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Abstract: 

 

Background: Familial hypobetalipoproteinemia (FHBL) is a genetic disorder caused by rare 

protein-truncating variants (PTV) in the gene encoding apolipoprotein B (APOB), the major 

protein component of low-density and triglyceride-rich lipoprotein particles. Whether 

heterozygous APOB deficiency is associated with decreased risk for coronary heart disease 

(CHD) is uncertain. We combined family-based and large scale gene-sequencing to characterize 

the association of rare PTVs in APOB with circulating low-density lipoprotein cholesterol (LDL-

C), triglycerides, and risk for CHD. 

Methods: We sequenced the APOB gene in 29 Japanese hypobetalipoproteinemia families as 

well as 57,973 individuals derived from 12 CHD case-control studies – 18,442 with early-onset 

CHD and 39,531 controls. We defined PTVs as variants that lead to a premature stop, disrupt 

canonical splice-sites, or lead to insertions/deletions that shift reading frame. We tested the 

association of rare APOB PTV carrier status with blood lipid levels and CHD.  

Results: Among 29 FHBL families, 8 families harbored APOB PTVs. Carrying one APOB PTV 

was associated with 55 mg/dL lower LDL-C (p = 3x10-5) and 53% lower triglyceride level (p = 

2x10-4). Among 12 case-control studies, an APOB PTV was present in 0.038% of CHD cases as 

compared to 0.092% of controls. APOB PTV carrier status was associated with a 43 mg/dL 

lower LDL-C (p=2x10-7), a 30% decrease in triglycerides (p=5x10-4), and a 72% lower risk for 

CHD (odds ratio=0.28, 95%CI: 0.12-0.64; p=0.002). 

Conclusions: Rare PTV mutations in APOB which are associated with lower LDL-C and 

reduced triglycerides also confer protection against CHD. 
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Introduction 

Apolipoprotein B (APOB) is a structural component of lipoproteins with a functional role as a 

ligand that binds to cell-surface receptors including the low-density lipoprotein (LDL) receptor1. 

Rare protein-truncating variants (PTVs) that truncate APOB lead to familial 

hypobetalipoproteinemia (FHBL, OMIM #107730), an autosomal dominant genetic disorder 

characterized by low levels of plasma low-density lipoprotein cholesterol (LDL-C) 2, 3. Those 

affected by FHBL display not only lower LDL-C but also non-alcoholic fatty liver disease. 

Mipomersen is an antisense drug approved by the U.S. Food and Drug Administration 

that targets the messenger RNA for APOB and inhibits the synthesis of the apoB protein.  

Mipomersen is approved to lower cholesterol in individuals with homozygous familial 

hypercholesterolemia (HoFH) 4. Mipomersen leads to a significant decrease in LDL-C levels in 

individuals with HoFH; however, similar to APOB PTVs, mipomersen also leads to fatty liver 

and elevated liver function test abnormalities5.   

Carriers of PTVs in APOB display lower LDL-C6 and triglyceride levels and as such, 

might be expected to have reduced risk for coronary heart disease (CHD). However, to date, 

there is little evidence as to whether loss of APOB function will affect CHD risk 7, 8 and a 

pharmacologic test of this hypothesis with mipomersen seems unlikely due to the adverse effects 

of this therapy. As such, here, we took a human genetics approach to address the following: 1) 

the extent to which APOB PTV carrier status is associated with serum lipid levels using 29 

Japanese FHBL families; and 2) whether PTVs in the APOB gene are associated with lipid levels 

and CHD among approximately 58,000 individuals from large case-control studies. 

 

 

D
ow

nloaded from
 http://ahajournals.org by on A

pril 8, 2019



4 

Methods 

All participants in the study provided written informed consent for genetic studies. The 

institutional review boards at the Broad Institute and each participating institution approved the 

study protocol. In order to minimize the possibility of unintentionally sharing information that 

can be used to re-identify private information, a subset of the data generated for this study are 

available at dbGaP and can be accessed at through dbGaP Study Accessions: phs000814.v1.p1 

(ATVB), phs001398.v1.p1 (BRAVE), phs000279.v2.p1 (EOMI), phs001098.v1.p1 (JHS), 

phs001000.v1.p1 (Leicester), phs000990.v1.p1 (NorthGermanMI), phs000916.v1.p1 

(SouthGermanMI), phs000806.v1.p1 (OHS), phs000883.v1.p1 (PROCARDIS), 

phs000917.v1.p1 (PROMIS), phs000902.v1.p1(Regicor).  

