
important for asset pricing, is that they assume a levered relationship between dividends and consumption. 
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Returning to equation (1), we now consider the event gap, 𝑧𝑖𝑖 , which describes the 

deviation of 𝑐𝑖𝑖  from its potential level due to current and past rare events.  We assume, 

following NSBU, that 𝑧𝑖𝑖 follows a modified autoregressive process: 

(7)  𝑧𝑖𝑖 = 𝜌𝑧𝑧𝑖,𝑖−1 + 𝐼𝑖𝑖𝜙𝑖𝑖 − 𝐼𝑖𝑖𝜂𝑖𝑖 + 𝜎𝜈𝑖𝜈𝑖𝑖, 

where 𝜌𝑧  is a first-order autoregressive coefficient, with 0 ≤ 𝜌𝑧  < 1.  The shock includes the 

standard normal variable 𝜈𝑖𝑖 multiplied by the country-specific constant volatility 𝜎𝜈𝑖. 

The direct effect of a disaster appears in equation (7) as the term 𝐼𝑖𝑖𝜙𝑖𝑖.  We assume that 

𝜙𝑖𝑖 is negative, and we model it as a truncated normal distribution (with mean and variance for 

the non-truncated distribution that are constant over time and across countries).  Thus, in the 

short run, a disaster lowers 𝑐𝑖𝑖 in equation (1).  However, as the event gap vanishes in accordance 

with equation (7), this effect on 𝑐𝑖𝑖 gradually disappears.  That is, the short-run disaster shock, 

𝜙𝑖𝑖, does not affect 𝑐𝑖𝑖 in the long run. 

The long-run impact of a disaster involves the term −𝐼𝑖𝑖𝜂𝑖𝑖  in equation (7), which 

operates in conjunction with the term +𝐼𝑖𝑖𝜂𝑖𝑖 in equation (4).  The combination of these two 

terms means that the short-run effect of 𝜂𝑖𝑖 on 𝑐𝑖𝑖 in equation (1) is nil.  However, if 𝜂𝑖𝑖 < 0 (the 

typical case), the effect on the potential (or long-run) consumption level in equation (4) is 

negative.  Therefore, the event gap, 𝑧𝑖𝑖  (corresponding to the difference between actual and 

potential consumption), must fall.  Over time, as the event gap vanishes (in accordance with 

equation [7]), 𝑐𝑖𝑖  tends to fall in equation (1).  Therefore, the long-run disaster shock, 𝜂𝑖𝑖 , 

determines the effect on 𝑐𝑖𝑖 in the long run. 

If we had assumed 𝜂𝑖𝑖 = 𝜙𝑖𝑖, the long- and short-run effects of a disaster would coincide; 

that is, disasters would have only permanent effects on 𝑐𝑖𝑖.  If we had assumed 𝜂𝑖𝑖 = 0, the long-

run effect of a disaster would be nil; that is, disasters would have only temporary effects on 𝑐𝑖𝑖.  
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We find empirically, as do NSBU, that recoveries tend to occur but are typically only partial.  

This result corresponds to a mean for 𝜂𝑖𝑖  that is negative but smaller in magnitude than that 

for 𝜙𝑖𝑖. 

III. Data, Estimation Method, and Empirical Results 

 We use data on annual consumption (real per capita personal consumer expenditure) for 

the 42 economies covered in the Barro-Ursua (2010) data set.  These data go back as far as 1851 

and have been extended through 2012.  There are 4814 country-year observations.  Appendix 

A.1 provides details. 

 We follow NSBU in estimating the model with the Bayesian Markov-Chain Monte-Carlo 

(MCMC) method.  Our application features nearly flat prior distributions for the various 

underlying parameters.  See Appendix A.3 for details.  We focus our discussion on the posterior 

means of each parameter. 

A. Estimated model 

 Table 1 contains the posterior means and standard deviations for the main parameters of 

the model.  These parameters apply across countries and over time.  

1.  Transition probabilities.  The first group of parameters in Table 1 applies to 

transition probabilities between normal and disaster states.  With respect to a world event, we 

find that p0, the estimated probability of moving from a normal to a disaster state, is 2.9% per 

year.  Once entering a disaster, there is a lot of persistence:  the estimated conditional probability, 

p1, of the world remaining in a disaster the following year is 65.8%. 

 The probability of a disaster for an individual country depends heavily on the global 

situation and also on whether the country was in a disaster state in the previous year.  If there is 

no contemporaneous world disaster, the estimated probability, q00, of a country moving from a 
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normal to a disaster state is only 0.66% per year.  The estimated conditional probability, q10, of a 

country remaining in a disaster from one year to the next is 71.9% (if there is no 

contemporaneous world disaster). 

 In the presence of a world disaster, the estimated probability, q01, of a country moving 

from normalcy to disaster is 36.0% per year.  Finally, if there is a world disaster, the estimated 

conditional probability, q11, of a country staying in a disaster state from one year to the next is 

85.7%. 

 The matrix of transition probabilities determines, in the long run, the fraction of time that 

the world and individual countries spend in normal and disaster states.  Specifically, the world is 

estimated to be in a disaster state 7.8% of the time, and each country is estimated to be in a 

disaster state 9.8% of the time.  The average duration of a disaster state is 4.2 years for a country 

(2.9 years for the world). 

As a comparison, Barro and Ursua (2008, Figure 1, p. 285) found a mean duration for 

consumption disasters of 3.6 years.  That study used a peak-to-trough methodology for 

measuring disaster sizes and defined a disaster as a cumulative contraction by least 10%.  If we 

restrict our present results to condition on a disaster cumulating to a decline by at least 10%, we 

get that a country is in a disaster state 8.6% of the time and that the duration of a disaster 

averages 5.0 years. 

 We can also compute for each year the posterior mean of 𝐼𝑤𝑖, the dummy variable for a 

world disaster event.  This value, plotted in Figure 1, exceeds 50% for 14 of the 162 sample 

years (which covers 1851 to 2012):  1914-19, 1930, and 1939-45.  In many of these years, the 

posterior means exceed 90% (1914-15, 1930, 1939-40, 1943-45).  These results accord with 

Barro and Ursua (2008), who noted that the main world macroeconomic disasters in the long-
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term international data (in that study since 1870) applied to World War I, the Great Depression, 

and World War II, with the possible addition of the Great Influenza Epidemic of 1918-20. 

Aside from 1914-19, 1930, and 1939-45, the only other years where the posterior mean 

of 𝐼𝑤𝑖 is at least 10% in Figure 1 are 1867, 1920, 1931, and 1946.  In particular, the recent global 

financial crisis of 2008-09 does not register in the figure (although it does show up for Greece).  

Specifically, the posterior world event probability peaks at only 0.001 in 2008. 

 We can similarly compute for each year the posterior mean of 𝐼𝑖𝑖, the dummy variable for 

a disaster event for each country.  Not surprisingly, many countries are gauged to be in a disaster 

state when the world is in a disaster.  Outside of the main world disaster periods (1867, 1914-20, 

1930-31, 1939-46), the cases in which individual countries have posterior means for 𝐼𝑖𝑖 of 25% 

or more are shown in Table 2.  Examples are the collapse of the U.S. dollar regime in Argentina 

in 2001-02, the Chilean coup and aftermath for 1972-85, the German hyperinflation and 

aftermath in 1921-27, the Great Recession in Greece for 2009-12, the period 1947-50 in India 

following independence, the Asian Financial Crisis for Malaysia and South Korea for 1997-98, 

the Mexican financial crisis of 1995, the violence and economic collapse in Peru for 1985-89, the 

Portuguese Revolution of 1975, effects from the Russian Revolution and civil war for 1921-24, 

the extended Great Depression in Spain and Spanish Civil War for 1932-38, the Korean War for 

South Korea up to 1952, the Russo-Turkish War in Turkey for 1876-81, and the extended Great 

Depression in the United States for 1932-33. 

