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Abstract 

Background: Across complex traits, common variants explain only a modest amount of variance, with 

SNP-heritability consistently below heritability estimates from close relatives. Here, we examined the 

contribution of rare variant to tobacco use risk in up to 26,000 individuals of European ancestry in the 

Trans-Omics for Precision Medicine (TOPMed) program with whole genome sequence (WGS;~30X 

coverage). 

Method: We grouped about 35million genetic variants by their minor allele frequencies (MAF) and 

linkage disequilibrium (LD) and estimated SNP-heritability for age of smoking initiation (N=14,747), 

cigarettes smoked per day (N=15,425), smoking cessation (N=17,871) and initiation (N=26,340) using 

linear mixed model. Rare variant population structure is detected and adjusted for by permutation 

procedure. We estimated an upper bound for narrow-sense heritability for tobacco use using available 

pedigrees consisting of close relatives in TOPMed. 

Results: Rare variants with MAF 0.1% to 0.01%, mostly from non-protein altering region, accounted for 

26% of variation in age of initiation and 15% for cessation. Follow-up analysis indicated that about one-

third of these rare variants contribtion is potentially confounded with rare variants structure even after 

adjusting for principal components. After further conservative adjustment of population structure, we 

estimated SNP-based heritability to be 0.21 (SE=0.08) for age of initiation, 0.15 (0.06) for cigarettes per 

day, 0.21 (0.09) for cessation, and 0.24 (0.07) for initiation, 1.8-4.5 times higher than previous SNP-based 

estimates. Our pedigree-based upper-bound for SNP-based heritability ranged from 0.18-0.35. 

Conclusion: The substantial contribution of rare variants for several smoking phenotypes sheds light on 

the missing heritability and genetic etiology of tobacco use. It also informs fine-mapping strategies since 

the majority of the rare variant contribution was located in non-coding regulatory regions. 
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Introduction 

Characterizing the genetic architecture of complex phenotypes has long been an important goal of 

genetic epidemiology, with implications for diverse fields including biology, medicine, and psychology. 

One aspect of this work involves characterizing the joint distribution of effect sizes and minor allele 

frequency (MAF), which is shaped by natural selection and population history1,2. Genome-wide 

association studies (GWAS) have discovered tens of thousands of genomic loci associated with complex 

phenotypes, providing new and basic insights into the genetic architecture of complex phenotypes, 

including rampant polygenicity3. Aggregating across loci typically explains only small fractions of 

phenotypic variance, fractions much lower than have been obtained in family-based studies (e.g., twins, 

or siblings, or larger pedigrees)4. This difference has been coined the “missing heritability”.  

Tobacco use is a complex behavioral trait of high public health concern5, with demonstrated genetic 

and environmental (e.g., policy, cultural) influences. Not only does tobacco use influence risk of many 

diseases and represents a leading causes of global morbidity and mortality, but measures of tobacco use 

are strong indicators of addiction to nicotine (e.g., number of cigarettes smoked per day is genetically 

highly correlated (r=.95) with nicotine dependence6) and other commonly used substances. Heritability of 

smoking behaviors has been estimated at approximately 50% (SE 5%)7 in twin studies, comparable to 

many other complex behavioral traits. On the other hand, estimates of tobacco use heritability from 

GWAS of single nucleotide polymorphisms (SNPs) have routinely found much lower SNP-based 

heritability (h2
SNP) estimates8,9. Such analyses to date have been based on common variants (e.g., MAF > 

1%) from GWAS of imputed microarrays. In a recent GWAS of tobacco use in up to 1.1 million 

individuals, Liu et al. reported h2
SNP estimates ranging between 5% and 11%8 with smoking initiation and 

age of smoking initiation showing the highest and the lowest common variants-based heritability, 

respectively10. Even more recently, Evans et al. reported h2
SNP estimates of 5%-18% for smoking traits, 

using individual-level UK Biobank imputed genotypes of up to 323,068 individuals, finding that common 

variants contributed significantly to the overall heritability. The contribution of rare variant was minimal, 
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although estimates were limited to imputed variants, which is not highly accurate for variants <1% MAF. 

Similar to results for other complex traits7,11, some but far from all of the twin-based heritability of 

smoking can be attributed to common variants obtained through imputation of microarray genotypes.  

