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Abstract

RNA viruses replicate with a template-copying fidelity, which lies close to an extinction

threshold. Increases of mutation rate by nucleotide analogues can drive viruses towards

extinction. This transition is the basis of an antiviral strategy termed lethal mutagenesis. We

have introduced a new diversity index, the rare haplotype load (RHL), to describe NS5B

(polymerase) mutant spectra of hepatitis C virus (HCV) populations passaged in absence or

presence of the mutagenic agents favipiravir or ribavirin. The increase in RHL is more promi-

nent in mutant spectra whose expansions were due to nucleotide analogues than to multiple

passages in absence of mutagens. Statistical tests for paired mutagenized versus non-muta-

genized samples with 14 diversity indices show that RHL provides consistently the highest

standardized effect of mutagenic treatment difference for ribavirin and favipiravir. The results

indicate that the enrichment of viral quasispecies in very low frequency minority genomes

can serve as a robust marker for lethal mutagenesis. The diagnostic value of RHL from deep

sequencing data is relevant to experimental studies on enhanced mutagenesis of viruses,

and to pharmacological evaluations of inhibitors suspected to have a mutagenic activity.

Introduction

The mutant spectra of RNA viruses are a reflection of their evolutionary history, as well as

important determinants of virus adaptability. Concerning control of viral diseases, mutant

spectrum dynamics is an obstacle for the efficacy of therapeutic interventions due to selection

of treatment-escape viral mutants. The antiviral agents to combat RNA viruses include those

directed to specific viral targets [direct-acting antiviral agents (DAAs)], and those that inhibit

cellular functions needed for the completion of the virus life cycle. The viral RNA-dependent

RNA polymerase (RdRp) is the target of several effective antiviral agents. Some of them, nota-

bly base or nucleoside analogues, are intracellularly converted into their active nucleotide
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counterparts. The discovery that ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxa-
mide) is mutagenic for poliovirus [1] introduced a new perspective in the antiviral mechanism

of some nucleotide analogues. Three alternative ─not mutually exclusive─mechanisms of

anti-RdRp activity by nucleotide analogues have been described: RNA chain termination, inhi-

bition of RNA synthesis without chain termination, and inhibition associated with viral

genome mutagenesis.

Nucleotide analogue-induced mutagenesis is equivalent to a decrease of copying fidelity by

the viral RdRp. Quasispecies theory predicts a maximum amount of genetic information that

can be transmitted for a given average copying fidelity. This concept is mathematically formu-

lated in the form of an error threshold relationship. An increase in mutation rate drives the

population across the error threshold, into error catastrophe, equated with loss of inheritable

information [2, 3]. The error threshold applies to finite populations in variable fitness land-

scapes, and its position in a fidelity scale depends also on the degree of adaptation of the

mutant ensemble to the environment [3]. The error threshold concept has found experimental

support in studies on the negative effects of chemical mutagenesis on the survival of RNA

viruses ([4–8], among other studies). The convergence of theoretical and experimental results

opened the way to lethal mutagenesis as an antiviral strategy [9].

The licensed antiviral nucleoside analogues favipiravir (T-705; 6-fluoro-3-hydroxy-2-pirazi-

necarboxamide) and ribavirin are mutagenic for several RNA viruses. Ribavirin has been used

as antiviral agent for decades [10, 11], and only recently shown to be mutagenic for several

RNA viruses [1, 12, 13]. Favipiravir has been licensed as an anti- influenza agent in Japan having

potent antiviral activity against different influenza virus strains (types A, B and C) including

those resistant to neuraminidase and M2 inhibitors [14]. Favipiravir has also been effective to

inhibits the replication of other RNA viruses in vitro and in animal models, including flavi-,

noro- alpha-, bunya-, arena-, filovirus and other RNA virus for which no antiviral therapy is

currently available [reviewed in (15, 16)]. Favipiravir in converted intracellularly into the ribo-

furanosyl 5’-triphosphate metabolite (favipiravir-RTP) and in this form it can be recognized as

a pseudopurine by the RdRp [14, 17]. Its selective inhibition of RdRp implicates a wider anti-

viral spectrum with a limited cell damage compared with other mutagens such as Ribavirin.