 2. Size distribution of disasters.  The next group of parameters in Table 1 relates to 

temporary versus permanent disaster effects and to the size distribution of disasters.  The 

parameter 𝜌𝑧 is the AR(1) coefficient in equation (7); this coefficient determines how rapidly a 

country recovers from a disaster.  The estimated value, 0.30 per year, indicates that only 30% of 
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a temporary disaster shock remains after one year; that is, recoveries are rapid.  Note, however, 

that recovery refers only to the undoing of the effects from the temporary shocks, 𝜙𝑖𝑖  in 

equation (7).  The economy’s consumption approaches, in the long run, a level that depends on 

the permanent disaster shocks, 𝜂𝑖𝑖 in equation (7).  This channel implies that there can be a great 

deal of long-run consequence from a disaster—depending on the realizations of 𝜂𝑖𝑖  while the 

disaster state prevails. 

 The estimated mean of the temporary disaster shock, 𝜙𝑖𝑖, is −0.079; that is, consumption 

falls on average by about 8% in the first year of a disaster.  (Note that this mean applies to a 

truncated normal distribution; that is, one that admits only negative values of the shock.)  The 

estimated standard deviation, 𝜎𝜙, of the temporary shock is 0.057.  Hence, there is considerable 

dispersion in the distribution of first-year disaster sizes.  The dispersion in cumulative disaster 

sizes depends also on the stochastic duration of disaster states. 

 The estimated mean of the permanent shock, 𝜂𝑖𝑖, is −0.028; that is, consumption falls on 

average in the long run by about 3% for each year of a disaster.  (In this case, the mean applies to 

a normal distribution.)  The estimated standard deviation, 𝜎𝜂, is 0.148.  Hence, there is enormous 

dispersion in the long-run consequences of a disaster. 

   The final group of parameters in Table 1 concerns long-run risks, including stochastic 

volatility.  The parameter 𝜌𝜒 is the AR(1) coefficient for 𝜒𝑖𝑖, the evolving part of the long-run 

growth rate (equation [5]).  The estimated value of 0.73 indicates substantial persistence from 

year to year.  Note that the shock to 𝜒𝑖𝑖 in equation (5) has a country-specific standard deviation, 

𝑘𝜎𝑖,𝑖−1.  This standard deviation is allowed to evolve over time in accordance with the model of 

stochastic volatility, which is specified in terms of the variance, 𝜎𝑖𝑖2 .  The parameter 𝜌𝜎 is the 

AR(1) coefficient for 𝜎𝑖𝑖2  (equation [6]).  The estimated value of 0.96 indicates that volatility has 
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very high persistence from year to year.5  The baseline volatility, corresponding to the mean 

across countries of the σi, is 0.024. 

 In key respects, our estimated parameters for the long-run risks, LRR, part of the model 

accord with those presented by Bansal and Yaron (2004) and in an updated version, Bansal, Kiku, 

and Yaron (2010).  Our estimated 𝜌𝜒 of 0.73 compares to their respective values of 0.78 and 0.74 

(when their monthly values are converted into annual values).  Our estimated 𝜌𝜎  of 0.96 

compares to their respective values of 0.86 and 0.99.  Our estimated mean σi of 0.024 compares 

to their respective values of 0.027 and 0.025. 

 The combination of the various parameters determines the size distribution of disasters 

and recoveries.  Simulations reveal that the mean negative cumulative effect of a disaster on a 

country’s level of per capita consumption is 22%.  This effect combines the first-year change 

with those in subsequent years until the transition occurs from a disaster to a normal state.  If we 

condition on a disaster cumulating to at least 10%, the mean cumulative disaster size is 28%.6  

As a comparison, Barro and Ursúa (2008, Figure 1, p. 285) found a mean size of consumption 

disaster of 22% when conditioning on disasters of 10% or more. 

In our present analysis, the mean recovery turns out to cumulate to 44% of the prior 

decline.  That is, on average, 56% of the fall in consumption during a disaster is permanent.  

Recoveries were not considered in Barro and Ursúa (2008).  In Nakamura, et al. (2013, p. 47), 

the typical recovery is estimated at 48%. 

 Because the estimated standard deviation of the permanent shocks, 𝜎𝜂 , is large, 0.15, 

there is a great deal of variation across disasters in the extent of recovery.  In fact, simulations of 

                                                 
5The estimated value of k is 0.71.  This parameter determines the standard deviation of the shock in equation (5) compared to that 
in equation (4). 
6In Nakamura, et al. (2013, p. 47), the effect of a “typical disaster is approximately a 27 percent fall in consumption.”  This 
typical disaster should correspond roughly to our assessment of disasters that cumulate to contractions by at least 10%. 
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the estimated model indicate that 42 percent of disasters have recoveries that exceed 100%.  That 

is, the estimated long-run effects of many disasters are positive for the level of per capita 

consumption.  One possible explanation is the long-term “cleansing” effects of wars and 

depressions on the quality of institutions, wealth distribution, and so on.  However, the estimated 

long-run level effect is negative in the majority of cases. 

B. Six illustrative countries 

 Figures 2-7 illustrate the dynamics of the model by considering the time evolution of the 

key variables for six illustrative countries:  Chile, Germany, Japan, Russia, United Kingdom, and 

United States.  These figures show the evolution of each country’s posterior mean of the disaster 

state, 𝐼𝑖𝑖, the temporary disaster shock, 𝐼𝑖𝑖𝜙𝑖𝑖, the permanent disaster shock, 𝐼𝑖𝑖𝜂𝑖𝑖, the variable 

part of the long-run growth rate, 𝜒𝑖𝑖, and the stochastic volatility, 𝜎𝑖𝑖.  This volatility is expressed 

as a standard deviation and is multiplied by ten to be visible in the graphs.  The other variables 

are expressed as quantities per year. 

 A general finding is that variables related to rare disasters behave very differently from 

those related to long-run risks.  The temporary and permanent disaster shocks, 𝐼𝑖𝑖𝜙𝑖𝑖 and 𝐼𝑖𝑖𝜂𝑖𝑖, 

operate only on the rare occasions where the posterior mean of the disaster dummy variable, 𝐼𝑖𝑖, 

is high.  For example, for Germany (Figure 3), the posterior disaster probability is close to one 

during World War I and its aftermath (including the hyperinflation) and during World War II and 

its aftermath.  Similar patterns hold for Russia (Figure 5) and in a milder form for the United 

Kingdom (Figure 6).  For Japan (Figure 4), World War II is the main event.  For the United 

States (Figure 7), the prominent times of disaster are the Great Depression of the early 1930s and 

the aftermath of World War I (possibly reflecting the Great Influenza Epidemic).  Chile (Figure 2) 

has a much greater frequency of disaster, notably following the Pinochet coup of 1973. 
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 Figures 2-7 show that the disaster periods feature sharply negative temporary shocks, 

𝐼𝑖𝑖𝜙𝑖𝑖, and these are particularly large in the wartime periods for Germany, Japan, and Russia.  