The full methods are available in the supplemental material.  

 

Results 

Hypobetalipoproteinemia families 

In FHBL pedigrees, we tested whether APOB PTVs were associated with serum lipids and 

apolipoproteins. We recruited 29 Japanese FHBL families, and sequenced the exome in 69 

participants from the families. Of those, 12 individuals in 4 families and 4 single probands 

harbored APOB PTVs that appeared causative (Supplemental Figure 1). Among these 

individuals, 3 carried PTVs in homozygous state and 13 harbored PTVs in heterozygous form. 

Identified causative variants were confirmed through Sanger sequencing (primers shown in 

Supplemental Table 1). Five of these APOB PTVs had not been previously described in FHBL 

families (Supplemental Table 2). The APOB PTVs co-segregated with serum LDL-C and 

apolipoprotein B levels. Both homozygote and heterozygous carriers exhibited reduction of 
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serum LDL-C, triglyceride, and apolipoprotein B levels (Figure 1, Supplemental Table 3). Based 

on linear regression for effect size (95% CI), carrying a PTV in APOB was associated with lower 

LDL-C (-55 mg/dL; 95% CI: -68 to -42; Mann-Whitney U p-value = 2.7x10-5), lower triglyceride 

levels (-53%; 95% CI: -72 to -21; Mann-Whitney U p-value = 1.7x10-4), and lower 

apolipoprotein B (-43 mg/dL; 95% CI: -53 to -33; Mann-Whitney U p-value = 2.1x10-3) after 

adjusting for age and sex.  

In the set of Japanese FHBL individuals, APOB PTV carriers had higher hepatobiliary 

enzymes compared to non-carriers (Supplemental Table 3). The three individuals homozygous 

for APOB PTV were all > 40 years old with evidence of fatty liver on imaging and associated 

elevation in hepatobiliary enzymes. (Supplemental Table 4).  

Association of APOB PTVs with lipids and CHD 

We sequenced the APOB gene in a total of 57,973 participants from the Myocardial Infarction 

Genetics Consortium (MIGen) of African, European, and South Asian ancestries (N=33,835), 

and from participants of European ancestry (N=24,138) in the Geisinger Health System and 

Regeneron Genetics Center DiscovEHR study who were recruited as part of the MyCode 

Community Health Initiative 9 (Table 1). Across a total of 57,973 individuals in 12 studies 

(Supplemental Table 5), we observed 37 APOB PTVs. 32 (86%) of these PTVs were only seen in 

a single individual (Supplemental Table 6). These mutations included 19 nonsense single-

nucleotide substitutions, 3 single-nucleotide substitutions that were predicted to disrupt splicing, 

and 15 frameshift indels. In aggregate, these 37 mutations were seen in a total of 56 individuals 

in heterozygous form. No homozygotes or compound heterozygotes were observed. 

Among MIGen individuals free of CHD, we found that APOB PTV carriers had 43 

mg/dL lower LDL-C (95% CI: -59.4 to -26.9; p-value=2.1x10-7), 53 mg/dL lower total 
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cholesterol (95% CI: -72.4 to -34.3; p-value=4.2x10-8), 4 mg/dL higher HDL-C (95% CI: -0.39 

to 8.8; p=0.07), and 32% lower triglycerides (95% CI: 15% to 45%; p=5.0x10-4) (Table 2). 

Additionally, among 37,912 individuals in DiscovEHR, APOB PTV carriers had a 48 mg/dL 

lower LDL-C (95% CI: -61.9 to -33.4; p-value=5.6x10-11).  

Among the 18,442 individuals with CHD, 7 individuals carried a PTV in APOB (0.038% 

carrier frequency) compared to 49 of the 39,531 controls (0.092% carrier frequency) (Figure 2). 