Incorporation of favipiravir-RTP in the nascent viral RNA could result in lethal mutagene-

sis, as has been proposed for influenza virus [18], norovirus [7], hepatitis C virus (HCV) [19];

foot-and-mouth disease virus [20], West Nile virus [21], Dengue virus [22] and Ebola virus

[8]; coxsackievirus B3 [23]. It is not clear whether favipiravir acts as RNA chain terminator,

inhibitor, mutagen or by a combination of these mechanisms; its dominant mode of action

may depend on the virus-host system and concentration of the active form. In order to cause

lethal mutagenesis, favipiravir-RTP needs to be incorporated into the RNA without causing

immediate chain termination. It is possible that both lethal mutagenesis and chain termination

occur depending on the available concentration of favipiravir-RTP. It has been hypothesized

that incorporation of low levels of favipiravir-RTP could result in full-length extension of the

viral RNA, leading to lethal mutagenesis and lower infectivity [24].

The standard way to distinguish an RNA virus mutagen from a non-mutagenic inhibitor, is

that a mutagenic inhibitor promotes an increase of mutant spectrum diversity, and a decrease

of the virus specific infectivity (defined as the ratio of the number of infectious units to the

amount of viral RNA in the virus population) (reviewed in [25, 26]). The application of deep

sequencing to the analysis of viral populations has introduced several new diversity indices

that allow a more detailed description of mutant spectra [27–29]. Some diversity indices were

adopted from ecology, and are classified in three groups: incidence (based on the count of enti-

ties in a multiple alignment of haplotypes), abundance (that considers both, counts of entities

and their frequency), and functional (based on differences among the observed haplotypes)

RHL lethal mutagenesis
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[27]. The value of alternative diversity indices to diagnose the mechanism underlying the

expansion of mutant spectra is an unsolved issue.

We have adapted a HCV serial passage design to study the genetic and phenotypic diversifi-

cation of HCV in Huh-7.5 reporter cells in absence of cellular evolution [30–32]. The parental

(plasmid-derived) HCV population was passaged in absence or presence of ribavirin or favi-

piravir. Populations whose mutant spectrum was expanded in absence of drugs were also sub-

jected to mutagenesis. The design produced several HCV populations for comparative mutant

spectrum analyses. NS5B amplicons were analyzed to quantify mutant spectrum complexity.

We describe a new diversity index, the rare haplotype load (RHL), and show that its variation

outstands among that of other diversity indices to characterize mutant spectra in their transi-

tion into error catastrophe. RHL may help in the understanding of quasispecies dynamics, and

in the clarification of the mechanisms of action of antiviral agents.

Results

The rare haplotype load of hepatitis C virus populations

HCV RNA expressed from plasmid Jc1FLAG2(p7-nsGluc2A) (genotype 2a) [33] was trans-

fected into Huh-7 Lunet cells and amplified in Huh-7.5 cells to produce the initial virus popu-

lation HCV p0 [30]. HCV p0 was subjected to 200 serial passages in Huh-7.5 reporter cells in

the absence of any drug. The populations at passage 100 (HCV p100) and at passage 200 (HCV

p200) displayed increased replication in Huh-7.5 reported cells [31, 32]. HCV p0, HCV p100

and HCV p200 were further passaged either in the absence of any drug or in the presence of

favipiravir or ribavirin (Fig 1A). Infectious progeny levels were those expected from previous

quantifications of inhibition of HCV p0 by favipiravir [19] and ribavirin [34]; the sustained

HCV p100 and HCV p200 production in the presence of the drugs is expected from the fit-

ness-associated HCV resistance to antiviral agents [31, 32, 35] (Fig 1B).

Intracellular viral RNA was sequenced in MiSeq with 2x300 mode with v3 chemistry, and

fastq files were analyzed as previously described [27, 29] to obtain forward and reverse consen-

sus haplotypes with abundances not below 0.1%, median coverage 147,000 reads, interquartile

range (IQR) 75570–226100. The fasta files obtained for each sample were further subjected to

DSFT for diversity indices computation. The resulting median coverage was of 139200 with

IQR 71,480–210,600 reads.

We introduce the rare haplotype load (RHL) as a new diversity index which may be consid-

ered intermediate between incidence and abundance indices. In the context of this work we

define as rare those haplotypes with abundances below a given threshold (1%), and as load the

fraction of molecules in the quasispecies belonging to these haplotypes. Translating this con-

cept to next generation sequencing is not an easy task as we wish to take into account full reads

in the range of abundances below the instrument noise level. Our approach consisted in taking

all reads corresponding to haplotypes common to the forward and reverse strand with no pre-

vious abundance filtering and computing the RHL as the fraction of reads belonging to haplo-

types with abundances below 1%. We suppose that technical noise affects equally all samples in

the experiment and that the distinctive effect would be caused by the treatment. This index

was not submitted to any sample size correction.

