
Rare Shocks, Great Recessions
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Abstract

We estimate a DSGE model where rare large shocks can occur, by replac-

ing the commonly used Gaussian assumption with a Student-t distribution.

We show that the latter is favored by the data in the context of a Smets and

Wouters-type model estimated on macro variables, even if we allow for low fre-

quency variation in the shocks’ volatility. The evidence is even stronger when

we introduce financial frictions as in Bernanke, Gertler and Gilchrist (1999),

and correspondingly include a measure of interest rate spreads among the ob-

servables. We provide some evidence that introducing Student-t shocks reduces

the importance of low-frequency time-variation in volatility. In particular, we

show that the Great Recession of 2008-09 does not result in significant increases

in estimated time-varying volatility (i.e., it is not a reversal of the Great Mod-

eration) but is largely the outcome of large shocks.
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1 Introduction

Financial crises do not happen every decade. To the extent that DSGE models rely

on shocks in order to generate macroeconomic fluctuations, they may need to ac-

count for the occurrence of rare large shocks. This cannot be done using the normal

distribution, which is the standard assumption in the DSGE literature. We estimate

a linearized DSGE model assuming that shocks are generated from a Student-t dis-

tribution, which is designed to capture fat tails. The number of degrees of freedom

in the Student-t distribution, which determines the likelihood of having rare large

shocks, is estimated from the data. We show that estimating DSGE models with

Student-t distributed shocks is a fairly straightforward extension of current methods

(as described, for instance, in An and Schorfheide (2007)). In fact, the Gibbs sam-

pler a simple extension of Geweke (1993)’s Gibbs sampler for a linear model to the

DSGE framework. In addition to allowing for fat tails, we introduce time-varying

volatilities following the approach in Justiniano and Primiceri (2008). The paper

is also closely related to Chib and Ramamurthy (2011) who in independent and

contemporaneous work also propose a similar approach to the one developed here

for estimating DSGE models with student-t distributed shocks.

We show that the normality assumption for the distribution of shocks in DSGE

models is counterfactual, even when these models are estimated using the standard

set of macroeconomic variables over the post-Great Moderation period. To some

extent this is not too surprising given that we had evidence, even before the recent

recession, that macro variables do not quite conform to the gaussian assumptions

(see Christiano (2007)). The normality assumption is even more counterfactual

when we include financial variables — such as spreads — into the set of observables,

which is a natural step if one is to introduce financial frictions into the model.

There are of course ways to introduce departures from normality in the shocks

distribution other than assuming that shocks are Student-t distributed. Two impor-

tant papers in the DSGE literature, Justiniano and Primiceri (2008) and Fernández-

Villaverde and Rubio-Ramı́rez (2007), have introduced stochastic volatility in the
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estimation of DSGE models. In both papers stochastic volatility captures low fre-

quency movements in volatility however, as they focused on the sources of the Great

Moderation. In particular, in Justiniano and Primiceri (2008) this is by assump-

tion, as they postulate a random walk as the law of motion of the volatilities. Low

frequency movements in volatility, while potentially important to describe the data,

cannot capture rare large shocks. Most importantly, we argue that the presence of

large shocks may potentially distort the assessment of these low frequency move-

ments. At the same time. ignoring low frequency movements in volatiltiy may bias

the results toward finding evidence in favor of fat tails. For this reasons it is im-

portant to allow for both fat tails and low frequency movements in volatility in the

estimation.

The top panel of Figure 1 shows the time series of the smoothed “entrepreneurial

risk” shocks (in absolute value) from a model that includes financial frictions mod-

eled as in Bernanke et al. (1999) and Christiano et al. (2009). The model is estimated

under the assumption of normality on the post-war data. These shocks capture

mean-preserving variations in the volatility of idiosyncratic entrepreneurial produc-

tivity, and lead to corresponding changes in spreads. We will therefore often refer

to these shocks as “spread” shocks. The shocks are normalized, that is, expressed in

standard deviations units. The solid line is the median, and the dashed lines are the

posterior 90% bands. Figure 1 shows that the size of the entrepreneurial risk shock

in 2008Q4, the quarter immediately following Lehman Brothers’ collapse, is between

6 and 7 standard deviations. The bottom panel of Figure 1 shows the evolution of

the smoothed monetary policy shocks (again, normalized, and in absolute value).

These two plots illustrate why we need both fat tails and time-varying volatility.

Imagine estimating a model with only slow moving time variation in volatility, but no

fat tails, in presence of shocks that fit the pattern shown in the top panel of Figure 1.

As we will show, such model will produce a time series of volatilities peaking around

1980, and then again during the Great Recession. Viceversa, imagine estimating a

model with only fat tails but no slow moving time variation in volatility on shocks

that fit the pattern shown in the bottom panel. Here the model would interpret
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all the large shocks in the late 70s and 80s as rare shocks, ignoring the evident

clustering of these shocks – that is, the fact that the volatility of monetary policy

shocks was low in the sixties, high during the Volcker period, and then low again.

The main focus of this paper is twofold. We ask whether there is evidence of fat

tails, and whether tail events are important for the macroeconomy. Next, we ask

whether allowing for Student-t distributed shocks affects the inference about time-

variation in volatility. In particular, we investigate whether the Great Recession is

best captured as a reversal of the Great Moderation, or as the outcome of rare large

shocks.