For the United States, the main temporary disaster shocks are for the early 1930s and just after 

World War I. 

The figures show that the permanent disaster shocks, 𝐼𝑖𝑖𝜂𝑖𝑖 , are also often large in 

magnitude during disaster periods.  However, these shocks are much more diverse than the 

temporary shocks and are often positive—for example, in Germany during much of the 1920s 

and 1947, in Japan in 1945, and in Russia in the early 1920s and in 1943, 1945, and 1946.  These 

occurrences of favorable permanent shocks may reflect improvements in a country’s prospects 

for the coming post-war or post-financial-crisis environment.  An interesting extension would 

relate these measured permanent disaster shocks to observable variables, such as military 

outcomes or institutional/legal changes.   

In our approach, the permanent disaster shocks are classified as a dimension of rare 

disasters, rather than long-run risks.  We use this terminology because the permanent shocks 

under consideration, 𝐼𝑖𝑖𝜂𝑖𝑖, arise only during the unusual times when rare events are occurring.  

Moreover, these events can usually be identified with clear historical events, such as the world 

wars and the Great Depression.  However, these permanent shocks surely have long-term 

implications for the economy’s level of consumption and are, in that sense, a “long-run risk.”  

More broadly, we view rare disasters and long-run risks as complementary ideas, and our results 

reflect the combination of these forces. 

 In contrast to the disaster variables, the long-run-risk variables, 𝜒𝑖𝑖 and 𝜎𝑖𝑖, exhibit much 

smoother, low-frequency evolution, as shown in Figures 2-7.  The variable 𝜒𝑖𝑖  indicates the 

excess of the projected growth rate of per capita consumption (over a persisting interval) from its 
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long-run mean, which averaged 0.020 per year across the countries in our sample.  For the 

United States (Figure 7), the estimated 𝜒𝑖𝑖 exceeds 0.010 for 1962-67, 1971, 1982-85, and 1997-

98—recent periods that are typically viewed as favorable for economic growth.  At earlier times, 

this variable exceeds 0.010 for 1933-36 (recovery from the Great Depression), 1898, and 1875-

79 (resumption of the gold standard).  On the down side, the estimated 𝜒𝑖𝑖 is negative and larger 

than 0.010 in magnitude for 2007-09 (Great Recession), 1990, 1979, 1910-13, 1907, 1882-93, 

1859-65, and 1852-55. 

 For the other illustrative countries, the estimated 𝜒𝑖𝑖 is particularly high in Chile for 

1986-96, 2003-06, and 2009-11; in Germany for 1945-71; in Japan for 1945-72; in Russia for 

1999-2011; and in the United Kingdom for 1983-88 and 1995-2002.  Bad periods for 𝜒𝑖𝑖 include 

Russia in 1989-97 and the United Kingdom in 2007-11. 

 The estimated stochastic volatility, gauged by the standard deviation, 𝜎𝑖𝑖 , is even 

smoother than the estimated 𝜒𝑖𝑖.  In the figures, the United States, Germany, and Japan exhibit 

the frequently mentioned pattern of moderation, whereby the estimated 𝜎𝑖𝑖 reached low points of 

0.0115 for the United States in 2000, 0.0106 for Germany in 1995, and 0.0117 for Japan in 1999.  

In all three cases, 𝜎𝑖𝑖 ticked up going toward 2012.  As a contrast, Russia experienced a sharp 

rise in the estimated 𝜎𝑖𝑖 from 0.0142 in 1973 to 0.0343 in 2007. 

IV. Asset Pricing 

A. Framework 
 

The asset-pricing implications of the estimated model are analyzed following Mehra and 

Prescott (1985), Nakamura, et al. (2013) (NSBU), and other studies.  To delink the coefficient of 

relative risk aversion, CRRA, from the intertemporal elasticity of substitution, IES, we assume 

that the representative agent has Epstein-Zin (1989)-Weil (1990) or EZW preferences.  For these 
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preferences, Epstein and Zin (1989) show that the return on any asset satisfies the condition 

 𝐸𝑖 �𝛽(1−𝛾)/(1−𝜃) �𝐶𝑡+1
𝐶𝑡
�
−𝜃(1−𝛾)/(1−𝜃)

𝑅𝑤,𝑖+1
(𝜃−𝛾)/(1−𝜃)𝑅𝑎,𝑖+1� = 1,                 (10) 

where subjective discount factor = β, CRRA = γ, IES = 1/θ, 𝑅𝑎,𝑖+1 is the gross return on asset 𝑎 

from 𝑖 to 𝑖 + 1, and 𝑅𝑤,𝑖+1 is the corresponding gross return on overall wealth.  Overall wealth 

in our model equals the value of the equity claim on a country’s consumption (which 

corresponds to GDP for a closed economy with no depreciable capital and no government sector). 

Since the model cannot be solved in closed form, we adopt a numerical method that 

follows Nakamura, et al. (2013, p.56, n.26).  Specifically, Equation (10) gives a recursive 

formula for the price-dividend ratio (PDR) of the consumption claim, and the iteration procedure 

finds the fixed point of the corresponding function.  Then the pricing of other assets follows from 

equation (10). 

To analyze the asset-pricing implications of the model, we need the parameter estimates 

from Table 1, along with values of CRRA (γ), IES (1/θ), and the subjective discount factor (𝛽).  

The macroeconomics and finance literature has debated appropriate values for the IES.  For 

example, Hall (1998) estimates the IES to be close to zero, Campbell (2003) and Guvenen (2009) 

claim that it should be less than 1, Seo and Wachter (2015) assume that the IES equals 1, Bansal 

and Yaron (2004) use a value of 1.5, and Barro (2009) adopts Gruber’s (2013) empirical analysis 

to infer an IES of 2.  Nakamura, et al. (2013) show that low IES values, such as IES < 1, are 

inconsistent with the observed behavior of asset prices during consumption disasters.  Moreover, 

as stressed by Bansal and Yaron (2004), IES > 1 is needed to get the “reasonable” sign (positive) 

for the effect of a change in the expected growth rate on the price-dividend ratio for an unlevered 

equity claim on consumption.  Similarly, Barro (2009) notes that IES > 1 is required for greater 

uncertainty to lower this price-dividend ratio.  For these reasons, our main analysis follows 
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Gruber (2013) and Barro (2009) to use IES = 2 (θ = 0.5). 

We determine the values of 𝛾 and 𝛽 to fit observed long-term averages of real rates of 

return on corporate equity and short-term government bills (our proxy for risk-free claims).  

Specifically, for 17 countries with long-term data, we found from an updating of Barro and 

Ursúa (2008, Table 5) that the average (arithmetic) real rate of return was 7.90% per year on 

levered equity and 0.75% per year on government bills.  Hence, the average levered equity 

premium was 7.15% per year.  Therefore, we calibrate the model to fit a risk-free rate of 0.75% 

per year and a levered equity premium of 7.15% per year (when we assume a corporate debt-

equity ratio of 0.5).  It turns out that, to fit these observations, our main analysis requires γ = 5.9 

and β = 0.973. 

We follow Nakamura, et al. (2013) and Bansal and Yaron (2004) by making the crucial 

assumption for asset pricing that the representative agent is aware contemporaneously of the 

values of the underlying shocks.  These random variables include the indicators for a world and 

country-specific disaster state, the temporary and permanent shocks during disasters, the current 

value of the long-run growth rate, and the current level of volatility.  We think that the 

assumption of complete current information about these underlying shocks is highly unrealistic 

and likely to make a large difference for the asset-pricing results.  Therefore, we think it 

important to extend the asset-pricing analysis to allow for incomplete current information about 

the underlying shocks. 