There are many possible contributors to missing heritability, including inflated family-based 

heritability estimates12, epistasis13, structural variation11, and rare variants14. Rare variants are one 

compelling explanation, as one expects negative selection to force strongly deleterious alleles to low 

frequencies15. Current SNP-based heritability estimates are based on a few million common variants. 

With imputed variants, the quality of imputation depends on the reference panel used16,17, and even the 

best imputation strategies perform poorly for rare variants (e.g., MAF < 1%) in population samples18,19. 

With the advent of relatively affordable deep whole genome sequencing (WGS), it is now possible to 

directly genotype variants of any frequency. While genetic association studies may be underpowered to 

detect an association between a given single rare variant and a complex trait20, we can test the 

contribution of rare variants in aggregate to phenotypic heritability over and above common variation18,19 

20,21. A small number of recent WGS studies reported evidence that low-frequency and rare variants 

contribute to heritability of anthropometric, transcriptomic, and medical phenotypes22–25 (but see also 

26,27). Notably, Wainschtein et al22. reported that rare variants, especially those in regions of low LD, 

entirely captures the missing heritability for height and nearly so for BMI, albeit with large standard 

errors. To date, no previous study has used WGS in large population samples (e.g., >20,000) to estimate 

rare variant heritability for complex behavioral phenotypes, such as tobacco use.  

Genetic principal components and kinship-based mixed models tend to reduce confounding due to 

stratification for tests of common variants28,29. However, it remains unclear the extent to which these 

techniques will satisfactorily work for rare variant analyses30–32. For example, rare variants may be more 

likely to be shared among individuals living in close proximity, possibly confounding heritability when 

rare genotype sharing coincides with geographically clustered environmental risk factors33. Thus, novel 

approaches are needed to control for population stratification in rare variant analyses34–36.  
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Here, we used deep WGS from the Trans-Omics for Precision Medicine (TOPMed) initiative to 

evaluate the genetic architecture of four smoking phenotypes down to minor allele frequencies of 1 in 

10,000 (MAF≥0.0001). We also evaluated issues of rare variant-based population structure using a new 

permutation method developed for rare variant associations37,38.  

 

Methods 

Sample 

We considered individuals of European ancestry in TOPMed (freeze 8, mean depth >30)21 

measured for at least one of four smoking phenotypes for inclusion. We determined European ancestry in 

two steps. First, we identified an initial ancestry-inclusive set by projecting TOPMed genotypes 

(N=137,977) onto genetic principal (PC) axes from the 1000 Genomes project8 (1000G) then used a k-

nearest neighbor method to assign ancestry of TOPMed individuals with 1000G as a reference set. More 

specifically, we used online augmentation-decomposition-transformation (OADP) to calculate PC scores 

of TOPMed individuals, which implements Procrustes transformation with an augmented data set (i.e., 

combining TOPMed and 1000G reference genomes together)39. Then, for a given TOPMed sample, we 

chose the top 20 reference individuals in 1000G who were closest in terms of the Euclidean distance of 20 

PC scores and assigned European ancestry when at least 87.5% of the reference individuals had European 

ancestry (Supplementary Note). This resulted in 38,915 individuals classified as European ancestry who 

also had at least one smoking phenotype. Second, after visually inspecting PCs 1-4 of the selected 

individuals, we suspected residual population heterogeneity in PC 4 (Figure S5). We then further 

restricted samples to those whose summed Euclidean distance of PCs 1-4 fell within the 1 interquartile 

range (IQR) of the European sample (N=38,915) identified in the first step. We additionally created 

samples using 1.5, 2, 3 IQR and reserved them for sensitivity analysis, described further in that section 

(Figure S1-2). After IQR filtering, we only retained unrelated individuals, resulting in following final 
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sample size per phenotype in Table 1 (N ranging from 14,749 to 26,347). Relatedness was estimated with 

HapMap3 variants (HWE p-value > 10-6, MAF > 0.01) using GCTAv1.92 to obtain a list of nominally 

unrelated individuals with pairwise π̂  < .025.  

 

Phenotypes 

TOPMed is a consortium of independent studies, where DNA samples were sequenced and called 

in a unified way. Smoking phenotypes had previously been collected independently in each of the 

constituent TOPMed studies. Four smoking phenotypes, each representing self-report survey questions 

assessing different stages of tobacco use, were available across most TOPMed studies. We used the same 

definition and coding scheme as Liu et al., 20198. Age of smoking initiation (AgeSmk) was the age at 

which an individual started regularly smoking. Cigarettes per day (CigDay) was the average number of 

cigarettes smoked per day as a current or former smoker, and grouped into five bins, with higher numbers 

indicating greater use. For both AgeSmk and CigDay, lifelong non-smokers are excluded (set to missing). 