Our results so far can be summarized as follows. First, perhaps not surprisingly

in light of the plots for the shocks in Figure 1, we find very strong evidence in favor

of Student-t distributed shocks. The estimated degree of freedom for the Student-t

distribution vary across shocks, but for some shocks, notably spread shocks, are

quite low, indicating substantial Kurtosis. For this reason, allowing for Student-t

distributed shocks substantially improves the model’s fit, more than just allowing

for (random walk) time variation in volatilities. Second, rare large shocks, and in

particular rare large shocks to the financial sector, explain an important part of

the Great Recession. This finding shows that we do not just need fat tails to fit

financial variables such as spreads, but that these tail events have an important

impact on the macroeconomy. Last, we show that slow-moving stochastic volatility

is less important in the presence of rare large shocks. In fact, whenever we allow

for Student-t distributed shocks adding stochastic volatility does not improve the

marginal likelihood. This result is preliminary, and may well depend on our imposing

a random walk as the law of motion of the volatilities. In any case, even allowing

for fat tails we find evidence that for some shocks, e.g. policy shocks, stochastic

volatility is important.

It is important to point out a number of caveats regarding our analysis. For one,

in the current draft we allow for excess Kurtosis but nor for skewness. The shocks

plots in in Figure 1 make it plain that most large shocks occur during recessions.

We plan to address this issue in future drafts. A recent paper by Müller (2011)
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describes some of the dangers associated with departures from Gaussianity when the

alternative shock distribution is also misspecified. Next, our model is linear. It may

well then be that what we capture as large rare shocks are Gaussian shocks whose

effect is amplified through a non-linear propagation mechanism. This is obviously

an important line of research. At the same time, it is no excuse for sticking to

gaussianity in linear models, as much of the literature has done so far. Moreover,

this paper attempts to contribute to that literature by identifying what sort of non-

linearities, and in which sector, may be most helpful. Finally, we should remark that

our log-linear DSGE model with Student-t distributed shocks cannot be taken as a

literal description of reality for the reason that if the model is correct expectations

of the variables in levels are not defined. We are not particularly disturbed by this

implication because we do not take the model literally. Rather, we interpret it a

useful approximation meant to investigate specific questions, such as the extent to

which, and the sources of, time-variation in macroeconomic volatility.

The next section discusses Bayesian inference. The section first describes the

procedure used to estimate a DSGE model with Student-t distributed shocks, and

then combines Student-t distributed shocks with time-variation in volatilities. Sec-

tion 3 describes the model, as well as our set of observables. As far as results go,

the paper at this point is more of an estended abstract than an actual paper. We

provide evidence that the Student-t distribution assumption is favored by the data

relative to Gaussianity, and this evidence is surprisngly stronger when spreads are

included among the observables. We also show that the normality assumption leads

to downplay the importance of large shocks relative to the Student-t distribution.

We plan to do much more, including addressing some of the questions raised in the

introduction, in the next few months.

2 Bayesian Inference

The first part of the section describes the estimation of a DSGE model with both

Student-t distributed shocks and time-varying volatilities. The Gibbs sampler com-
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bines the algorithm proposed by Geweke (1993)’s for a linear model with Student-t

distributed shocks (see also Geweke (1994), and Geweke (2005) for a textbook ex-

position) with the approach for sampling the parameters of DSGE models with

time-varying volatilities discussed in Justiniano and Primiceri (2008). Section A.2

discusses the computation of the marginal likelihood.

The model consists of the standard measurement and transition equations:

yt = Z(θ)st, (1)

st+1 = T (θ)st +R(θ)εt, (2)

for t = 1, .., T , where yt, st, and εt are n× 1, k× 1, and q̄× 1 vector of observables,

states, and shocks, respectively. Call p(θ) the prior on the vector of DSGE model

parameters θ. We assume that:

εq,t = σq,th̃
−1/2
q,t ηq,t, all q, t, (3)

where

ηq,t ∼ N (0, 1), i.i.d. across q, t, (4)

λqh̃q,t ∼ χ2(λq), i.i.d. across q, t. (5)

For the prior on the parameters λq we assume a gamma distributions with parame-

ters λ/ν and ν:

p(λq|λ, ν) =
(λ/ν)−ν

Γ(ν)
λ ν−1
q exp(−ν λq

λ
), i.i.d. across q. (6)

where λ is the mean and ν is the number of degrees of freedom (Geweke (2005)

assumes a Gamma with one degree of freedom).

Define

σ̃q,t = log (σq,t/σq) , (7)

where the parameters σ1:q̄ (the non-time varying component of the shock variances)

are included in the vector of DSGE parameters θ. We assume that the σ̃q,t follows

an autoregressive process:

σ̃q,t = ρqσ̃q,t−1 + ζq,t, ζq,t ∼ N (0, ω2
q ), i.i.d. across q, t. (8)
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The prior distribution for ω2
q is an inverse gamma IG(νω/2, νωω

2/2), that is:

p(ω2
q |νω, ω2) =

(
νωω

2/2
) νω

2

Γ(νω/2)
(ω2
q )
− νω

2
−1exp

[
−νωω

2

2ω2
q

]
, i.i.d. across q. (9)

We consider two types of priors for ρq:

p(ρq) =


1 SV-UR

N (ρ̄, v̄ρ)I(ρq)), i.i.d. across q, I(ρq) =

 1 if |ρq| < 1

0 otherwise,
SV-S

(10)

In the SV-UR case σ̃q,t follows a random walk as in Justiniano and Primiceri (2008),

while in the SV-S it follows a stationary process as in Fernández-Villaverde and

Rubio-Ramı́rez (2007). In both cases the σq,t process is very persistent: in the SV-

UR case the persistence is wired into the assumed law of motion for σ̃q,t, while in

the SV-AR case it is enforced by choosing the hyperparameters ρ̄ and σ̄ρ in such a

way that the prior for ρq puts most mass on high values of ρq. As a consequence,

σq,t and h̃q,t play very different roles in (3): σq,t allows for slow-moving trends in

volatility, while h̃q,t allows for large shocks. Finally, to close the model we make the

following distributional assumptions on the initial conditions σ̃q,0, q = 1, .., q̄:

p(σ̃q,0|ρq, ω2
q ) =

 0 SV-UR

N (0, ω2
q/(1− ρ2

q)), i.i.d. across q SV-S
(11)

where the restriction under the SV-UR case is needed to obtain identification. In the

stationary case we have assumed that σ̃q,0 is drawn from the ergodic distribution.