B. Empirical Evaluation 

Table 3, column 1, shows target values of various asset-pricing statistics.  These targets 

are the mean and standard deviation of the risk-free rate, 𝑟𝑓, the rate of return on levered equity, 
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𝑟𝑒, and the equity premium, 𝑟𝑒 − 𝑟𝑓; the Sharpe ratio;7 and the mean and standard deviation of 

the dividend yield.  These target statistics are inferred from averages in the cross-country panel 

data described in the notes to Table 3.   

Table 3, column 2, refers to our baseline model, which combines rare events (RE) and 

long-run risks (LRR).  Given the parameter estimates from Table 1, along with IES = 1/θ = 2 

(and a corporate debt-equity ratio of 0.5), the model turns out to require a coefficient of relative 

risk aversion, γ, of 5.9 and a subjective discount factor, β, of 0.973 to fit the target values of 𝑟𝑓 = 

0.75% and 𝑟𝑒 − 𝑟𝑓 = 7.15%.  Heuristically, we can think of γ as chosen to attain the target equity 

premium, with β selected to get the right overall level of rates of return. 

As comparisons, Barro and Ursúa (2008) and Barro and Jin (2011) required a coefficient 

of relative risk aversion, γ, of 3-4 to fit the target average equity premium.  In these analyses, the 

observed macroeconomic disasters were assumed to be fully permanent in terms of effects on the 

level of per capita consumption.  In Nakamura, et al. (2013), the required γ was higher—around 

6.4—mostly because the incorporation of post-disaster recoveries meant that observed disasters 

had smaller effects on the equilibrium equity premium.  A required γ of 6.4 seems unrealistically 

high, and one motivation for the present analysis was that the incorporation of long-run risks 

(LRR) into the rare-disaster framework might substantially reduce the required γ.  In fact, there is 

only a modest reduction—to 5.9—and, therefore, the required degree of risk aversion still seems 

unrealistically high.  We discuss later alternative specifications that might produce reductions in 

the required γ. 

Table 3, column 2, shows that the baseline model substantially underestimates measures 

of volatility.  Specifically, the model’s predicted standard deviation of 𝑟𝑒 (0.096) is substantially 

                                                 
7This value is the ratio of the mean of 𝑟𝑒 − 𝑟𝑓to its standard deviation. 
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lower than that observed in the data (0.245 in column 1).  We had thought that the incorporation 

of long-run risks, especially stochastic volatility, would help to improve the model’s fit with 

respect to the volatility of 𝑟𝑒.8  However, even with the LRR component included, this volatility 

is substantially underestimated.  We think that a major gap here is the omission of time-varying 

disaster probability, p.  We plan to make this extension, but the numerical analysis will be 

substantially more complicated. 

The Sharpe ratio in the baseline model, 0.83 (column 2), is substantially higher than the 

value 0.29 found in the data (column 1).  However, this result is essentially a restatement of the 

model’s understatement of the volatility of the return on equity (or of the equity premium).  That 

is, the values of γ and β are determined to match the average equity premium, which is the 

numerator of the Sharpe ratio.  Then the Sharpe ratio is too high because the model’s estimated 

volatility of the equity premium (the denominator of the ratio) is too low (when evaluated using 

the specified γ and β).  This finding of an excessive Sharpe ratio applies also to the models 

considered next. 

The remaining columns of Table 3 divide up the baseline model—which incorporates the 

rare events, RE, and long-run risks, LRR, pieces—into individual contributions to the 

explanations of means and volatilities of returns.  In all cases, we retain the parameter estimates 

for the consumption process from Table 1, along with IES = 1/θ = 2 (and a debt-equity ratio 

of 0.5).  We then recalculate for each case the values of γ and β needed to match the observed 

averages of 0.75% for 𝑟𝑓and 7.15% for 𝑟𝑒 − 𝑟𝑓.  Given these tailored parameter values, each 

model matches the target averages of 𝑟𝑓and 𝑟𝑒. 

Table 3, column 3 (RE only), shows results with the omission of the long-run risks, LRR, 

                                                 
8In contrast, the observed volatility of 𝑟𝑓involves the impact of realized inflation on the real return on a nominally denominated 
asset.  This consideration is not present in the underlying real model. 
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parts of the model.  In this case, the value of γ has to be 6.4, rather than 5.9, for the model to 

generate the observed average equity premium of 0.072.  From this perspective, the inclusion of 

LRR in the baseline model (column 2) generates moderate improvements in the results; that is, 

the lower required value of γ seems more realistic.  Viewed alternatively, if we retain the 

baseline parameter values of γ = 5.9 and β = 0.973, the model’s average equity premium would 

fall from 0.072 (column 2) to 0.057 (column 3).   

With regard to the standard deviation of 𝑟𝑒, the model with rare events only (column 3) 

has a value of 0.086, whereas the model that incorporates LRR has the higher value of 0.096 

(column 2).  In this sense, the incorporation of LRR improves the results on volatility of equity 

returns.  However, as already noted, the standard deviation of 𝑟𝑒 in the baseline model (column 2) 

still falls well below the observed value of 0.245 (column 1). 

Table 3, column 4 (LRR only), shows the results with the omission of the rare-events, RE, 

parts; that is, with only the long-run-risk part, LRR, included.  In this case, the value of γ 

required to fit the target mean equity premium of 0.072 is 18, an astronomical degree of risk 

aversion.9  Hence, the omission of the RE terms makes the model clearly unsatisfactory with 

respect to explaining the average equity premium.  Viewed alternatively, if we keep the baseline 

parameter values of γ and β, the model’s average equity premium would fall from 0.072 

(column 2) to 0.023 (column 4).  With regard to the standard deviation of 𝑟𝑒 , the LRR only 

model has a value of 0.074, below the values of 0.086 from the RE only model (column 3), 0.096 

from the baseline model (column 2), and 0.245 in the data (column 1). 

Table 3, column 5, shows the effects from the omission of only the stochastic volatility 

part of the long-run risks, LRR, model.  In this case, the value of γ required to match the 

                                                 
9Bansal and Yaron (2004) argued that a value of γ = 10 was sufficient, although that value is still much too high to be realistic.  
Our results differ mostly because Bansal and Yaron incorporate high leverage in the relation between dividends and consumption. 
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observed average equity premium is 6.0, not much higher than the value 5.9 in the baseline 

model (column 2).  Alternatively, if we retain the baseline parameter values of γ and β, the 

model’s average equity premium would fall only slightly from 0.072 (column 2) to 0.069 

(column 5).  Therefore, to the extent that the inclusion of LRR improves the fit with regard to the 

equity premium, it is the evolution of the mean growth rate, not the fluctuation in the variance of 

shocks to the growth rate, that matters.  With regard to the standard deviation of 𝑟𝑒, the value of 

0.0963 in column 5 is very close to the value 0.0964 in the baseline model (column 2).  In this 

sense, the incorporation of stochastic volatility contributes negligibly to explaining the volatility 

of equity returns.   