Smoking cessation (SmkCes) and initiation (SmkInit) are binary variables indicating former versus 

current smokers and never versus ever smoker, with case defined as current and ever smoker, 

respectively. A linear mixed-effects regression analysis indicated that these four variables are correlated 

but not redundant, each measuring distinct aspects of smoking behavior (Supplementary Note, Table S2). 

Descriptive statistics for each phenotype across cohorts are presented in Table S3. 

 

Genotypes, LD scores, GRM, and GREML-LDMS-I 

Genome-based restricted maximum likelihood (GREML) estimates heritability by comparing 

phenotypic similarity to observed genetic similarity among distantly related individuals using a linear 

mixed model40. It can yield biased estimates when causal variants are unevenly distributed as a function 

of LD and MAF18. To mitigate this bias, GREML-LDMS-I partitions genomes into different LD × MAF 
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bins19. We initially considered ~710 million phased genotypes that have passed strict quality filters41. We 

additionally removed 95,750 variants with Hardy-Weinberg equilibrium p-values less than 10-6 in the 

European sample (N=38,915). Then, we calculated allele frequency separately for each phenotype using 

plink1.9 in a final sample that went through PC, IQR, and relatedness filtering. We then stratified 

variants by MAF, and additionally by median linkage disequilibrium (LD) scores within the two most 

common MAF bins19. This resulted in the following six bins: MAF (0.05, 0.5] high LD, MAF (0.05, 0.5] 

low LD, MAF (0.01, 0.05] high LD, MAF (0.01, 0.05] low LD, MAF (0.001, 0.01], and finally MAF 

(0.0001, 0.001]. We stratified only the common variant bins by LD because most low-frequency and rare 

variants have low LD scores, and to limit the number of bins to retain power for heritability estimation. 

LD scores of individual variants were calculated using GCTA1.92 with default 10Mb window in the 

final sample combined across four smoking phenotypes (Table S4). This process resulted in 

approximately 35 million SNPs and indels (Table 1; Supplementary Note). 

For each phenotype, we performed GREML-LDMS-I with the GRMs for above-mentioned six bins 

and cohort indicator matrix as random effects. The cohort matrix was a N x N matrix indicating whether a 

given pair of individuals belongs to the same study (1, otherwise 0). For AgeSmk and CigDay, we 

inverse-rank normalized residuals of these phenotypes after regressing out age, age2, sex and their two-

way interaction terms42–44, and entered 11 PCs and sequencing center as fixed effects (Figure S3). We 

used PCs released by TOPMed consortium, which were calculated by pcair function in GENESIS 

package in R using 638,486 SNPs with |LD| < 0.32 and MAF > 0.01. SmkCes and SmkInit are binary 

phenotypes, thus no transformation was applied. Age, age2, sex and their interaction terms, 11 PCs and 

sequencing center were entered as fixed effects for binary phenotypes. We used GCTAv1.92 for both 

construction of GRM and GREML-LDMS-I analysis. We allowed the estimates to be negative to obtain 

unbiased estimates of heritability and standard error. Heritabilities for binary phenotypes were analyzed 

under a liability threshold model45. Population prevalence was set at 0.15 and 0.42 for SmkCes and 

SmkInit, respectively, based on smoking prevalence in the UK Biobank dataset, to allow for ready 
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comparison with this publicly available and widely- used dataset. For all traits, total heritability was 

calculated by adding heritability estimates of the six LDMS bins with SEs approximated by the delta 

method46.  

 

Partitioning rare variants heritability 

To further interrogate sources of rare variant heritability, we divided variants in the low-

frequency and rare variants bins into protein altering versus non-protein altering variants bins22. 

Functional impact of variants was assessed by snpEff 4.3 annotation with “HIGH” and “MODERATE” 

categorized as protein altering while “LOW” and “MODIFIER” categorized as non-protein altering47. 

Variance components were then estimated for a total of eight bins including four low-frequency/rare 

variants and the four common variant bins.  