2.1 The Gibbs-Sampler

The joint distribution of data and unobservables (parameters and latent variables)

is given by:

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(λ1:q̄)p(ρ1:q̄|ω2

1:q̄)p(ω
2
1:q̄)p(θ), (12)
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where p(y1:T |s1:T , θ) and p(s1:T |ε1:T , θ) come from the measurement and transition

equation, respectively, p(ε1:T |h̃1:T , σ̃1:T , θ) obtains from (3) and (4):

p(ε1:T |h̃1:T , σ̃1:T , θ) ∝
q̄∏
q=1

(
T∏
t=1

h̃
−1/2
q,t σq,t

)
exp

[
−

T∑
t=1

h̃q,tε
2
q,t/2σ

2
q,t

]
, (13)

p(h̃1:T |λ1:q̄) obtains from (5)

p(h̃1:T |λ1:q̄) =

q̄∏
q=1

T∏
t=1

(
2λq/2Γ(λq/2)

)−1
λ
λq/2
q h̃

(λq−2)/2
q,t exp(−λqh̃q,t/2), (14)

p(σ̃1:T |ω2
1:q̄) obtains from expression (8) and (11):

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄) ∝

q̄∏
q=1

(ω2
q )
−(T−1)/2exp

[
−

T∑
t=2

(σ̃q,t − ρqσ̃q,t−1)2/2ω2
q

]
p(σ̃q,1|ρq, ω2

q ),

(15)

where

p(σ̃q,1|ρq, ω2
q ) ∝


(ω2
q )
−1/2exp

(
− σ̃2

q,1

2ω2
q

)
, SV-UR

(ω2
q )
−1/2exp

(
− σ̃2

q,1

2ω2
q (1−ρ2

q)

)
. SV-S

(16)

Finally, p(λ1:q̄) =
∏q̄
q=1 p(λq|λ), p(ω2

1:q̄) =
∏q̄
q=1 p(ω

2
q |ν, ω2).

The sampler consists of six blocks.

(1) Draw from p(θ, s1:T , ε1:T |h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

in two steps:

(1.1) Draw from the marginal p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ), where

p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T )

∝
[∫

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )
]
p(θ)

= p(y1:T |h̃1:T , σ̃1:T , θ)p(θ)

(17)

where

p(y1:T |h̃1:T , σ̃1:T , θ) =

∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)·d(s1:T , ε1:T )
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is computed using the Kalman filter with (1) as the measurement equation

and (2) as transition equation, with

εt|h̃1:T , σ̃1:T ∼ N (0,∆t), (18)

where ∆t is a q̄× q̄ diagonal matrices with σ2
q,t · h̃−1

q,t on the diagonal. The

draw is obtained from a Metropolis-Hastings step.

(1.2) Draw from the conditional p(s1:T , ε1:T |θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ).

This is accomplished using the simulation smoother of Durbin and Koop-

man (2002).

(2) Draw from p(h̃1:T |θ, s1:T , ε1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

by drawing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄) ∝
q̄∏
q=1

T∏
t=1

h̃
(λq−1)/2
q,t exp(−

[
λq + ε2

q,t/σ
2
q,t

]
h̃q,t/2),

which implies

[
λq + ε2

q,t/σ
2
q,t

]
h̃q,t|θ, ε1:T , σ̃1:T , λq ∼ χ2(λq + 1).

(3) Draw from p(λ1:q̄|h̃1:T , θ, s1:T , ε1:T , ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by

drawing from

p(h̃1:T |λ1:q̄)p(λ1:q̄) ∝
∏q̄
q=1 ((λ/ν)ν Γ(ν))−1 [2λq/2Γ(λq/2)]−Tλ

Tλq/2+ν−1
q(∏T

t=1 h̃
(λq−2)/2
q,t

)
exp

[
−
(
ν
λ + 1

2

∑T
t=1 h̃q,t

)
λq

]
.

This is a non-standard distribution, hence the draw is obtained from a Metropolis-

Hastings step.

(4) Draw from p(σ̃1:T |θ, s1:T , ε1:T , h̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

by drawing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)

using the algorithm developed by Kim et al. (1998), which we briefly describe

in appendix A.3.
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(5) Draw from p(ω2
1:q̄|σ̃1:T , θ, s1:T , ε1:T , h̃1:T , λ1:q̄, ρ1:q̄, y1:T ) using

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(ω

2
1:q̄) ∝

q̄∏
q=1

(ω2
q )
− ν+T

2
−1exp

[
−
νω2 +

∑T
t=2(σ̃q,t − ρqσ̃q,t−1)2 + σ̃∗ 2

q,1

2ω2
q

]
,

where σ̃∗
2

q,1 = σ̃2
q,1 in the SV-UR case, and σ̃∗

2

q,1 = σ̃2
q,1/(1 − ρ2

q) in the SV-S

case. This implies that

ω2
q |σ̃1:T , ρ1:q̄, · · · ∼ IG

(
ν + T

2
,
1

2

(
νω2 +

T∑
t=2

(σ̃q,t − ρqσ̃q,t−1)2 + σ̃∗
2

q,1

))
, i.i.d. across q.