Column 6 of Table 3 corresponds to using only the permanent-shock part of the rare-

events, RE, model.  In this case, the value of γ required to match the observed average equity 

premium is 6.9, not too much higher than the value 6.4 in column 3.  This result shows that the 

main explanatory power of the RE model for the equity premium comes from the permanent 

parts of rare events.  Recall in this context that earlier analyses, such as Barro and Ursúa (2008) 

and Barro and Jin (2011), assumed that all of the rare-event shocks had fully permanent effects 

on the level of per capita consumption.  Alternatively, if we keep the baseline parameter values 

of γ and β, the model’s average equity premium falls from 0.057 in the full RE model (column 3) 

to 0.045 (column 6).  Hence, the exclusion of the temporary parts of RE shocks has only a 

moderate impact on the model’s average equity premium.   

Table 4 shows how the results from the baseline model change with differences in the 

coefficient of relative risk aversion, γ, or the intertemporal elasticity of substitution, 1/θ.  Table 4, 

column 1, has γ = 4, instead of the baseline value of 5.9.  In other respects, the parameters are 

unchanged from those in Table 3, column 2.  The reduction in γ lowers the model’s average 
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equity premium from 0.072 (Table 3, column 2) to 0.031 (Table 4, column 1).  Conversely, 

Table 4, column 2, has γ = 10.  This increase in γ raises the model’s average equity premium to 

0.221.  Therefore, the average equity premium is highly sensitive to the value of γ. 

Table 4, column 3, has IES = 1/θ = 1.5, instead of the baseline value of 2.0.  This change 

lowers the model’s mean equity premium to 0.054.  A further reduction in the IES to 1.1 

(column 4) reduces the model’s average equity premium further, to 0.029.  Therefore, changes in 

the IES matter for the equity premium but, in a plausible range, not nearly as much as changes 

in γ.10 

V. Concluding Observations 

 Rare events (RE) and long-run risks (LRR) are complementary approaches to 

understanding asset-pricing patterns, including the averages of the risk-free rate and the equity 

premium and the volatility of equity returns.  We constructed a model with RE and LRR 

components and estimated this joint model using long-term data on aggregate consumption for 

42 economies.  This estimation allows us to distinguish empirically the forces associated with 

RE from those associated with LRR.   

Rare events (RE) typically associate with major historical episodes, such as the world 

wars and the Great Depression and possibly the Great Influenza Epidemic.  In addition to these 

global forces, the data reveal many disasters that affected one or a few countries.  The estimated 

model determines the frequency and size distribution of macroeconomic disasters, including the 

extent of eventual recovery.  The distribution of recoveries is highly dispersed; that is, disasters 

differ greatly in terms of the relative importance of temporary and permanent components.   

                                                 
10In a pure i.i.d. model, as in Barro (2009), the equity premium would not depend on the IES.  The dependence on the IES arises 
in our model because of the dynamics of disasters and recoveries.  See Nakamura, et al. (2013) for discussion. 
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In contrast to RE, the long-run risks (LRR) parts of the model reflect gradual and 

evolving processes that apply particularly at a country level to changing long-run growth rates 

and volatility.  Some of these patterns relate to familiar notions about moderation and to times of 

low or high expected growth rates. 

 We applied the estimated time-series model of consumption to asset pricing.  A match 

between the model and observed average rates of return requires a coefficient of relative risk 

aversion, γ, around 6.  Most of the explanation for the equity premium derives from the RE 

components of the model, although the LRR parts make a moderate contribution.  A shortcoming 

of the results is that the required degree of risk aversion seems too high to be realistic.  We think 

that this feature of the model will improve if we allow for incomplete current information about 

the nature of the underlying shocks.  In particular, uncertainty about how much of a disaster will 

turn out to be temporary versus permanent effectively fattens the tail of potential outcomes and 

leads, thereby, to a reduction in the required value of γ.  Similarly, it seems important to allow 

for gradual learning about shocks to the long-run growth rate and to volatility. 

 We had thought that the addition of LRR to the RE framework would help to match the 

observed volatility of equity returns.  However, the joint model still substantially understates the 

average volatility found in the data.  We think that this aspect of the model will improve if we 

allow for stochastic evolution of the probability or size distribution of disasters.  We plan to 

undertake this extension, although the required numerical analysis will be challenging. 
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Table 1 

Estimated Parameters—Model with Rare Events and Long-Run Risks 

Parameter Definition Posterior 
Mean 

Posterior 
s.d. 

 World disaster probability, conditional on:   

p0 No prior-year world disaster 0.029 0.011 

p1 Prior-year world disaster 0.658 0.139 

 Country disaster probability, conditional on:   

q00 No prior-year disaster, no current world disaster 0.0066 0.0022 

q10 Prior-year disaster, no current world disaster 0.719 0.050 

q01 No prior-year disaster, current world disaster 0.360 0.052 

q11 Prior-year disaster, current world disaster 0.857 0.037 

ρz AR(1) coefficient for event gap (Eq. 7) 0.304 0.030 

ϕ Temporary disaster shock (Eq. 7) −0.0790 0.0081 

η Permanent disaster shock (Eq. 7) −0.0282 0.0081 

𝜎𝜙 s.d. of ϕ shock 0.0574 0.0063 

𝜎𝜂 s.d. of η shock 0.148 0.011 

𝜌𝜒 
AR(1) coefficient for variable part of long-
run growth rate (Eq. 5) 0.730 0.034 

𝜌𝜎 
AR(1) coefficient for stochastic volatility  
(Eq. 6) 0.963 0.014 

k 
Multiple on error term for variable part of 
long-run growth rate (Eq. 5) 0.705 0.093 

𝜇𝑖 (mean over i) Long-run average growth rate (Eq. 4) 0.020  

𝜎𝜀𝑖 (mean over i) 
s.d. for shock to consumption (Eq. 1), pre-
1946 0.0231  

𝜎𝜀𝑖 (mean over i) 
s.d. for shock to consumption (Eq. 1), post-
1945 0.0061  

𝜎𝑖2 (mean over i) 
Average variance for stochastic volatility  
(Eq. 6) 0.000572  

𝜎𝜔𝑖 (mean over i) s.d. for shock to 𝝈𝒊𝒊𝟐  (Eq. 6) 0.0000840  

𝜎𝜈𝑖 (mean over i) s.d. for shock to event gap (Eq. 7) 0.00515  
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Table 2 

Country-years with Posterior Disaster Probability of 25% or More 
(Outside of global event years:  1867, 1914-20, 1930-31, 1939-46) 

Country Years 
Argentina 1891-1902, 2001-02 
Australia 1932, 1947 
Belgium 1947 
Brazil 1975 
Canada 1921-22, 1932 
Chile 1921-22, 1932-33, 1955-57, 1972-85 
Colombia 1932, 1947-50 
Denmark 1921-24, 1947-48 
Egypt 1921-23, 1947-59, 1973-79 
Finland 1868, 1932 
Germany 1921-27, 1947-49 
Greece 1947, 2009-12 
India 1947-50 
Malaysia 1998 
Mexico 1932, 1995 
New Zealand 1894-97, 1921-22, 1947-52 
Norway 1921-22 
Peru 1932, 1985-89 
Portugal 1975 
Russia* 1921-24, 1947-48 
Singapore 1950-53, 1958-59 
South Korea 1947-52, 1997-98 
Spain 1932-38, 1947-52, 1960 
Sweden 1868-69, 1921, 1947-50 
Switzerland 1853-56, 1947 
Taiwan 1901-12, 1947-51 
Turkey 1876-81, 1887-88, 1921, 1947-50 
United States 1921, 1932-33 
Venezuela 1932-33, 1947-58 

 
 
*For Russia in the 1990s, the posterior disaster probability peaks at 0.14 in 1991.  Using data on 
GDP, rather than consumption, Russia clearly shows up as a macroeconomic disaster for much 
of the 1990s. 
 