 

Sensitivity analyses 

To evaluate the robustness of our results, we tested the effect of different decisions with respect 

to filtering on ancestry, relatedness, and phenotype transformation. First, we created three additional 

samples with different levels of ancestral variation by gradually relaxing the sample inclusion thresholds 

based on ancestry PCs. Specifically, we created three samples whose PC-based Euclidean distance lay 

within 1.5 IQR, 2 IQR, and 3 IQR of the European sample (N=38,915). The greater the IQR threshold, 

the more ancestral variation is present in the resulting sample, the larger the sample, and the greater the 

chance of observing effects of population stratification. Finally, we evaluated yet another alternative 

ancestry-based filter for comparison with our main result. We selected European samples whose PCs 

were within 6 standard deviations (SD) of the mean of PC1 and PC2 of 1000G CEU sample (Utah 

residents with Northern and Western European ancestry), an approach used previously in a past study of 
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height22. This resulted in similar sample size with that from main analysis (Table S1). More details for the 

sensitivity analysis procedure is in Supplementary Note. 

We also evaluated two relatedness thresholds: π̂ < .05 and < .025, which correspond 

approximately to being related less than first and second cousin, respectively. In addition, we evaluated 

sensitivity to phenotype transformation methods for quantitative phenotypes (AgeSmk and CigDay). For 

AgeSmk, we compared rank-based inverse normal transformation (IVRT), log transformation, and log 

transformation after removing outliers defined as observations lying beyond 3SD from the mean. For 

CigDay, we compared IVRT and log transformation only, given that CigDay is binned to five groups and 

thus had no outliers. 

 

Permutation to further control effects of population stratification 

Past research has indicated that rare variants can show different patterns of confounding than 

common variants34. To deal with this possibility, we applied a recently developed permutation method 

designed to control for type I error in genetic association tests of rare variants23,37,38. Specifically, we 

created an N × N distance matrix populated by scaled Euclidian distance of PC1-11 between each 

individual. Then, we randomly exchanged genotypes of a given individual with one of their 100 nearest 

neighbors23,38,48. We created a total of 200 replicates of permuted genotypes and applied GREML with the 

same set of fixed and random covariates used in the main analysis. Mean (ℎ̂2null) and SD of heritability 

estimates from 200 permutation replicates were calculated for each bin and were tested against zero using 

a one-sided Z-test. Mean heritability greater than zero across replicates would indicate significant bias 

induced by population stratification. We also tested the estimates from main analysis against the permuted 

null distribution using two-sided Z-test (Supplementary Note).  

 

Pedigree-based heritability 
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Missing heritability is often quantified as the difference between GREML results and biometric 

variance decompositions based on families (e.g., twins). Indeed, GREML as described thus far was 

applied only to distantly related individuals, so as to avoid confounding with non-additive and shared 

environmental effects. Here, we take advantage of thousands of closely related pairs of participants in 

TOPMed to estimate the heritability of our four smoking phenotypes in close pedigrees (ℎ̂2ped). ℎ̂2ped is 

same as KIBS>t in Zaitlen et al 201312, which is estimated from a single GRM including non-zero values for 

closely related individuals and zero values for distantly related individuals. This provides an upper bound 

on the narrow-sense heritability, to which we can compare our GREML estimates to quantify any of the 

remaining missing heritability. This quantity is analogous to twin heritability, but unlike traditional 

pedigree or twin estimates,  ℎ̂2ped uses measured genotypes to estimate relatedness rather than expected 

relatedness of relatives based solely on their pedigree.  

For this analysis, we created a GRM with all available samples after excluding pairs related 

greater than .80 to exclude identical twins and duplicates. To aid in model identification, we included 

cohorts that had at least 10 first-degree relatives (π̂  >  .375). A list of cohorts and details of the 

procedure are presented in Table S5 and Supplementary Note. This GRM was fitted together with a 

cohort matrix and the same set of fixed effect covariates used in the main analysis. To test whether 

resulting ℎ̂2ped is underestimated due to relatively low level of relatedness structure in the sample, we 

conducted the same analysis again using only Framingham Heart Study (FHS) which consists of family 

samples (i.e., high level of relatedness structure) without a random effect of cohort.  

 

Results 

Heritability estimates 

SNP-based heritability (ℎ̂2WGS) for the four smoking phenotypes was initially estimated as 

following: 0.31 (.075), 0.146 (.062), 0.252 (.087), 0.242 (.069) for AgeSmk, CigDay, SmkCes, and 
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SmkInit, respectively. These are unadjusted values calculated by summing up estimates of all six LD x 

MAF bins; values adjusted for residual stratification using our permutation procedure are described in the 

next section. Heritability estimates from the common variant bins (i.e., MAF (.01, 0.5] including both 

high and low LD bins) were summed to compute heritability attributable to common variants (ℎ̂2common). 