Comparison of RHL with other diversity indices

A full set of diversity indices was computed for each sample: Hpl, number of haplotypes; Poly-

Sites, number of polymorphic sites; nMuts, number of mutations; Shannon, Shannon entropy;

GiniS, Gini-Simpson index; q1D, Hill number of order 1; q2D, Hill number of order 2; qInfD,

Hill number of order infinity; FAD, functional attribute diversity; Mf.e, mutation frequency by

RHL lethal mutagenesis
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entity; Pi.e, nucleotide diversity by entity; Pi, nucleotide diversity, and Mf, mutation frequency.

The correlation among all indices (including RHL) resulting from all samples in the experi-

mental design, shows a structure with three groups (Fig 2) G1: RHL, Hpl, FAD, nMuts and

PolySites; G2: Shannon, GiniS, q1D, q2D and qInfD; and G3: Mf.e, Pi.e, Mf and Pi. The three

indices more correlated to RHL are Hpl 0.895, FAD 0.854 and Shannon 0.826. RHL falls within

the group of incidence indices, but it results from the aggregation of abundances. Its high cor-

relation with Shannon and q1D denotes properties of abundance-based indices, while its high

correlation with FAD confers to RHL properties of functional incidence. These three proper-

ties were expected from the definition of RHL, and the correlations provide an empirical prove

of the computations adequacy.

Association tests

Table 1 summarizes the results of the association tests of each diversity index considered,

including RHL, to mutagenicity, for each drug (favipiravir and ribavirin) sorted by decreasing

order of standardized effect. No distinction has been made of amplicon or treatment length.

Hence the results represent averaging over the full NS5B region sequenced, and over the two

treatment lengths. The RHL is the index with the highest standardized effect among all in both

mutagenic treatments, with adjusted p-values of the order of 10−4. Top indices are also FAD,

Hpl, Shannon, nMuts, and PolySites. No significant association is found in neither treatment,

for Mf and Pi, both at the abundance and at the entity level. RHL is still the top indicator when

distinguishing among amplicons or treatment length, followed by FAD and Hpl.

Logistic regression

As a further step towards characterizing RHL as mutagenicity marker, samples were relabeled

as under mutagenicity (Mut) if treated with favipiravir or ribavirin, or not mutagenized (con-

trol) for passages in absence of drug. Each group includes the variability due to the factors

amplicon, drug, and treatment length. Then a univariate logistic regression was fit with each of

the diversity indices, including RHL (Figs 3 and S1). The regression to RHL resulted in the

best value of the Aikake Information content (AIC), the highest area under the ROC curve

(AUC), and the lowest leave-one out cross-validation (LOOCV) error rate to classification

(Table 2). According to the LOOCV error rate the predictive capacity of these indices follows

the order RHL, Hpl, PolySites, nMuts and FAD (S2 Fig).

When this analysis was performed separately for each treatment length, for 10 passes both

RHL, Shannon and q1D resulted in the lowest values of AIC and LOOCV, for 3 passes RHL,

FAD and Hpl resulted in the lowest values of AIC and LOOCV (S3 and S4 Figs). No multivari-

ate logistic regression model resulted better that RHL as a single predictor in the whole dataset.

These results prove that within the experimental design of this study RHL is the most sensi-

tive diversity index for predicting mutagenic effects, with independence of factors such as

amplicon, base line passage, drug, and treatment length.

In-silico study to test the robustness and unbiasedness of RHL

To study the robustness of RHL and its possible dependence on sample size, an in-silico study

on the full set of fasta files with no exclusion was performed. Robustness was evaluated by

Fig 1. Experimental design and infectious HCV progeny production in absence or presence of favipiravir or ribavirin. (A) Passage of HCV p0
in Huh-7.5 reporter cells to derive high fitness HCV p100 and HCV p200 populations. (B) Serial passages of HCV p0, HCV p100 and HCV p200 in
absence of drugs (No drug) or the presence of 400 μM favipiravir, or 100 μM ribavirin. (C) Infectious progeny production during 10 serial passages
in absence or presence of the drugs. Details on the infections are given in Materials and Methods.

https://doi.org/10.1371/journal.pone.0204877.g001
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Fig 2. Correlation among diversity. (A) Plot illustrating the correlation between diversity indices in this study. The
correspondences between colors and correlation values is shown on the right bar. (B) Hierarchical clustering of
diversity indices computed with the square root of one minus the correlation matrix, as measure of dissimilarity.

https://doi.org/10.1371/journal.pone.0204877.g002
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comparing RHL with the number of haplotypes, Hpl. According to the main statistics of the

distribution of median values obtained after 2000 simulation cycles on each fasta file, RHL is

on average five times less variable than Hpl, in terms of the coefficient of variation (CV) and of

interquartile dispersion (QD) (Table 3). The main statistics of the relative error of the median

value of RHL in the sample replicates indicate a median error of 0.04% with a maximum of

1.99%. This confirms that the observed value of RHL in a sample is unbiased and not influ-

enced by the sample size. No sample size correction was needed for RHL, contrary to most

diversity indices [27, 29]. Thus, RHL is far more stable and robust than Hpl and other diversity

indices to characterize a virus transition into error catastrophe with deep sequencing data.