Note:  This table reports years in which the posterior mean of the rare-event dummy variable, Iit 
for country i at time t, exceeds 0.25.  See equation (3) in the text.  



29 
 

 
Table 3 

Asset-Pricing Statistics:  Data and Alternative Models 
 (1) (2) (3) (4) (5) (6) 

Statistic Data Baseline 
RE & 
LRR 

RE 
only 

LRR 
only 

RE & LRR 
no stochastic 

volatility 

RE perm. 
shocks 

only 
mean 𝑟𝑓  0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 
mean 𝑟𝑒 0.0790 0.0790 0.0790 0.0790 0.0790 0.0790 
mean 𝑟𝑒 − 𝑟𝑓 0.0715 0.0715 0.0715 0.0715 0.0715 0.0715 
𝜎(𝑟𝑓) 0.0850 0.0251 0.0202 0.0121 0.0241 0.0183 
𝜎(𝑟𝑒) 0.245 0.0964 0.0861 0.0742 0.0963 0.0765 
𝜎(𝑟𝑒 − 𝑟𝑓) 0.245 0.0863 0.0802 0.0686 0.0861 0.0698 
Sharpe ratio 0.29 0.83 0.89 1.04 0.83 1.03 
mean div. yield 0.0449 0.0486 0.0493 0.0457 0.0486 0.0498 
σ(div. yield) 0.0175 0.0158 0.0119 0.00920 0.0147 0.0114 
γ -- 5.89 6.39 17.8 5.98 6.90 
β -- 0.973 0.971 0.977 0.973 0.972 
mean 𝑟𝑒 − 𝑟𝑓 
with 
baseline 
params. 

-- 0.0715 0.0569 0.0228 0.0685 0.0452 

 
 
Notes:  𝑟𝑓 is the risk-free rate (proxied by real returns on short-term government bills), 𝑟𝑒 is the 
real total rate of return on corporate equity, σ values are standard deviations, Sharpe ratio is the 
ratio of mean 𝑟𝑒 − 𝑟𝑓 to 𝜎(𝑟𝑒 − 𝑟𝑓), and div. yield is the dividend yield.  A debt-equity ratio of 
0.5 is assumed in the calculations for each model. 
 
Data are means over 17 countries (Australia, Denmark, Finland, France, Germany, Italy, Japan, 
Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, U.K., U.S., Chile, and India) 
with long-term returns data, as described in Barro and Ursua (2008, Table 5) and updated to 
2014.  The main underlying source is Global Financial Data.  For the dividend yield, the means 
are for 8 countries with at least 90 years of data (Australia, France, Germany, Italy, Japan, 
Sweden, U.K., and U.S.).  These data are from Global Financial Data and updated through 2014. 
 
The third- and second-to-last rows give the values of γ (coefficient of relative risk aversion) and 
β (discount factor) required in each model to match the observed average values of the risk-free 
rate, 𝑟𝑓, and the equity return, 𝑟𝑒 .  RE & LRR is the baseline model, which includes all the 
elements of rare events (RE) and long-run risks (LRR).  The other columns give results with 
various components eliminated.  RE only eliminates the LRR parts.  LRR only eliminates the RE 
parts.  RE & LRR, no stochastic vol. eliminates only the stochastic volatility part of LRR.  RE 
perm. shocks only eliminates everything except the permanent-shock part of RE. 
 
The last row gives the average equity premium of each model when γ and β take on their baseline 
values, i.e., γ = 5.89 and β = 0.973. 
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Table 4 
Asset-Pricing Statistics: Baseline Model with Alternative Risk Aversion and IES  
 (1) (2) (3) (4) 
γ (coefficient of relative risk aversion) 4.0 10.0 5.89 5.89 
1/θ (IES) 2.0 2.0 1.5 1.1 
mean 𝑟𝑓  0.0253 −0.0661 0.0166 0.0300 
mean 𝑟𝑒 0.0563 0.155 0.0708 0.0593 
mean 𝑟𝑒 − 𝑟𝑓 0.0310 0.221 0.0541 0.0293 
𝜎(𝑟𝑓) 0.0245 0.0221 0.0316 0.0423 
𝜎(𝑟𝑒) 0.0869 0.102 0.0823 0.0762 
𝜎(𝑟𝑒 − 𝑟𝑓) 0.0759 0.0972 0.0745 0.0800 
Sharpe ratio 0.41 2.27 0.73 0.37 
mean div. yield 0.0269 0.123 0.0413 0.0304 
σ(div. yield) 0.0139 0.0153 0.0170 0.0186 

 
 
Notes:  These results modify the baseline model from Table 3, column 2.  Column 1 has γ = 4, 
column 2 has γ = 10, column 3 has IES = 1/θ = 1.5, column 4 has IES = 1/θ = 1.1.  In other 
respects, the parameters are the same as in Table 3, column 2, including the discount factor β = 
0.973. 
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Figure 1: World Rare-Event Probability 

 

 
 
 
Note: This figure plots the posterior mean of the world rare-event dummy variable, 𝐼𝑊𝑖, and, 
therefore, corresponds to the estimated probability that a world rare event was in effect for each 
year from 1851 to 2012.  See equation (2) in the text. 
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Figure 2: Fitted Model for Chile 
 

 
 
 

 
 

Figure 3: Fitted Model for Germany 
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Figure 4: Fitted Model for Japan 
 

 
 

 
 

Figure 5: Fitted Model for Russia 
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Figure 6: Fitted Model for United Kingdom 
 

 
 

Figure 7: Fitted Model for United States 
 

 
Note for Figures 2-7:  The probability of a rare event is the posterior mean of the rare-event 
dummy variable Iit (for country i at time t), ϕit is the temporary part of the rare-event shock, ηit is 
the permanent part of the rare-event shock, χit is the evolving part of the long-run growth rate, σit 
is stochastic volatility (the standard deviation associated with the shocks to growth rates of 
potential consumption and χit), and μi is the long-run mean growth rate of consumption.  See 
equations (1)-(7) in the text.  
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Appendix 
 

A.1 Data used in this study 
This study uses an enlarged version of the Barro-Ursúa macroeconomic data set (2010).  The 
original data set contains annual consumption series for 42 economies up to 2009, and we 
expand it to 2012.  This data set covers the major economies in the world:  Argentina, Australia, 
Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Denmark, Egypt, Finland, France, 
Germany, Greece, Iceland, India, Indonesia, Italy, Japan, Korea, Mexico, Malaysia, Netherlands, 
New Zealand, Norway, Peru, Philippines, Portugal, Russia, South Africa, Singapore, Spain, Sri 
Lanka, Sweden, Switzerland, Taiwan, Turkey, United Kingdom, Uruguay, United States, and 
Venezuela. 
 
The availability of uninterrupted annual data varies across economies.  To best utilize the rich 
information contained in the data set, we adopt the longest possible uninterrupted series between 
1851 and 2012 for each economy, yielding a total of 4814 country-year observations.  We 
choose 1851 as the starting date because it is the earliest year when uninterrupted data are 
available for at least 10 countries.  The reason for this criterion is that the model incorporates the 
correlation in the timing of rare events across countries through a world event indicator, and it is 
undesirable if this indicator is estimated from data for only a few countries.  The ten countries 
with uninterrupted data since 1851 are Denmark, France, Germany, Netherlands, Norway, Spain, 
Sweden, Switzerland, the United Kingdom, and the United States.  The data set used in this study 
is much larger than those in previous studies.  For example, the total number of country-year 
observations explored in NSBU is 2685, and that number is almost doubled here. 
 