Likewise, heritability estimates from the rare variant bins (i.e., MAF (0.0001, 0.01]) were summed to 

obtain heritability attributable to rare variants (ℎ̂2rare). Common variants accounted for more than half of 

the heritability of CigDay (.087; SE .038) and SmkInit (.169; SE .038), with low LD common variants 

contributing to the majority of ℎ̂2common for both phenotypes. Rare variants accounted for more than half 

of the heritability of AgeSmk (.217; SE .067) and SmkCes (.177; SE .079), with the majority of the 

variance attributable to the rarest bin (MAF (0.0001, 0.001]). Estimates for the six MAF × LD bins are 

presented in Figure 1 and Table S6.  

 We further partitioned heritability of two rare variant bins into protein-altering and non-altering 

bins. For MAF (.001-.01], estimates were close to zero (-.047 ~ .039) regardless of the protein altering 

property for all phenotypes other than CigDay which showed 9.1% (SE 4.7%) of phenotypic variance 

accounted for by non-protein altering variant. For MAF (.0001-.001]) bin, non-protein altering variants 

accounted for 25.1% (SE 6.4%) and 13.6% (SE 7%) of the phenotypic variance of AgeSmk and SmkCes 

(see Table S7 for full results). Overall, there was very limited evidence for a prominent role of rare 

protein coding variants in the genetic etiology of these smoking phenotypes.  

Permuted mean heritabilities were mostly close to zero across different bins and phenotypes 

(Figure 2, Table S8). Only the rarest bin of AgeSmk had permuted mean heritability significantly 

different from zero with weaker evidence for SmkCes (AgeSmk: Mean=.102, SE=.050, SmkCes: 

Mean=.043, SE=.041). We also tested heritability estimates from main analysis against the permuted null 

distribution (Figure 1, Table S6). The rarest bins of AgeSmk and SmkCes were unlikely to be drawn from 

the null distribution (p=.002 and p=.012, respectively), indicating that the initial estimates are not entirely 

accounted for by residual population structure. We adjusted partial impact of residual stratification by 
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subtracting the permuted mean from ℎ̂2WGS. Adjusted ℎ̂2WGS for AgeSmk and SmkCes was 0.212 (SE 

0.075) and 0.209 (SE 0.087). Note that the adjusted ℎ̂2WGS is conservative, as permuted heritability may 

partly capture true rare variant effects among individuals sharing recent ancestors.  

Estimates from pedigree analysis (ℎ̂2ped) are presented in Figure 3 and Table S9. All  ℎ̂2ped were 

greater than our (both adjusted and unadjusted) ℎ̂2WGS, except for SmkCes. When we compare ℎ̂2WGS  
and ℎ̂2ped, it would appear that the inclusion of rare variants from WGS accounts for much of the missing 

heritability for smoking phenotypes (60%-100%). Using the Framingham Heart Study (FHS) cohort, 

which has a large proportion of related individuals, we obtained generally comparable ℎ̂2ped, albeit with 

lower estimate for AgeSmk and overall greater SEs.  

 

Sensitivity analyses 

 We explored how sensitive the results were to ancestral filtering thresholds, relatedness cut-off 

thresholds, and phenotype transformation methods (Figure 4; Figures S1-4; Table S10). The point 

estimates tended to slightly increase as we applied stricter ancestry-based filtering for AgeSmk and 

SmkInit. Notably, ℎ̂2WGS was estimated higher when we included extreme AgeSmk observations 

compared to when excluding outliers or applying rank-based inverse normalization, both of which 

effectively controlled the influence of outliers. Across all phenotypes, ℎ̂2WGS tended to be higher when 

using a relatedness cut-off of .05 compared to using .025 with maximum difference in ℎ̂2WGS being .055 

for SmkInit in 2IQR sample. Finally, heritability estimates using alternative sample selection strategy 

based on the 1000 Genomes CEU group were generally comparable to the main ℎ̂2WGS estimates across 

six bins (Table S10).  