Discussion

Comparison of diversity indices for complexity evaluation of mutant spectra of HCV popula-

tions has unveiled that RHL is a reliable index to diagnose mutant spectrum expansions associ-

ated with a mutagenic treatment. Previous studies with HCV quantified average 5.1-fold

(range 3.8–6.6) increases of mutation frequency following 200 serial large population passages

in Huh-7.5 cells, and 3.5-fold (range 1.6–5.6) increases as a result of up to 5 serial passages in

the presence of favipiravir or ribavirin [19, 32, 34]. Despite comparable or even larger muta-

tion frequency increases associated with multiple passages compared with mutagenic treat-

ments, RHL stood as a reliable, robust and unbiased marker for lethal mutagenesis. RHL is less

influenced by standard serial passages.

A salient informative role of RHL can be interpreted in the light of current evidence of the

molecular mechanisms that underlie the transition of RNA viruses towards an extinction

threshold. One event is suppression of viable genome replication by defective genomes that are

produced as a result of mutagenesis [36–38]. This is an extension to mutagenized populations

of the capacity of mutant spectra to suppress replication of high fitness cognate populations

[39]. Mutant-dependent interference was formulated as the lethal defection model of virus

extinction [40] that has as one of its consequences that during mutagenesis infectivity is lost

earlier that the capacity of viral RNA to replicate, thus leading to decrease of specific infectivity

Table 1. Wilcoxon signed rank test of paired samples, treatment vs control. Rows sorted in descending order of standardized effect. Estimate: median of treatment dif-
ference, SD: standard deviation, StdEffect: standardized effect (median divided by sd), p.value: Wilcoxon test p-value, adj.pv: multiple test adjusted p-value by the Bonfer-
roni method.

Ribavirin Favipiravir

Estimate SD StdEffect p.value adj.pv Estimate SD StdEffect p.value adj.pv

RHL 1,49E+01 5,09E+00 2,920 3,05E-05 4,27E-04 RHL 1,81E+01 3,86E+00 4,680 3,05E-05 4,27E-04

nMuts 2,05E+01 1,00E+01 2,040 3,58E-04 5,01E-03 Shannon 8,76E-01 4,22E-01 2,080 3,05E-05 4,27E-04

Hpl 2,25E+01 1,11E+01 2,020 3,61E-04 5,06E-03 FAD 1,74E+01 9,33E+00 1,860 6,10E-05 8,54E-04

PolySites 2,00E+01 9,92E+00 2,010 3,58E-04 5,01E-03 Hpl 2,75E+01 1,54E+01 1,790 5,45E-04 7,62E-03

FAD 1,21E+01 6,55E+00 1,850 3,05E-05 4,27E-04 GiniS 2,15E-01 1,39E-01 1,550 2,14E-04 2,99E-03

Shannon 6,99E-01 3,89E-01 1,800 3,05E-05 4,27E-04 q1D 5,18E+00 3,33E+00 1,550 3,05E-05 4,27E-04

GiniS 1,62E-01 1,27E-01 1,280 3,05E-04 4,27E-03 nMuts 2,60E+01 1,77E+01 1,470 1,59E-03 2,22E-02

q1D 4,04E+00 3,95E+00 1,020 3,05E-05 4,27E-04 PolySites 2,40E+01 1,71E+01 1,400 1,18E-03 1,65E-02

qInfD 7,74E-01 7,64E-01 1,010 5,80E-04 8,12E-03 q2D 1,56E+00 1,74E+00 0,901 3,05E-04 4,27E-03

q2D 1,58E+00 2,06E+00 0,766 3,05E-04 4,27E-03 qInfD 6,71E-01 9,05E-01 0,741 1,31E-03 1,84E-02

Mf.e 6,52E-04 1,55E-03 0,420 5,35E-02 7,49E-01 Pi 1,22E-03 2,04E-03 0,596 1,77E-02 2,47E-01

Pi 5,44E-04 1,34E-03 0,407 4,73E-02 6,62E-01 Pi.e 5,73E-04 1,40E-03 0,410 8,44E-02 1,00E+00