A.2 Missing data at the beginning of series 

When t = 1851, i.e., for the first year in the data, the value of 𝐼𝑊,𝑖−1 is missing.  In this case, we 
use the proportion of world event years in all the years in the simulation to simulate the value of 
𝐼𝑊,𝑖−1 and then simulate the value of 𝐼𝑊,𝑖 based on the simulated 𝐼𝑊,𝑖−1 and other information. 
 
Let 𝑖𝑖0 denote the earliest date when uninterrupted consumption data are available for country i. 
When 𝑖=𝑖𝑖0, Formula (3) is not directly applicable, because 𝐼𝑖,𝑖𝑖0−1 is missing.  Following the 
idea of (3), we calculate the following prior conditional probability instead 
   Pr�𝐼𝑖,𝑖𝑖0 = 1�𝐼𝑊,𝑖𝑖0� 
=Pr�𝐼𝑖,𝑖𝑖0 = 1�𝐼𝑖,𝑖𝑖0−1 = 0, 𝐼𝑊,𝑖,0�Pr�𝐼𝑖,𝑖𝑖0−1 = 0�𝐼𝑊,𝑖𝑖0� 
+Pr�𝐼𝑖,𝑖𝑖0 = 1�𝐼𝑖,𝑖𝑖0−1 = 1, 𝐼𝑊,𝑖𝑖0�Pr�𝐼𝑖,𝑖𝑖0−1 = 1�𝐼𝑊,𝑖𝑖0�                                                           (A.1) 

= 𝑞01
𝐼𝑊,𝑡𝑖0𝑞00

1−𝐼𝑊,𝑡𝑖0 Pr�𝐼𝑖,𝑖𝑖0−1 = 0�𝐼𝑊,𝑖𝑖0� + 𝑞11
𝐼𝑊,𝑡𝑖0𝑞10

1−𝐼𝑊,𝑡𝑖0 Pr�𝐼𝑖,𝑖𝑖0−1 = 1�𝐼𝑊,𝑖𝑖0�. 
For simplicity, we further assume 

Pr�𝐼𝑖,𝑖𝑖0−1 = 1�𝐼𝑊,𝑖𝑖0� = Pr (𝐼𝑖,𝑖𝑖0−1 = 1), 
where the prior probability Pr (𝐼𝑖,𝑖𝑖0−1 = 1) is estimated by 𝑞𝑖, the fraction of event periods in all 
the periods studied for country i. So 

Pr�𝐼𝑖,𝑖𝑖0 = 1�𝐼𝑊,𝑖𝑖0� = 𝑞01
𝐼𝑊,𝑡𝑖0𝑞00

1−𝐼𝑊,𝑡𝑖0(1 − 𝑞𝑖) + 𝑞11
𝐼𝑊,𝑡𝑖0𝑞10

1−𝐼𝑊,𝑡𝑖0𝑞𝑖,                 (A.2) 
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and we impose the restriction that 𝑞𝑖 ∈ (0, 0.3]. 
 
For other cases of missing data, we also specify reasonable prior distributions to improve the 
estimation accuracy. 
 

A.3 Prior distributions of parameters and unknown quantities 
Bayesian MCMC has two major advantages in estimating the model here: (1) necessary 
information can be incorporated into prior beliefs, and (2) it is relatively easy to implement for a 
model as complicated as the one proposed in this study.  The prior distributions of parameters 
and unknown quantities in the proposed model are listed in detail here. 
 
In this study, a prior being “uninformative” means that the posterior distribution is proportional 
to the likelihood.  With an uninformative prior, the mode of the posterior distribution 
corresponds to the maximum-likelihood estimate.  A typical uninformative prior for a parameter 
is the uniform distribution on an infinite interval (e.g., a half-line or the entire real line). 
Extending that idea, we also say that the uniform distribution on a finite interval is uninformative 
if the finite interval contains the parameter with probability 1.  More generally, we say a prior 
distribution is “almost uninformative” (or more rigorously, “not very informative”) if it is close 
to a flat prior.  In this study, the general guideline for the specification of priors is to make them 
as uninformative as possible (in certain regions).  Thus, many priors are taken to be uniform. 
 
Prior distributions of parameters. In this study, 𝜂𝑖𝑖  is assumed to follow the normal 
distribution 𝑁(𝜂,𝜎𝜂2) , and 𝜙𝑖𝑖  is assumed to follow the truncated normal distribution 
𝑇𝑁(𝜙⋄,𝜎𝜙⋄2;−∞, 0) , where 𝜙⋄  and 𝜎𝜙⋄2  denote the mean and variance, respectively, of the 
underlying normal distribution (i.e., the normal distribution before truncation).  The mean value 
and standard deviation of 𝜙𝑖𝑖 are denoted by 𝜙 and 𝜎𝜙, respectively.  Another possible choice 
for the prior distribution of 𝜂𝑖𝑖 and 𝜙𝑖𝑖 is the exponential distribution. Corresponding to Barro 
and Jin (2011), if 𝑧 ≜ 1

1−𝑏
∼ power law distribution with (upper-tail) exponent 𝛼 , where the 

disaster size b is the fraction of contraction in C, then 𝜉 ≜ −ln (𝑧) ∼ exponential distribution 
with rate parameter 𝛼.  This relationship suggests exponential distributions for 𝜂𝑖𝑖 and 𝜙𝑖𝑖.  
 
The prior distribution of the long-term average growth rate 𝜇𝑖 of country i is assumed to follow 
𝑁(0.02, 0.3 ⋅ 0.012), where the prior mean and variance are set to the mean values of the long-
term average growth rates of per capita consumption and Gross Domestic Product (GDP) of the 
42 economies in the enlarged Barro-Ursúa data set.  (More specifically, the corresponding mean 
value and standard deviation are 0.0189 and 3.16⋅10−5, respectively.)  As a summary, the prior 
distributions of the parameters are listed in the following table. 
 
 

Parameter   Distribution  Parameter   Distribution  
𝑝0 ∼ U(0, 0.05)  𝑝1 ∼  U(0.3, 0.9)  
𝑞01 ∼ U(0.3, 1)  𝑞00 ∼  U(0, 0.03) 
𝑞11 ∼ U(0.3, 0.9)  𝑞10 ∼  U(0, 0.9) 
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𝜂 ∼ N(−0.025, 0.12) 𝜎𝜂 ∼  U(0.01, 0.25) 
𝜙⋄ ∼ U(−0.25, 0)  𝜎𝜙⋄  ∼  U(0.01, 0.25) 
𝜎𝜈𝑖 ∼ U(0.001, 0.015)  𝜌𝑧 ∼ U(0, 0.9) 
𝜌𝜒 ∼ U(0, 0.98) 𝜌𝜎 ∼  U(0, 0.98) 
𝑘 ∼ U(0.1, 10) 𝜎𝜔𝑖 ∼  U(10−5, 10−3)  
𝜇𝑖 ∼ N(0.02, 0.3⋅0.012) 𝜎𝜀𝑖 ∼ U(0.001, 0.15) 