Carriers of APOB PTVs had 72% lower risk of CHD when compared with non-carriers (odds 

ratio=0.28; 95% CI=0.12-0.64; p-value=0.002). In a sensitivity analysis, we found similar results 

(odds ratio=0.29; 95% CI=0.12-0.71; p-value=0.006) in the MIGen study after adjusting for sex, 

PCs of ancestry, and cohort. 

 

Discussion 

In this study, we assessed whether rare PTVs in APOB were associated with lower lipid levels 

and reduced CHD. Among Japanese FHBL families, we found that carrying an APOB PTV in 

heterozygous form was associated with lower apoB, LDL-C, and triglycerides. Among more 

than 57,000 participants with and without CHD, APOB PTV carrier status also linked to lower 

total cholesterol, LDL-C, triglycerides, and a 72% lower risk for CHD when compared to non-

carriers. These results permit several conclusions.   

First, we demonstrate that APOB PTVs are a frequent cause of FHBL among the 

Japanese in this study. By analyzing 29 pedigrees with an extreme LDL-C phenotype, we 

identified 13 heterozygous carriers and 3 homozygous carriers. Identification of such individuals 

can enable deep phenotyping to understand the consequences of lifelong perturbation. For 

example, we note that each of the 3 homozygotes had not only extremely low LDL-C but also 
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evidence of fatty liver. The presence of fatty liver is consistent with previous reports of adverse 

effects of using APOB inhibitors 10, 11. 

Second, we provide evidence that, despite an increased risk of fatty liver, carriers of 

APOB PTVs are at substantially reduced risk of CHD. These findings are of particular 

importance because clinical trials of mipomersen for CHD outcomes are highly unlikely to be 

undertaken due to the associated adverse liver effects of mipomersen. These results emphasize 

the dominant role of apoB containing lipoproteins in protection from CHD. 

Third, our results add to a growing body of evidence demonstrating that rare variants 

associated with reduced circulating apoB-containing lipoproteins are associated with reduced 

risk of CHD. Rare nonsense mutations in the PCSK9 gene was noted in 2.6% of blacks and 

associated with a 88% reduction in risk for CHD12. Also, NPC1L1 rare inactivating variants are 

observed 1 in 650 individuals and linked to a 53% relative risk reduction for CHD13.  

Strengths of this study include the large sample size and the evaluation of family-based 

and population-based samples. However, we were not able to assess hepatic enzymes in the 

population-based samples, we did not functionally validate PTVs, and we were unable to 

compare effects stratified by ancestry groups given the small number of individuals carrying 

PTVs within each study.  

Conclusion 

Rare PTVs in the APOB gene associated with lower LDL-C, lower triglycerides and decreased 

risk for CHD. 
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Table 1. Baseline Characteristics of Myocardial Infarction Genetics Consortium and DiscovEHR 
Study Participants.  
 

  
Myocardial Infarction  
Genetics Consortium 

Geisinger Health System 
DiscovEHR Cohort 

  

CHD CHD-free CHD CHD-free 

Cases Controls Cases ‡ Controls 

N = 14,243 N = 19,592 N = 4,199 N = 19,939 

Age, years, mean (SD) 46.2 (8.0) 56.5 (12.1) 51.8 (7.3) * 45.0 (12) * 
Male gender, n (%) 10930 (77) 14556 (74) 1,938 (46) 3,848 (19) 
BMI, kg/m2, median (IQR) 26.8 (24.1–30.1) 26.2 (23.8–29.0) 32.3 (28–38) 31.0 (26–37) 
Current smoker, n (%) 6307 (48) 4463 (24) 986 (23) 4,065 (20) 
Ancestry     
   European 6682 (47) 7201 (37) 4,199 (100) 19,939 (100) 
   Asian 7180 (51) 11045 (57) 0 (0) 0 (0) 
   African 206 (1) 1128 (6) 0 (0) 0 (0) 
   Other 28 (<0.001) 0 (0) 0 (0) 0 (0) 
Medical history     

   Hypertension ||, n (%) 3212 (31) 5548 (36) 3,373 (80) 12444 (34) 

   Type 2 Diabetes §, n (%) 1872 (15) 2056 (12) 1,520 (36) 2611 (13) 
   Lipid-lowering medication*, n (%) 3463 (35) 538 (4) 2,494 (59) 3639 (18) 
Lipid profile (mg/dL)     