(6) (SV-S case only) Draw from p(ρ1:q̄|σ̃1:T , θ, s1:T , ε1:T , h̃1:T , λ1:q̄, ω
2
1:q̄, y1:T ) using

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(ρ1:q̄|ω2

1:q̄) ∝
q̄∏
q=1

N (ρ̄q, V̄q)I(ρq)p(σ̃1|ρq, ω2
q ),

where V̄q = (v̄−1
ρ +ω−2

q

∑T
t=2 σ̃

2
q,t−1)−1 and ρ̄q = V̄q

(
v̄−1
ρ ρ̄+ ω−2

q

∑T
t=2 σ̃q,tσ̃q,t−1

)
.

This probability is non-standard because of the likelihood of the first obser-

vation p(σ̃1|ρq, ω2
q ). We therefore use the Metropolis-Hastings step proposed

by Chib and Greenberg (1994), where N (ρ̄q, V̄q)I(ρq) is the proposal density

and the acceptance ratio simplifies to
p(σ̃1|ρ∗q ,ω

2 j
q )

p(σ̃1|ρj−1
q ,ω2 j

q )
, with ρj−1 and ρ∗ being

the draw at the (j − 1)th iteration and the proposed draw, respectively.

3 The DSGE Model

The economy is described by a medium-scale New Keynesian model with price and

wage rigidities, capital accumulation, investment adjustment costs, variable capital

utilization, and habit formation. The model is based on work of Smets and Wouters

(2003), Smets and Wouters (2007), and Christiano et al. (2005). The specific version

is taken from Del Negro et al. (2007), except for the monetary policy rule. We further

consider an extension in which we add credit frictions to this framework, following

the “financial accelerator” model described in Bernanke et al. (1999). The actual

implementation of the credit frictions follows closely that of Christiano et al. (2009).

For brevity we only present the log-linearized equilibrium conditions and refer the

reader to the above referenced papers for the derivation of these conditions from
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assumptions on preferences and technologies. All variables that appear subsequently

are expressed as log-deviations from this steady state.

Firms. The economy is populated by a continuum of firms that combine capital

and labor to produce differentiated intermediate goods. These firms have access to

the same Cobb-Douglas production function with capital elasticity α and total factor

productivity Zt. Total factor productivity is assumed to be non-stationary, and its

growth rate zt = ln(Zt/Zt−1) follows the autoregressive process

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (19)

Output, consumption, investment, capital, and the real wage can be detrended by

Zt. In terms of the detrended variables the model has a well-defined steady state.

The intermediate goods producers hire labor and rent capital in competitive

markets and face identical real wages, wt, and rental rates for capital, rkt . Cost

minimization implies that all firms produce with the same capital-labor ratio

kt − Lt = wt − rkt (20)

and have marginal costs

mct = (1− α)wt + αrkt . (21)

The intermediate goods producers sell their output to perfectly competitive final

good producers, which aggregate the inputs according to a CES function. Profit

maximization of the final good producers implies the following demand curve

yt(j)− yt = −
(

1 +
1

λfe
λ̃f,t

)
(pt(j)− pt). (22)

Here yt(j)− yt and pt(j)− pt are quantity and price for good j relative to quantity

and price of the final good. The price pt of the final good is determined from a zero-

profit condition for the final good producers. We assume that the price elasticity of

the intermediate goods is time-varying. Since this price elasticity affects the mark-

up that intermediate goods producers can charge over marginal costs, we refer to

λ̃f,t as mark-up shock. Following Calvo (1983), we assume that in every period a

fraction of the intermediate goods producers ζp is unable to re-optimize their prices.
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A fraction ιp of these firms adjust their prices mechanically according to lagged

inflation, while the remaining fraction 1− ιp adjusts to steady state inflation π∗. All

other firms choose prices to maximize the expected discounted sum of future profits,

which leads to the Phillips curve:

πt =
β

1 + ιpβ
IEt[πt+1] +

ιp
1 + ιpβ

πt−1 +
(1− ζpβ)(1− ζp)
ζp(1 + ιpβ)

mct +
1

ζp
λf,t, (23)

where πt is inflation and β is the discount rate. Our assumption on the behavior

of firms that are unable to re-optimize their prices implies the absence of price

dispersion in the steady state. As a consequence, we obtain a log-linearized aggregate

production function of the form

yt = (1− α)Lt + αkt. (24)

Equations (21), (20), and (24) imply that the labor share lsht equals marginal costs

in terms of log-deviations: lsht = mct.

There is a representative, competitive, capital producer who produces capital

by combining existing capital (purchased from the households at the nominal price

Qkt ) with investment (bought from final goods producers) into new capital and then

sell it to the households. Optimal investment satisfies the first-order condition:

it =
1

1 + β

[
it−1 − zt

]
+

β

1 + β
IEt[it+1] +

1

(1 + β)S′′e2γ
qkt + µt, (25)

where it is investment, and µt is a stochastic disturbance to the price of installed

capital relative to consumption. Investment in our model is subject to adjustment

costs, and S′′ denotes the second derivative of the investment adjustment cost func-

tion at steady state.