 
Conditional prior distribution of event gaps.  It is intuitive that event gaps will gradually 
diminish if no events occur in a country.  Based on this notion, we specify the conditional prior 
distribution of 𝑧𝑖𝑖 as follows. When 𝐼𝑖,𝑖 = 1, i.e., country i is in a rare event at time t, the prior 
distribution of 𝑧𝑖𝑖 is assumed to be 𝑁(0,𝜎𝑧02 ).  We take 𝜎𝑧0 = 2, which is very large, so the prior 
is fairly uninformative on a region local to 0.  If year t is the first uneventful year after a rare 
event in country i, equation (7) becomes 
 𝑧𝑖𝑖 = 𝜌𝑧𝑧𝑖,𝑖−1 + 𝜎𝜈𝑖𝜈𝑖𝑖, 
which implies 

𝑉𝑎𝑟(𝑧𝑖𝑖) ≤ �𝜌𝑧 ⋅ 𝑆𝑆�𝑧𝑖,𝑖−1� + 𝜎𝜈𝑖�
2
≤ (0.9 ⋅ 𝜎𝑧0 + sup(𝜎𝜈𝑖))2, 

i.e., 
𝑆𝑆(𝑧𝑖𝑖) ≤ 𝜎𝑧1 ≜ 0.9 ⋅ 𝜎𝑧0 + sup(𝜎𝜈𝑖) = 1.82, 

where “SD” stands for “standard deviation.”  When year t is the mth uneventful year after the 
most recent rare event in country i, the upper bound 𝜎𝑧𝑧 of 𝑆𝑆(𝑧𝑖𝑖) can be calculated recursively, 
and we assume that the prior distribution of 𝑧𝑖𝑖  follows 𝑁(0,𝜎𝑧𝑧2 ) . 11   Note that the above 
specification of prior distributions of event gap 𝑧𝑖𝑖 is intuitive and is conditional on when the last 
event before year t happens in country i.  
 
Conditional prior distribution of potential consumption.  Based on the prior distribution of 
𝑧𝑖𝑖, we derive the conditional prior distribution of 𝑥𝑖𝑖 as follows.  According to equation (1), the 
upper bound 𝜎𝑥𝑧 of 𝑆𝑆(𝑥𝑖𝑖) satisfies 

𝜎𝑥𝑧 ≤ 𝜎𝑧𝑧 + sup(𝜎𝜀𝑖) = 𝜎𝑧𝑧 + 0.15, 
when year t is the mth (𝑚 ≥ 0) uneventful year after the most recent event in country i.  We 
define 

𝜎𝑥𝑧 ≜ 𝜎𝑧𝑧 + 0.15 
and assume that the prior distribution of 𝑥𝑖𝑖  is 𝑁(𝑐𝑖𝑖,𝜎𝑥𝑧2 ).  Figure A.1 shows the standard 
deviation 𝜎𝑧𝑧 (𝜎𝑥𝑧) of the prior distribution of 𝑧𝑖𝑖 (𝑥𝑖𝑖) as a function of m.  As m goes to ∞, 𝜎𝑧𝑧 
(𝜎𝑥𝑧 ) is decreasing and converges to 0.2 (0.35), which is very large (based on economic 
common sense).  Therefore, the prior distributions of 𝑧𝑖𝑖 and 𝑥𝑖𝑖 are fairly uninformative. 
 

                                                 
11Here, m = 0 indicates that country i is in a rare event.  In the simulation, if no event happens in year 𝑖𝑖0 for 
country i, a simple simulation using probability qi is implemented to determine the number m.  (See Appendix A.1 
for the meaning of qi.) 
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Figure A.1. 𝜎𝑧𝑧 and 𝜎𝑥𝑧 as Functions of m 

 
Non-negativity of 𝝈𝒊𝒊𝟐 . The method for excluding negative values of 𝜎𝑖𝑖2  is similar to that 
employed by Bansal and Yaron (2004).   Instead of “replacing negative realizations with a very 
small number,” we assume that the prior distribution of 𝜎𝑖𝑖2  follows the truncated normal 
distribution 

𝜎𝑖𝑖2  ~ 𝑇𝑁 �𝜎𝑖𝑖2 , 0.00042; 10−8, 0.042�. 
This treatment is natural from the Bayesian point of view, and it is similar to that in Bansal and 
Yaron (2004), as both methods are using (variants of) truncated normal distributions to exclude 
possible negative realizations of 𝜎𝑖𝑖2 . 
 

A.4 Estimation procedure 
The model is estimated by the Bayesian MCMC method, which has been applied to many 
problems in economics and finance, e.g., Chib, Nardari, and Shephard (2002); Pesaran, 
Pettenuzzo, and Timmermann (2006); and Koop and Potter (2007). Specifically, we use the 
algorithm of the Gibbs sampler for the random draws of parameters and unobserved quantities 
(see Gelman, Carlin, Stern, and Rubin, 2004 for a discussion of the MCMC algorithms). 
 
The convergence of the MCMC simulation is guaranteed under very general conditions.  In order 
to accurately estimate parameters and unknown quantities, we run four simulation chains, similar 
to the procedure in NSBU (see Appendix A.5 for details of the specification of the four 
simulation chains).  Besides simulating multiple sequences with over-dispersed starting points 
throughout the parameter space and visually evaluating the trace plots of parameters and 
unknown quantities from the simulation, we also assess the convergence by comparing variation 
“between” and “within” simulated sequences (see Chapter 11 of Gelman, Carlin, Stern, and 
Rubin [2004] for a discussion of this method). 
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After a half million iterations, the simulation results from the four sets of far-apart initial values 
stabilize and become very close to each other.  So we iterate each chain 2 million times and use 
the later 1 million iterations to analyze the posterior distributions of parameters and unknown 
quantities of interest.  The first million iterations are dropped as burn-in. 
 

A.5 Specification of four simulation chains 
In order to accurately estimate the model and assess convergence, we run four independent 
simulation chains in a way similar to that of NSBU.  We specify two extreme scenarios: one is 
called the “no-event scenario,” the other the “all-event scenario.”  For the no-event scenario, we 
set 𝐼𝑊𝑖 = 0, 𝐼𝑖𝑖 = 0, 𝑥𝑖𝑖 = 𝑐𝑖𝑖 , and 𝑧𝑖𝑖 = 0 for all i and t.  For the all-event scenario, we set 
𝐼𝑊𝑖 = 1 and 𝐼𝑖𝑖 = 1 for all i and t and extract a smooth trend using the Hodrick-Prescott filter 
(see Hodrick and Prescott [1997]).  Let 𝑐𝑖𝑖𝜏  denote the trend component and 𝑐𝑖𝑖𝑐  the remainder, i.e.,  
 
 𝑐𝑖𝑖𝑐 = 𝑐𝑖𝑖 − 𝑐𝑖𝑖𝜏 . 
We then let 
 

𝑧𝑖𝑖 = min (max(−0.5, 𝑐𝑖𝑖𝑐 ), 0) and 𝑥𝑖𝑖 = 𝑐𝑖𝑖 − 𝑧𝑖𝑖. 
 

For each scenario, we specify two sets of initial values for parameters: one is called the “lower 
values,” the other the “upper values.”  For the set of “lower values,” the initial parameter values 
are either close to their lower bounds or very low compared to their mean values.  For the “upper 
values,” we have the opposite situation.  Thus, the four sets of initial values of parameters for the 
four simulation chains are far apart from each other. 
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