 

Discussion 
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Using the largest sample of whole genome sequences (N=14,747 - 26,340) to date for complex 

behavioral traits, we found that rare variants with MAF 0.01% to 0.1% accounted for approximately 15% 

and 10% of phenotypic variation of AgeSmk and SmkCes after correcting for potential influence of 

population structure at rare variants. These estimates can be seen conservative as our permutated mean 

might have partially included true rare variant effects. Compared to AgeSmk and SmkCes, contribution of 

rare variants to CigDay and SmkInit was lower (6% and 7%, respectively), with common variants 

explaining a greater proportion of the total phenotypic variation (9% and 17%, respectively). After 

adjustment, the total heritability estimate (ℎ̂2WGS) was 0.21, 0.15, 0.21, and 0.24 for AgeSmk, CigDay, 

SmkCes, and SmkInit, respectively which is 1.8 to 4.5 times higher than past heritability estimates based 

on common variants alone8.  

A handful of studies have now reported evidence for rare variants contributing to phenotypic 

variance of anthropometric22, medical17, and transcriptomic phenotypes16. For example, rare variation may 

explain all of the missing heritability for height and BMI22. Our ℎ̂2WGS generally falls below past twin 

estimates for tobacco use phenotypes (ℎ̂2twin = .48;  SE .05)7. However, after possibly overcorrecting for 

population stratification, current ℎ̂2WGS estimates accounted for 61% to 100% of our pedigree-based 

heritability estimate (ℎ̂2ped) across the four phenotypes, closing the gap on the missing heritability for 

these phenotypes. In the present study, we consider our pedigree estimate of heritability as the most 

relevant benchmark by which to judge the GREMLresults. While twin studies – especially same-sex 

twins – control perfectly for standard covariates (e.g., age, sex, birth year), family studies, especially of 

multiple generations, typically incorporate only linear combinations of such predictors. This results in a 

statistically adjusted phenotype that contains more noise, and proportionally less heritable variance than a 

twin study. Future studies will benefit from considering how different analytic approaches, such as using 

twin-only samples versus diverse classes of relatives (e.g., grandparents-grandchild, siblings, half-sibling 

etc) and using SNP-based versus expected relatedness, influence heritability estimation and potentially 

capture different aspects of heritable variation12.  
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Published studies suggested that population structure induced by rare variants may not be 

sufficiently accounted for by PC correction32,34,49,50. Similarly, we found that mean permuted heritability 

substantially departed from zero (M=.10, SE=.05) for the MAF [0.01-0.1%] bin of AgeSmk and to lesser 

degree, for that of SmkCes (M=.04, SE=.04), indicating the possibility of partial confounding due to 

residual population structure. We did not find evidence for this confounding for other phenotypes or 

MAFs. Existence of geographically localized non-genetic risk or systematic measurement bias in different 

cohorts could lead to rare variant stratification34. Without substantial knowledge of causal risk factors that 

align with rare variant sharing and the availability of such data, it is difficult to directly identify the source 

of the confounding. Given increasing interest in the role of rare variation in complex disease, research 

into the nature and method to detect and adjust for rare variants will be crucial. For example, future 

studies should consider extending the current permutation approach and improve computational 

efficiency. 

The majority of the rare variant heritability (90%-100%) was attributable to non-protein altering 

regions for AgeSmk and SmkCes. This suggests that most genetic variation is likely to be located outside 

protein-coding regions, which themselves comprise only ~1% of base pairs in the human genome. For 

common variants, a majority of the heritability appeared attributable to low-LD variants for all smoking 

traits. This seems consistent with the action of negative selection, indicating that these variants are 

relatively young in the genealogical history, and are still being pushed to lower frequencies. Consistent 

with this idea, Gazal et al 2017 reported that common variants with low LD in low-recombination rate 

regions had larger per-SNP heritability than those with high LD as they are more likely to be recent and 

thus have less time to be removed by negative selection51. 

In sensitivity analyses, most heritability estimates from varying combinations of ancestral variation, 

relatedness cut-offs, and phenotype transformation typically showed differences of 1%-5% in each 

sensitivity condition. AgeSmk tended to show higher rare variant heritability when extreme observations 

were included than they were not. Extreme observations may induce model misspecification or 
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alternatively, are enriched in causal rare variants, possibly leading to higher heritability estimates23,52,53. 

The influence phenotypic scaling was reported in recent study of Evans et al. 2021 where CigDay showed 

higher heritability when it was dichotomized versus the ordinal version analyzed here52. Estimation of 

heritability for binned variable (e.g., CigDay in this study) may be improved by different modeling choice 

including liability threshold model54. Finally, relaxing relatedness thresholds tended to be associated with 

higher estimates, an effect one would expect if shared environment in distantly related individuals were 

influencing smoking traits (e.g., state-level policy or regional culture)55. 