Households. There is a continuum of households with identical preferences,

which are separable in consumption, leisure, and real money balances. Households’

preferences display (internal) habit formation in consumption, that is, period t util-

ity is a function of ln(Ct−hCt−1), where Ct is the level of consumption. Households

supply monopolistically differentiated labor services. These services are aggregated

according to a CES function that leads to a demand elasticity 1 + 1/λw (see Equa-

tion (22)). The composite labor services are then supplied to the intermediate goods
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producers at real wage wt. To introduce nominal wage rigidity, we assume that in

each period a fraction ζw of households is unable to re-optimize their wages. A

fraction ιw of these households adjust their t − 1 nominal wage by πt−1e
γ , where

γ represents the average growth rate of the economy, while the remaining fraction

1 − ιp adjusts to steady state wage growth π∗eγ . All other households re-optimize

their wages. First-order conditions imply that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + zt+1 − ιwπt

]
+

1− ζwβ
1 + νl(1 + λw)/λw

(
νlLt − wt − ξt +

1

1− ζwβ
φt

)
, (26)

where w̃t is the optimal real wage relative to the real wage for aggregate labor

services, wt, and νl would be the inverse Frisch labor supply elasticity in a model

without wage rigidity (ζw = 0) and differentiated labor. Moreover, ξt denotes the

marginal utility of consumption defined below and φt is a preference shock that

affects the intratemporal substitution between consumption and leisure. The real

wage paid by intermediate goods producers evolves according to

wt = wt−1 − πt − zt + ιwπt−1 +
1− ζw
ζw

w̃t. (27)

Households are able to insure the idiosyncratic wage adjustment shocks with

state contingent claims. As a consequence they all share the same marginal utility

of consumption ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + zt+1] + heγ(ct−1 − zt), (28)

where ct is consumption. In addition to state-contingent claims households accu-

mulate three types of assets: one-period nominal bonds that yield the return Rt,

capital k̄t, and real money balances.1

The first order condition with respect to bond holdings delivers the standard

Euler equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[zt+1]. (29)

1Since preferences for real money balances are assumed to be additively separable and monetary

policy is conducted through a nominal interest rate feedback rule, money is block exogenous and

we will not use the households’ money demand equation in our empirical analysis.
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Households sell existing capital to capital producers (after depreciation) and

purchase new capital from them, which is then rented to the intermediate-goods

firms. Capital accumulates according to the law of motion

k̄t = (2− eγ − δ)
[
k̄t−1 − zt

]
+ (eγ + δ − 1)

[
it + S′′e2γ(1 + β)µt

]
, (30)

where δ is the depreciation rate of capital. The price of capital evolves according

to:

qkt = βe−γ(1− δ)IEt
[
qkt+1

]
+ IEt

[
(1− (1− δ)βe−γ)rkt+1 − (Rt − πt+1)

]
. (31)

Capital utilization ut is variable and rkt in the previous equation represents the rental

rate of effective capital

kt = ut + k̄t−1 − zt. (32)

The optimal degree of utilization is determined by

ut =
rk∗
a′′
rkt . (33)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at

the steady state utilization rate. The aggregate resource constraint is given by:

yt = (1 + g∗)

[
c∗
y∗
ct +

i∗
y∗

(
it +

rk∗
eγ − 1 + δ

ut

)]
+ gt, (34)

where c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-

output ratios, respectively, and g∗/(1 + g∗) corresponds to the government share

of aggregate output. The process gt can be interpreted as exogenous government

spending shock. It is assumed that fiscal policy is passive in the sense that the

government uses lump-sum taxes to satisfy its period budget constraint. Finally,

all stochastic processes described above are assumed to be AR(1) processes with

normally distributed errors.

The government. The central bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1

(
π4q
t − π∗t

)
+ ψ2y

4q
t

)
+ σrεR,t, (35)

where Rt and π4q
t represent the interest rate and 4-quarter inflation (in deviations

from steady state inflation), respectively, and y4q
t is the 4-quarter growth rate of
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output (in deviations from steady state growth rate), π∗t is a time-varying inflation

target that evolves according to the law of motion

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t, (36)

and εR,t is an i.i.d. shock.

Including financial frictions. We add to this model credit frictions as in

Christiano et al. (2009). In order to that we change the ownership of capital from

the households to entrepreneurs. In particular, we now consider a continuum of

entrepreneurs. Each entrepreneur buys installed capital from the capital producers

at the end of period t−1 using her own net worth and a loan from the banking sector.

In the next period she rents capital out to firms, earning a rental rate per unit of

effective capital. In period t she is subject to an i.i.d. (across entrepreneurs and

over time) shock that increases or shrinks her capital. In addition, after observing

the shock she can choose a level of utilization by paying a cost in terms of general

output. At the end of period t the entrepreneurs sells undepreciated capital to the

capital producers. Because now we have entrepreneurs holding capital, the evolution

of the value of capital in (31) needs to be replaced with

ˆ̃Rkt − πt =
rk∗

rk∗ + 1− δ
r̂kt +

1− δ
rk∗ + 1− δ

q̂kt − q̂kt−1, (37)

where ˆ̃Rkt is the entrepreneur’s nominal return on capital — which in the baseline

model without credit frictions is equal to the risk free nominal interest rate.

Because banks cannot observe the individual realizations of the entrepreneur’s

shock. However, in case of default by the entrepreneur the bank will pay for mon-

itoring costs and extract a fraction of remaining value of the entrepreneur’s assets.

Banks pool their loans in such a way that the expected return on the full portfolio

of loans equals their opportunity cost — the interest rate paid on deposits from the

households, which in turn equals the risk free rate in the economy. The optimal

debt contract in this environment implies a spread between the expected return on

capital and the risk free rate given by

IEt

[
ˆ̃Rkt+1 − R̂t

]
= ζsp,b

(
q̂kt + ˆ̄kt − n̂t

)
+ σ̃ω,t, (38)



This Version: February 14, 2012 15

where n̂t is entrepreneur’s net-worth,
(
q̂kt + ˆ̄kt − n̂t

)
is a measure of entrepreneur’s

leverage, and σ̃ω,t is a shock to the volatility of the idiosyncratic shock to each

entrepreneur (the higher this parameter the higher the expected fraction of en-

trepreneurs that default, everything else constant). We label it as spread shock and

assume that it follows a stationary AR(1) process.