   LDL cholesterol †, mean (SD) 142 (53.9) 119 (43) 130 (40) 122 (37) 
   HDL cholesterol, mean (SD) 37 (12) 41 (14) 46 (13) 52 (15) 
   Triglycerides, median (IQR) 167 (117–247) 151 (102–222) 154 (112–215) 119 (85–167) 

   Total cholesterol †, mean (SD) 219 (58) 194 (49) 214 (43) 203 (42) 
* At the time of median lifetime lipid measurement. 
† Total and LDL cholesterol values were divided by 0.8 and 0.7 respectively in those on lipid-lowering medication 
to estimate untreated values. 
‡ Participants were considered to have early-onset (men <55 years, women <65 years) coronary heart disease (CHD) 
if they had a history of coronary revascularization in the electronic health records, or history of acute coronary 
syndrome, ischemic heart disease, or exertional angina (ICD-9 codes 410*, 411*, 412*, 413*, 414*) with 
angiographic evidence of obstructive coronary atherosclerosis (>50% stenosis in at least one major epicardial vessel 
from catheterization report). 
§ Participants were considered to have diabetes if they had a history of type 2 diabetes in the electronic health 
records, antidiabetic medication use, or fasting glucose greater than 126 mg/dL or hemoglobin A1c greater than 
6.5%. 
|| Participants were considered to have hypertension if they had a history of hypertension in the electronic health 
records, antihypertensive medication use, or systolic blood pressure greater than 140 mmHg or diastolic blood 
pressure greater than 90 mmHg. 
SD: standard deviation; IQR: interquartile range. 
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Table 2. Associations of APOB protein truncating variant carrier status with plasma lipids in the 
Myocardial Infarction Genetics Consortium. 
 

Lipid level 
N Effect 

size 
SE P-value 

LDL cholesterol (mg/dL) 14,754 -43.14 8.30 2.1 x 10-7 

HDL cholesterol (mg/dL) 15,283 4.20 2.34 0.07 

Total cholesterol (mg/dL) 15,466 -53.31 9.72 4.2 x 10-8 

Triglycerides (log(mg/dL)) 15,787 -0.38 0.11 5.0 x 10-4 

Results are adjusted for PC1-5, cohort, and sex. 
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Figure Legends: 

 

Figure 1. Serum LDL-C (A), triglyceride (B), and apolipoprotein B (C) among Japanese 

individuals with heterozygous (n=13) and homozygous (n=3) APOB protein truncating variant 

carriers and non-carriers (n=6). Each dot represents an individual’s lipid level. Each horizontal 

line indicates mean value of the lipid level for each genotype. P-values were calculated using 

Mann-Whitney U test. *: P<0.05, **: P<0.01 compared with non-carriers. 

PTV, protein truncating variant 

 

Figure 2 (Central Illustration).  Association of APOB protein truncating variant carrier status 

with risk of coronary heart disease (CHD) among 57,973 individuals. In each study, the 

relationship of protein truncating variants in APOB with risk of CHD was determined. Exact 

methods were used to calculate p-values for association tests and confidence intervals (CI). 

Cochran-Mantel-Haenszel statistics for stratified 2-by-2 tables was performed for meta-analysis. 

Odds ratio in the Jackson Heart Study (JHS) and North German MI studies were not available 

due to a lack of observed APOB protein truncating variant carriers. ATVB indicates 

Atherosclerosis, Thrombosis, and Vascular Biology Italian Study; DiscovEHR, DiscovEHR 

project of the Regeneron Genetics Center and Geisinger Health System; EOMI, Exome 

Sequencing Project Early-Onset Myocardial Infarction study; Leicester, Leicester Myocardial 

Infarction study; NorthGermanMI, North German Myocardial Infarction study; OHS, Ottawa 

Heart Study; PROCARDIS, Precocious Coronary Artery Disease study; PROMIS, Pakistan Risk 

of Myocardial Infarction Study; REGICOR, Registre Gironí del COR (Gerona Heart Registry) 

study; SouthGermanMI, South German Myocardial Infarction study. 
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