Mf 5,38E-04 1,37E-03 0,393 2,77E-02 3,88E-01 Mf 7,04E-04 2,32E-03 0,304 3,19E-02 4,46E-01

Pi.e 3,32E-04 1,17E-03 0,284 1,51E-01 1,00E+00 Mf.e 3,85E-04 1,72E-03 0,223 2,11E-01 1,00E+00

https://doi.org/10.1371/journal.pone.0204877.t001
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[19, 20, 34, 41, 42]. Examination of individual biological clones of viruses that remain viable

amidst a mutagenic treatment evidenced 200-fold reduction in infectivity, with 8-fold increase

in mutation frequency [43]. Therefore, the high RHL value in mutagenized populations is

likely to reflect a fundamental property of mutant spectra subjected to continuous mutagenesis

in which many low fitness genomes are generated. Such genomes, because of the continuous

input of new mutations, do not have the opportunity of fitness recovery thus replenishing a

low fitness sub-swarm captured by the RHL value. An increase in the proportion of minority

(low frequency) mutations has been observed in lethal mutagenesis experiments both in cell

culture [19, 20] and in vivo [8]. In mutant spectrum expansions that occur under basal muta-

tion rate, RHL is expected to be less abundant because no enhanced mutagenesis jeopardizes

opportunities for fitness gain, a tendency documented for RNA viruses when allowed unre-

stricted replication in a constant environment [31, 32, 44, 45].

Regarding diversity index adequacy to characterize lethal mutagenesis, RHL is followed by

the highly correlated incidence-based indices RHL, Hpl, nMuts, PolySites and FAD, the latter

probably because its entity level quality prevails under the conditions of our study. In contrast,

Fig 3. Logistic regression plot of mutagenicity over RHL. Red bars at the top depict the values of RHL for HCV
samples subject to mutagenesis. Blue bars at the bottom depict RHL values for control samples. Corresponding blue
and red dots on the fitted logistic curve show the predicted probability of mutagenesis for each sample, with a
predicted 50% probability at a RHL value of 37.5%. Area under the ROC curve 0.973. Only two samples under
mutagenic drug treatment and one control sample were mistakenly classified.

https://doi.org/10.1371/journal.pone.0204877.g003
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Mf and Pi, despite being widely used in the description of mutant spectra, exhibit poor correla-

tion with mutagenesis treatment. We also examined by logistic regression the capacity of each

index to discriminate between a history of mutagenesis and non-mutagenesis accompanying a

mutant spectrum expansion. Sorting of indices by LOOCV error rate placed RHL on top, fol-

lowed by HpI, PolySites, nMuts, FAD and Shannon. No discriminating capacity is observed

for Mf, Pi, Mf.e and Pi.e, in agreement with the poor results of these indices in the association

tests. The performed logistic regression has aimed at a more complex scenario, recognizing a

mutagenic state independently of population history, where the signal could be blurred and

affected by different phases of quasispecies dynamics, either of expansion or contraction of its

mutant spectrum.

It could be anticipated that multivariate models such as logistic PCLR and PLSLR might

describe the mutagenic effects more accurately than individual indices by adding the contrib-

uted predictive capacity of different indices despite its high correlation, in the sense that they

could have a higher incidence with samples under mutagenic effect. But no logistic multivari-

ate model beats RHL as a single predictor.

The information we seek to be captured with RHL lies below technical noise. Our approach

has consisted in supposing that technical noise affects equally all samples in the experiment

Table 2. Results of the logistic regressions. Dev: residual deviance. AIC: Aikake Information Content. Sensit: Sensitivity. Specif: Specificity. AUC: area under the ROC
curve. Err: classification error rate. LOOCV: Leave-one-out cross-validation error rate.