A fraction 1 − γ∗ of entrepreneurs exits the economy and fraction γ∗ survives

to continue operating for another period. A fraction of the total net worth owned

by exiting entrepreneurs is consumed upon exit and the remaining fraction of their

networth is transferred as a lump sum to the households. Each period new en-

trepreneurs enter and receive a net worth transfer. Because this transfer is small,

this exit and entry process ensures that entrepreneurs do not accumulate enough net

worth to escape the financial frictions. Aggregate entrepreneurs’ net worth evolves

accordingly as:

n̂t = ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂t−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζn,nn̂t−1

−γ∗
v∗
n∗
ẑt − ζn,σ̃ω σ̃ω,t−1, (39)

where the coefficients (ζn,R̃k , ζn,R, ζn,n, ζn,σ̃ω) are all functions of standard parame-

ters in the baseline model and (γ∗, F̄ , ζsp,b), with F̄ denoting the steady state fraction

of entrepreneurs that default. We calibrate the first two of these non-standard pa-

rameters and estimate the latter one, which controls how important is the endoge-

nous relationship between the real economy and the degree of financial frictions,

expressed in terms of the spread between the return on capital and the risk free rate

in the economy.

State-Space Representation of the DSGE Model. We use the method in

Sims (2002) to solve the log-linear approximation of the DSGE model. We collect

all the DSGE model parameters in the vector θ, stack the structural shocks in the

vector εt, and derive a state-space representation for our vector of observables yt,

which is composed of the transition equation:

st = T (θ)st−1 +R(θ)εt, (40)
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which summarizes the evolution of the states st, and of the measurement equations:

yt = Z(θ)st +D(θ), (41)

which maps the states onto the vector of observables yt, where D(θ) represents the

vector of steady state values for these observables. Specifically, for our standard set

of macro time series the set of measurement equations is:

Real output growth (%, annualized)

400(lnRGDPt − lnRGDPt−1) = 400(yt − yt−1 + zt) + γ

Hours (%)

100 lnLt = 100(Lt + lnLadj)

Labor Share (%)

100 lnLSHt = 100(Lt + wt − ŷt + ln lsh∗)

Inflation (%,annualized)

400(lnPt − lnPt−1) = 400πt + π∗

Interest Rates (%,annualized)

400 lnRt = 400Rt +R∗,

(42)

where RGDPt, Lt, LSHt, Pt, and Rt represent real per capita GDP, total per

capita hours, the labor share, the price level, and the interest rate, respectively.2

The quantities γ, π∗, and R∗ are the annualized (in percent) steady state real output

growth, inflation, and nominal interest rate, respectively, lsh∗ is the steady states

of the labor share and the parameter Ladj captures the units of measured hours (it

can be viewed as a re-parameterization of the steady state associated with the time-

varying preference parameter φt that appears in the households’ utility function).

As a measure of inflation we use the core personal consumption expenditure (PCE)

2Relative to Smets and Wouters (2007) we use the labor share as opposed to growth in wages,

both because it contains level information relative to wages, which among other things allows

us to estimate the capital share, and because it provides a measure of real marginal costs, a

key variable for inflation in New Keynesian models. We also choose to exclude consumption and

investment. Del Negro et al. (2007) find that the non-stationarity of the great ratios involving

consumption and investment is one of the main sources of misspecification of DSGE models. Such

misspecification may in principle “pollute” the outcome of the model comparison done in this paper.

Since consumption and investment as observables do not necessarily play a key role in the exercise

at hand we therefore chose to exclude them. Del Negro and Schorfheide (2008), a paper about

model comparison, take the same route.
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price index. Appendix A.1 provides further details on the data. In our benchmark

specification we use 97 quarters of data spanning the post-Volcker disinflation period:

1984Q2 to 2008Q2.

Whenever we consider the extended model with credit frictions, the set of equa-

tions (42) is augmented to include:

SPt = SP∗ + 400IEt

[
ˆ̃Rkt+1 − R̂t

]
, (43)

where SPt is the annualized spread between the Baa bond rate yield and the 10-year

Treasury yield, and SP∗ the annualized steady state level of the spread.

4 Results

4.1 Prior and Posterior for the DSGE Parameters

Table 1 shows the priors for the DSGE model parameters. The top panel shows

the prior for the the nominal rigidities parameters, dp and dw. We depart from the

literature and form a prior in terms of the expected duration of no-change spells,

as opposed to the standard parameterization in terms of ζp and ζw, the probability

of not being able to adjust prices (or wages). We do that because when the usual

prior, which is expressed in terms of a Beta distribution with a domain in the (0, 1)

interval, is either very informative or allows for very long durations that are at odds

with the data. This is because of the nonlinearity of the mapping between ζ and

d, which is d = 1
1−ζ . As ζ approaches one d goes to infinity. Therefore a relatively

flat prior on the (0, 1) interval, such as the one used by Smets and Wouters (2007),

puts non negligible mass on very high durations. We choose a Gamma prior on dp

and dw with mean 3 and standard deviation 1, which at least for prices is broadly

consistent with the empirical micro-level literature.