 Our findings should be interpreted in light of several limitations. First, while our sample size is 

the largest to date for heritability analysis using WGS, even larger datasets or more precise phenotypic 

measures are required. Larger studies would provide greater precision in estimation and a more 

comprehensive assessment of genetic architecture of these complex traits by finer partitioning by MAF 

and functional annotations. Second, even with the use of deep sequences, we did not fully “recover” trait 

heritability, either as estimated using available pedigrees, or twin heritability reported in the literature. 

There remain many explanations, including ultra-rare variants (MAF <= .0001) and other types of genetic 

variations (e.g., copy number variations) that may constitute additional sources of heritability. Next, our 

pedigree-based heritability estimates may be inflated by shared environment, as we were unable to model 

genetic similarity and environmental similarity separately. Therefore, the pedigree estimates should be 

interpreted as likely upward biased upper-bounds for SNP-based narrow-sense heritability. Finally, 

smoking phenotypes were measured by one or two questions and were limited to those commonly 

collected in biomedical studies like those in TOPMed. This allows accumulations of large sample sizes 

across multiple independently- collected samples, but also may reflect individual study characteristics, 

whose variance ultimately can be captured by our cohort random effect.  

 In conclusion, our results indicate that rare variants in regulatory region contribute substantially 

to the heritability of smoking phenotypes. Common variant influences seem to be overrepresented by 

more recently arisen alleles that on average have lower LD51. Nicotine has been pervasive in the 



19 

 

environment for millions of years acting as a pesticide, such that one expects many organisms, including 

humans, to have evolved systems to handle nicotine exposures. The genetic variants that influence 

addiction to nicotine appear to be highly polygenic and under negative selection, despite the fact that 

tobacco in its cigarette form represents an evolutionarily novel environment for humans. Smoking 

phenotypes can also be considered a manifestation of psychologically disinhibited and externalizing 

tendencies (e.g., age at onset of reproductive behaviors), such that selection pressure on them can also 

influence genetic architecture of smoking by pleiotropic effects56. The current study informs the genetic 

etiology of nicotine addiction and provides a benchmark for the future study of other complex behavioral 

traits.  

 

Data availability 

Phenotype data are available through authorized access portal in dbgap (https://dbgap.ncbi.nlm.nih.gov/) 

or direct request to Principal Investigators (PIs). Accession numbers and email addresses of PIs are 

presented in Supplementary Note. Genetic data are available through dbgap. 

 

Code availability  

GCTA software is available at https://cnsgenomics.com/software/gcta/. We obtained a code used to 

generate permutation sequences through email correspondence with Aurélie Cobat 

(aurelie.cobat@inserm.fr).  

https://cnsgenomics.com/software/gcta/
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Figure 1. SNP-based heritability estimates for AgeSmk, CigDay, SmkCes, and SmkInit, for each of the 
six MAF/LD bins, as well as sums across bins.  

  

Note. Bars are standard errors. The “Rare” bin is the sum of the MAF .1=1% and MAF .01-.1%. 
“Common” is the sum of the other MAF bins. Total is the sum of Rare and Common. No estimates shown 
here were adjusted by results from permutation procedure. For adjusted results, please see Figure 2.  
Asterisks were added to the components that are significantly different from permuted mean under null 
distribution (see Table S6). *p < .05, **p < .01, ***p < .001. 
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Figure 2. Mean h2
SNP estimates from permutation trials  

 

Note. Red lines are mean h2
SNP estimates and standard errors for each variants bin from GREML-LDMS 

analysis. Gray lines are mean h2
SNP estimates and standard errors from permutation trails. 
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Figure 3. Comparison of heritability estimates between current and published studies 

 

Note. Heritability estimates and their standard errors. It shows SNP heritability estimates across different 
studies. Pedigree, WGS, and WGS_adj refer to pedigree-based, WGS-based, and permutation adjusted 
SNP heritability estimates in current study. Evans_imputed and Liu_LDSC each refer to SNP heritability 
estimates from Evans et al. (MAF:0.5-0.01, relatedness threshold=.0252) and LDSC analysis from a recent 
meta-analysis of tobacco use8.  
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Figure 4. Sensitivity analysis of h2
WGS estimates  

  