Index Dev AIC Sensit Specif AUC Err TenFoldCV LOOCV

RHL 19,6 23,6 0,933 0,958 0,973 0,056 0,057 0,055

Hpl 24,2 28,2 0,867 0,917 0,968 0,111 0,123 0,111

PolySites 44,2 48,2 0,800 0,875 0,899 0,167 0,176 0,165

nMuts 45,3 49,3 0,800 0,875 0,897 0,167 0,176 0,172

FAD 36,5 40,5 0,867 0,792 0,928 0,167 0,182 0,181

Shannon 49,7 53,7 0,833 0,750 0,863 0,204 0,208 0,204

q1D 50,4 54,4 0,800 0,792 0,863 0,204 0,215 0,221

q2D 62,5 66,5 0,633 0,833 0,738 0,278 0,290 0,278

qInfD 62,8 66,8 0,633 0,833 0,724 0,278 0,298 0,312

GiniS 62,4 66,4 0,767 0,542 0,738 0,333 0,345 0,367

Pi.e 74,1 78,1 1,000 0,000 0,557 0,444 0,485 0,465

Pi 72,3 76,3 0,700 0,292 0,597 0,482 0,539 0,516

Mf 71,4 75,4 0,633 0,417 0,589 0,463 0,520 0,529

Mf.e 73,4 77,4 0,933 0,208 0,562 0,389 0,494 0,571

https://doi.org/10.1371/journal.pone.0204877.t002

Table 3. Results of the in-silico study to characterize the biasedness and robustness of RHL with respect to Hpla. The table provides a summary of distributional val-
ues for the % error with respect to the true value of RHL (top row); the coefficient of variation (CV) observed for RHL and Hpl, rows second and third; the ratio of both
CVs in row fourth; the interquartile deviation (QD) observed for RHL and Hpl, rows fifth and sixth; and the ratio of both QDs in the last row.

Min. Q1 Median Mean Q3 Max.

RHL.err % 0,00 0,02 0,04 0,25 0,32 1,99

RHL.cv 0,0048 0,0077 0,0098 0,0109 0,0134 0,0211

Hpl.cv 0,0279 0,0399 0,0443 0,0505 0,0548 0,1086

CV.ratio 2,1 3,2 4,7 5,3 6,9 13,1

RHL.qd 0,0057 0,0097 0,0120 0,0147 0,0184 0,0378

Hpl.qd 0,0000 0,0488 0,0606 0,0637 0,0741 0,1538

QD.ratio 0,0 2,9 5,1 5,2 7,0 13,7

https://doi.org/10.1371/journal.pone.0204877.t003
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and that the distinctive effect would be caused by mutagenesis; that level will include both

authentic rare haplotypes and those that are introduced by technical noise.

Deep sequencing has become an important tool to analyze viral populations subjected to

mutagenic treatments [8, 22, 46]. The ranking of diversity indices to best characterize mutant

spectra subjected to lethal mutagenesis is relevant to a growing body of fundamental and

applied studies in virology and microbial genetics in general. Multiple high and low fidelity

RNA virus mutants have been characterized [47], and how such mutants modify diversity indi-

ces is an open question that may shed light on the biological consequences of altered polymer-

ase fidelity. Also, a large RHL questions the meaning of lethality of mutations in viral and

microbial populations [41, 48–51]. Specifically, it is not clear whether the genomes that con-

tribute to the RHL are slow replicators that can participate in evolutionary events, or are dead-

end products transiently kept in viral populations by complementation [41, 52]. Ranking of

diversity indices may provide also relevant information on the adaptative dynamics under

enhanced mutagenesis [53], or the action of mutagenic agents on plant viruses [54]. From the

perspective of pharmacology, RHL offers the means to distinguish whether base or nucleoside

analogues that display antiviral activities affect viral RNA replication by direct inhibition of

polymerase function or by enhanced mutagenesis, thus contributing to clarify uncertainties of

drug action. The mechanism of activity of nucleotide analogues has consequences for the types

of drug combinations that used together or sequentially can exert a more suppressive antiviral

effect [55–58]. Studies with additional viruses, fidelity mutants, and nucleotide analogues are

needed to provide a clearer picture of the relevance of different diversity indices to characterize

mutant spectra with alternative evolutionary histories. Cellular heterogeneity in important

clinical disorders such as cancer parallels the population dynamics and the collective behavior

of RNA viruses. Evaluation of a possible applicability of RHL determination as a marker in the

mutagenic spectra generated during different cellular tumogeneric processes could also be

considered. The present study, however, points towards RHL as a valuable marker for lethal

mutagenesis of virus, and emphasizes that the choice of diversity indices to describe mutant

spectra is not trivial.

Materials andmethods

Cells, viruses, infections, and drugs

Huh-7.5 and Huh-7.5 reporter human hepatoma cell lines were grown in Dulbecco’s modified

Eagle’s medium, and controlled as previously described [30, 32, 59, 60]. HCV p0 is the parental

viral population obtained by electroporation into Huh-7.5-Lunet cells of a transcript of plas-

mid Jc1FLAG2(p7-nsGluc2A) (a chimera of J6 and JFH-1, genotype 2a) [33], and amplified in