The next panel shows the prior for the the policy rule parameters, namely the

responses of interest rates to inflation (ψ1) and economic activity (ψ2) – 4-quarter
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output growth in the baseline specification – in the policy rule, persistence (ρr),

and steady state inflation target (π∗). The prior on π∗ is centered using pre-sample

information on inflation, as in Del Negro and Schorfheide (2008). The prior on ψ1

and ψ2 are centered at 2 and .2 respectively, and imply a fairly strong response

to inflation and a moderate response to output. Priors on variance of i.i.d. policy

shocks σr is centered at .15. In general the priors on the standard deviations of the

shocks are chosen so that overall variance of endogenous variables is roughly close to

that observed in the pre-sample 1959Q3-1984Q1, informally following the approach

in Del Negro and Schorfheide (2008).

Priors on remaining parameters are shown in the bottom panel of Table 1. The

priors on “Endogenous Propagation and Steady State” are all chosen as in Del Negro

and Schorfheide (2008). Specifically, the prior for the habit persistence parameter

h is centered at 0.7, which is the value used by Boldrin et al. (2001). The prior

for a′′ implies that in response to a 1% increase in the return to capital, utilization

rates rise by 0.1 to 0.3%. These numbers are considerably smaller than the one

used by Christiano et al. (2005). For the model with credit frictions the key new

parameters are the elasticity of the spread with respect to the leverage, ζsp,b, the

survival rate for the entrepreneurs, γ∗, and the steady state default rate, F̄ . The last

two are calibrated while the former is estimated. Following Gilchrist et al. (2009),

we set γ∗ to 0.99. We set F̄ to imply an annualized default rate of 3%, as in Bernanke

et al. (1999). The prior for the spread elasticity, ζsp,b, is a beta distribution with

mean 0.05 (as in Bernanke et al. (1999)) and standard deviation of 0.02. The steady

state spread has a Gaussian prior with mean 2 and standard deviation of 0.5, in

annual percentage terms.

We again depart from the literature and form a prior on the persistence of shocks

in terms of the half life of the shock h, as opposed to the standard autocorrelation

coefficient ρ. We do that for three reasons. First, half-lives are in our view more

easily interpretable than autocorrelation coefficients. Second, the usual prior, which

is expressed in terms of a Beta distribution with a domain in the (0, 1) interval,
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is either very informative or allows for very long half-livesthat are at odds with

the data. Specifically, a relatively flat prior on the (0, 1) interval, such as the one

used by Smets and Wouters (2007), puts non negligible mass on extremely high

half-lives. Third, from a computational perspective if the shock is very persistent

the estimated value of ρ is close to the boundary, and that creates computational

issues in the MCMC procedure used to obtain draws from the posterior. No such

boundary problems arise when the parameter is expressed in terms of the half-life

of the shock. We choose a Gamma prior with mean 6 and standard deviation of

5.8. The prior for the standard deviations of the shocks is quite flat, and the mean

is chosen so to produce standard deviations of the observables that are not at odds

with those observed in the data.

Table 2 presents the posterior mean for the standard parameters of the DSGE

model for the different specifications with Gaussian shocks, Student-t distributed

shocks, stochastic volatility, and both.

4.2 Evidence against Gaussianity

In this section we offer some evidence in support of the hypothesis of fat tails for

the shocks. It is generally agreed that financial crises are not very common but

when they do take place they can be very disruptive with significant increases in

interest rate spreads and subsequent disruptions in economic activity. Therefore we

use the model with credit frictions to extract the smoothed shocks over the sample

period under the assumption of Gausianity, and search for evidence of whether that

assumption is validated. Figure 1 shows the absolute value of the smoothed shocks

over the sample period (with solid line representing the median, dotted lines the

90% bands, and the grey vertical shades marking NBER recession periods).

In the top panel we show this for shocks to entrepreneurial risk. It is remarkable

that there are nine instances in the sample in which the absolute deviation is higher

than two standard deviations, with one instance reaching as high as nearly seven
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standard deviations. Furthermore the mean of the excess kurtosis across draws is 13,

which would be equivalent to a Student-t distribution with 4.5 degrees of freedom —

highly suggestive of fat tails and far from what the Gaussian assumption. Confirming

the idea that big financial shocks are associated with big disruptions in the economic

activity, the biggest deviations coincide with NBER recessions.

The question is then whether this is a characteristic intrinsic to financial shocks,

or whether it also applies to the innovations to the other exogenous disturbances

in the model. We thus show in the bottom panel of figure 1 the absolute value

of the smoothed shocks to the interest rate rule, which we label as policy shocks.

Once more there are several instances with deviations far in excess of two standard

deviations, even if fewer than in the previous case. The mean excess kurtosis is 4.2,

which would be equivalent to a Student-t distribution with 5.4 degrees of freedom.

Interestingly in the case of policy shocks the biggest deviations occur in periods

in which there are an abnormal number of large deviations, with larger shocks in

the late 70s and early 80s. This suggests a possible trend in the sequence of shocks,

which may be due to slow-moving time-varying volatility as opposed to rare but

large shocks — in the case of entrepreneurial risk shocks the large deviations appear

to be more sporadic, hence less prone to a trend. In the next section we discuss

in depth the role of Student-t distributed shocks vis-a-vis slow-moving stochastic

volatility.

4.3 Fat Tails and Stochastic Volatility

In the previous section we showed some evidence of rare large shocks and time

varying volatility based on historical shocks extracted from standard gaussian es-

timation. In this section we conduct a horse-race between models estimated with

Student-t distributed shocks and/or stochastic volatility. Table 4 shows the log

marginal likelihood for the different shock assumptions for both the baseline (Panel

A) and financial frictions (Panel B). For each model we consider specifications with

and without stochastic volatility (time-varying σq,t) and with different prior means
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for the degrees of freedom of the Student-t distributed component of the shocks

(with λq =∞ being the gaussian case). 3

The main result to take out of this table is that in the financial frictions model

the data strongly favors the assumption of Student-t distributed shocks vis-a-vis the

Gaussian assumption. Furthermore, whether we complement that with stochastic

volatility or not does not change the fit substantially. In the Baseline model there is

strong evidence in favor of Student-t distributed shocks with and without stochastic

volatility. In this case the fit is improved if we have both rather than only one of

these features.