Note. X-axis indicates different ancestry filtering thresholds. The shape of the points indicates phenotype 
transformation methods with “Log”, “Log w/o outliers”, “Inverse normal”, “None” indicating log 
transformation including outliers, log transformation without outliers, rank-based inverse normal 
transformation, and no transformation, respectively. Red and blue color each indicate relatedness 
thresholds .025 and .05. Dots and whiskers each represent heritability estimates and their SEs. Note that 

here we presented ℎ̂2WGS for AgeSmk (1IQR and π̂  < .025) estimated excluding variants with MAC 3 as 

these variants fall below the MAF threshold for all other comparison ℎ̂2WGS for AgeSmk. 
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Table 1. Sample size and number of variants per MAF/LD bin. 

 Sample size (unrelated individuals only) 
 Method to Select Samples Based on Ancestry 
 1IQRa 1.5IQR 2IQR 3IQR CEU 6SD 
AgeSmk 14,749 15,133 15,432 15,706 15,052 
CigDay 15,434 15,832 16,138 16,434 15,748 
SmkCes 17,872 18,319 18,662 18,988 18,223 
SmkInit 26,347 26,958 27,402 27,884 26,812 
 Number of variants per bin (MAF and Linkage Disequilibrium) b 
 5-50% - HI 5-50% - LO 1-5% - HI 1-5% - LO 0.1-1% 0.01-0.1% 
AgeSmk 3,092,517 3,092,534 1,342,734 1,342,736 5,392,813 28,280,118 
CigDay 3,092,240 3,092,269 1,341,881 1,341,882 5,435,505 20,415,037 
SmkCes 3,092,593 3,092,594 1,340,764 1,340,771 5,413,019 23,483,166 
SmkInit 3,092,454 3,092,475 1,341,068 1,341,071 5,395,579 21,108,704 

a1IQR is used for main analysis and the rest of samples was used for sensitivity analysis. 1IQR = 1 * the 
interquartile range of PCs 1-4, and is the most restrictive choice, 1.5IQR is 1.5 * the interquartile range of 
PCs 1-4, and so on. CEU 6SD is an alternative way to select samples based on ancestry of the CEU group 
of 1000 Genomes.  
b This shows the number of variants per bin in 1IQR unrelated samples (π̂  < .025).  
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Figures

Figure 1

SNP-based heritability estimates for AgeSmk, CigDay, SmkCes, and SmkInit, for each of the six MAF/LD
bins, as well as sums across bins. Note. Bars are standard errors. The “Rare” bin is the sum of the MAF
.1=1% and MAF .01-.1%. “Common” is the sum of the other MAF bins. Total is the sum of Rare and
Common. No estimates shown here were adjusted by results from permutation procedure. For adjusted
results, please see Figure 2. Asterisks were added to the components that are signi�cantly different from
permuted mean under null distribution (see Table S6). *p < .05, **p < .01, ***p < .001.



Figure 2

Mean h2SNP estimates from permutation trials. Note. Red lines are mean h2SNP estimates and standard
errors for each variants bin from GREML-LDMS analysis. Gray lines are mean h2SNP estimates and
standard errors from permutation trails.



Figure 3

Comparison of heritability estimates between current and published studies. Note. Heritability estimates
and their standard errors. It shows SNP heritability estimates across different studies. Pedigree, WGS, and
WGS_adj refer to pedigree-based, WGS-based, and permutation adjusted SNP heritability estimates in
current study. Evans_imputed and Liu_LDSC each refer to SNP heritability estimates from Evans et al.
(MAF:0.5-0.01, relatedness threshold=.0252) and LDSC analysis from a recent meta-analysis of tobacco
use8.



Figure 4

Sensitivity analysis of h2WGS estimates. Note. X-axis indicates different ancestry �ltering thresholds.
The shape of the points indicates phenotype transformation methods with “Log”, “Log w/o outliers”,
“Inverse normal”, “None” indicating log transformation including outliers, log transformation without
outliers, rank-based inverse normal transformation, and no transformation, respectively. Red and blue
color each indicate relatedness thresholds .025 and .05. Dots and whiskers each represent heritability
estimates and their SEs. Note that here we presented ฀h ฀^2฀_WGS for AgeSmk (1IQR and π ฀ < .025)
estimated excluding variants with MAC 3 as these variants fall below the MAF threshold for all other
comparison ฀h ฀^2฀_WGS for AgeSmk.
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