Huh-7.5 cells [30]. HCV p100 and HCV p200 resulted from population HCV p0 passaged 100

and 200 times, respectively, in Huh-7.5 reporter cells, as described [32]. Fitness of HCV p100

and HCV p200 relative to HCV p0 was measured in different growth-competition experiments

between virus pairs. In initial determinations at a total MOI of 0.03 TCID50/cell, HCV p100 fit-

ness was 2.2±0.4 that of HCV p0 [31]. Subsequent determinations gave 1.28±0.34 at a MOI of

0.03 TCID50/cell, and 1.10±0.02 TCID50/cell at a MOI of 1 TCID50/cell; the corresponding val-

ues for HCV p200 relative to HCV p0 were 1.33±0.46 and 1.17±0.02, respectively [32]. Infec-

tious HCV was titrated as previously described [32]: serially diluted samples were applied to

Huh-7.5 cells in 96-well plates (6,400 cells/well seeded 16 h earlier), and three days post-infec-

tion, cells were washed with PBS, fixed with ice-cold methanol, and stained to detect anti-

NS5A monoclonal antibody 9E10 [61]. Titrations were performed in triplicate, and titers

expressed as TCID50/ml. Favipiravir (T-705) (Atomax Chemicals Co. Ltd) and ribavirin
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(Sigma) were prepared and used as previously described [19, 34, 35]. Their concentrations

were chosen to produce comparable inhibition of HCV p0 progeny production.

RNA extraction, cDNA amplification and deep sequencing

Total intracellular viral RNA was extracted from infected cells using the Qiagen RNeasy kit

(Qiagen, Valencia, CA, USA), according to the manufacturer’s instructions. RT-PCR was car-

ried out using AccuScript (Agilent Technologies), with specific oligonucleotide primers (S1

Table) The amplicons covered the following genomic regions: A1, spanning genomic residues

7626 to 7962; A2, residues 7941 to 8257; and A3, residues 8229 to 8653. Negative controls with-

out template RNA were included in parallel to ascertain the absence of cross-contamination by

template nucleic acids. PCR products were purified (QIAquick Gel Extraction kit), quantified

(Pico Green assay), and analyzed for quality (Bioanalyzer) prior to Illumina MiSeq

sequencing.

Experimental design

The experiment is described schematically in Fig 1A and 1B, as described above. Four factors

have been considered. (i) Amplicon, with three levels A1, A2 and A3. Different regions in the

ORF are submitted to different functional restrictions. (ii) Base-line passage, with analyses at

passes 0, 100 and 200, where starts quasispecies evolution in absence or presence of treatment.

(iii) Treatment, with three levels: no drug, favipiravir and ribavirin. (iv) Treatment passages,

with analyses at passes 3 and 10. (Fig 1).

Bioinformatics and statistics

All computations were done in the R environment and language (Team R 2017).

Fastq data treatment

The fastq files obtained from the MiSeq were subjected to the following treatment. A haplo-

type-centric data analysis pipeline was developed on targeted samples by amplicons following

described procedures [62, 63] adapted to the Illumina MiSeq platform in a paired-end 2x300

mode. It involved the following steps:

• Quality control of fastq files by inspecting profiles of per-site quality, read length and general

instrument parameters of quality.

• In paired-end experiments overlap paired reads by FLASh [64] imposing a minimum of

20bp overlapped with a maximum of 10% mismatches.

• Quality profiles of FLASh reads.

• Demultiplex reads by identifying oligonucleotide sequences within windows of expected

positions in the sequenced reads.

◦ By MID (10bp oligonucleotide) distinguishing samples from different patients/origins,

only one mismatch is allowed.

◦ By specific primer (20-30bp oligonucleotides) distinguishing different regions in the

genome, and the two strands, up to three mismatches are allowed.

◦ TrimMIDs and primers.

◦ As a result, obtain a fasta file by each combination of MID, primer and strand in the run,

where the reads were collapsed to haplotypes with corresponding observed frequencies.
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• Align haplotypes in each fasta file to the wild type reference sequence or the master sequence

in the file (most abundant haplotype) and quality filter.

◦ Discard haplotypes not covering the full amplicon.

◦ Discard haplotypes with more than two indeterminations, three gaps or more than 30%

differences with respect to the reference.

◦ Repair accepted indeterminations and gaps as per the reference sequence.

• Intersect haplotypes in both strands with a minimum abundance of 0.1%

◦ Select haplotypes in both strands with abundances not below 0.1%

◦ Discard haplotypes unique to one strand.

◦ Take coverage of haplotypes passing the filter as the sum of reads in both strands.

• The final haplotypes are called consensus haplotypes, and are the basis of the downstream

analysis, except for the rare haplotypes load. Final yield 15–25% with respect to raw reads.

The pipeline consists in a set of R [65] scripts using objects and functions in packages Bio-

strings [66], ShortRead [67], and ape [68].

Rare haplotypes load (RHL)

It is computed as the fraction of reads in the sample belonging to haplotypes common to the

forward and reverse strands with abundance below a given threshold. In the present work 1%,

0.1% and 0.01% have been studied as thresholds, finally taking 1% as the most informative and

reliable.

Down sampling and fringe trimming (DSFT)

To compensate for possible biases in diversity indices due to differences in sample size [27, 29]

we used down-sampling followed by fringe trimming, which consists in the following steps: (i)

start with fasta files collecting the set of consensus haplotypes with abundance not below 0.1%;

(ii) compute the total number of reads in each fasta file in the analysis, and take the minimum

as the reference size; (iii) re-size the read number of each haplotype in each fasta file to the ref-

erence size; (iv) filter out all haplotypes below 0.2% with 95% confidence. These are the haplo-

types and frequencies used in the computation of all diversity indices, except for RHL.

Association tests

Association tests of all indices with mutagenicity were computed by the non-parametric Wil-

coxon signed rank test for paired samples, comparing the diversity values of the mutagenic

treatment samples versus the paired control samples, and correcting the p-values for multi-test

by the Bonferroni method; we did not distinguish among amplicons. Function wilcox.test with

alternate as greater and in paired mode, and p.adjust in package ‘stats’ were used in the com-

putations. Rather than declaring association at any p-value threshold, the models were ranked

according to descending order of the standardized effect. The most associated index is consid-

ered to be that with the highest effect and still with a low p-value.

Logistic regression

Logistic regression was used to fit a predictive model of mutagenic activity regardless of the

other factors in the design. Computations were performed by function glm in package ‘stats’.
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To assess the predictive error rate of a fitted model, a sample was considered as under muta-

genic effects if the fitted probability was above 0.5. The parameters used in the assessment

were: residual deviance, Aikake Information Content (AIC), sensitivity, specificity, area under

the ROC curve, and classification error rate. To minimize bias due to overfitting, the cross-val-

idation error rate under 11-fold cross-validation and under leave-one-out cross validation

(LOOCV) was used. The models were sorted by increasing order of LOOCV. Function cv.glm

in package ‘boot’ was used for the computation of CV error rates [69].

In silico study

An in-silico analysis was performed to assess the robustness of RHL when compared with Hpl.

To this aim, a fasta file of a sample with all haplotypes common to the forward and reverse

strands with no previous abundance filter was used to sample and compute its RHL. Then the

following steps were repeated 2000 times: (i) take a sample of 40,000 reads from the popula-

tion; (ii) compute the RHL of this sample, (iii) filter out all haplotypes with abundance below

0.1% and not common to both strands; (iv) DSFT to 20,000 reads with haplotypes not below

0.2% with 95% confidence; (v) count Hpl. In each cycle the number of final reads, haplotypes,

and RHL was computed and registered. With the set of 2000 values computed for each fasta

file, the mean, median, coefficient of variation (CV), and interquartile dispersion coefficient

(QD) were determined. A robust index is that showing the lowest CV and QD.

Free available R package. An R package collecting all important functions, the package

manual, and tutorial vignettes are freely available from GitHub (https://github.com/

VHIRHepatiques/QSutils).

Supporting information

S1 Table. Oligonucleotides used to amplify and sequence HCV p0, HCV p100 and HCV

p200 virus subjected to serial passages in the absence or presence of 400 µM favipiravir

and 100 µM ribavirin.

(DOCX)

S1 Fig. Logistic regression plots of mutagenicity over each diversity index considered. A

plot for each diversity index. As in Fig 3, bars at the top and bottom depict the values of each

diversity index for HCV samples subject to mutagenesis or control. Dots on the logistic curve

represent the predicted probability of mutagenesis.

(PDF)

S2 Fig. AUC and LOOCV error rates. (top) Barplot with AUC values for each diversity index

considered. (bottom) Barplot with LOOCV error rate values for the logistic regression to each

single diversity index. All samples included.

(PDF)

S3 Fig. AUC and LOOCV error rates. (top) Barplot with AUC values for each diversity index

considered. (bottom) Barplot with LOOCV error rate values for the logistic regression to each

single diversity index. Samples with a control/treatment of three passes only.

(PDF)

S4 Fig. AUC and LOOCV error rates. (top) Barplot with AUC values for each diversity index

considered. (bottom) Barplot with LOOCV error rate values for the logistic regression to each

single diversity index. Samples with a control/treatment of ten passes only.

(PDF)
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