In the financial frictions model the fit improves as we reduce the prior mean

on the degrees of freedom for the Student-t distributed component of the shocks

and this leads to a gain of 170 log-points in the case without stochastic volatility

and about 55 log-points in the case with stochastic volatility. In this case the fit is

better with Student-t distributed shocks alone, rather than combined with stochastic

volatility, which may be related to the significant uncertainty in the estimation of

the stochastic volatility component for several of the shocks.

In order to understand these results, Table 5 shows the posterior mean of the

degrees of freedom for the Student-t distributed component of each shock in the

specifications with and without stochastic volatility.4 In the model with financial

frictions (Panel B) we get relatively low posterior means for the degrees of freedom,

especially if we do not consider stochastic volatility. In this case we get several

shocks with very low degree of freedom and none deviates significantly from the

prior mean on the upside. Even if we consider stochastic volatility in the shocks,

we still have a similar pattern, with the highest posterior mean at 7.5 for the leisure

shock.

3The reason why we consider different prior means is that the scope for the degrees of freedom

is very large and the prior mean choice does affect the posterior shape to some extent.
4In this table we show only the results with the prior mean for each model that leads to the

best fit for each model: prior mean of 6 degrees of freedom for the model with financial frictions

and prior mean of 9 degrees of freedom for the baseline model.
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Importantly the shocks to the spread have very fat tails even when we allow

for stochastic volatility (posterior mean of 2.9). This confirms the idea that shocks

originating in the financial sector are not very frequent but can nevertheless be

very large. On the other hand, the monetary policy shocks are estimated with fat

tails in the absence of stochastic volatility but less so when we allow for the two to

coexist — the posterior mean of the degrees of freedom of the Student-t distributed

component change from 2.5 to 7.2.

It is intuitive to expect some reduction in the degree of fat tails in the shocks once

we also consider stochastic volatility. However, it is less obvious how to interpret

the result that once we add Student-t distributed shocks the stochastic volatility no

longer seems to further improve the fit of the model. In order to understand this we

show in Figure ?? two panels with the absolute value of the smoothed shock history

for the spread shock, for the estimation with Student-t distributed shocks (but no

stochastic volatility). The first panel shows the shock itself (in absolute value), |εt|,

while the second panel shows the absolute value of |ηt| = |h̃1/2
t εt|, which we refer

to as the “tamed” shocks. This latter one is the residual shock once the Student-t

distributed component is removed. In the first panel there is strong evidence in favor

some form of time varying volatility, whether rare shocks of stochastic volatility.

Once we remove the rare shocks’ component the residual no longer exhibits that

much evidence of time variation in the shock size. This may suggest that once

Student-t distributed shocks are considered, there is not too much a of a role for

stochastic volatility.

The fact that rare shocks appear to expunge stochastic volatility from its role in

explaining spread shocks does not mean that it applies to all types of shocks. Figure

?? also shows a similar comparison but for the shock to the monetary policy rule.

In this case the Student-t distributed shock component surely reduced the degree of

time variation in the innovations to monetary policy, but the residual still exhibit

fairly strong evidence of slow moving stochastic volatility with higher volatility in

the 1970s and early 1980s and lower afterwards.

Given the marginal likelihood results shown in Table 4 it looks like there are
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more shock types similar to the spread shock than to the monetary policy shock,

so that all in all the data does not see enough evidence of slow moving stochastic

volatility on top of rare shocks to justify adding that component to all shocks. (One

may wonder that a better specification would be to consider stochastic volatility

only for some shocks but not for all of them.)

So far we showed some evidence, based on the Student-t distributed shock es-

timation that once we consider rare shocks, the (slow moving) stochastic volatility

component for some shocks is no longer obviously useful in fitting the data. What

is left to check is how much does that component actually change if we consider first

the stochastic volatility estimation and then the stochastic volatility with rare large

shocks estimation. Figures 3 present the results for the spread and monetary policy

shocks, respectively. In each case we compare the cases with and without Student-t

distributed shocks.

In the case of the spread shock, shown in Figure 3, allowing for a Student-

t distributed component in the shock strips the stochastic volatility component of

some of the high frequency movements. Furthermore notice that there is substantial

uncertainty around the median, suggesting that once we account for rare large shocks

there is scant evidence of a stochastic volatility component.

In the case of the monetary policy shock, the two panels are more similar. The

only difference is the scale, with the presence of Student-t distributed shocks reduc-

ing the scale of the peak in volatility in the 1970s, suggesting that this period had

both large shocks and persistent shocks as well. The fact that the stochastic volatil-

ity retains its pattern is consistent with our previous conjecture that for monetary

policy shocks there is some evidence that we need stochastic volatility.

For other shocks the results are more mixed, but in general the stochastic volatil-

ity component is estimated with significant uncertainty, which may suggest why the

overall fit — as measured by the marginal likelihood — is higher in the case with

Student-t distributed shocks and no stochastic volatility.
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4.4 Do Fat Tails Matter for the Macroeconomy?

We have so far run a horse race between Student-t distributed shocks and stochastic

volatility with the former coming on top in terms of fit for this particular model.

Now the question is how important is this for the description of the data. In order to

get to this we first notice that the evidence in favor of rare large shocks is especially

strong for the financial frictions model and the the spread shock in particular shows

very strong evidence of rare large shocks. Therefore the obvious next step is to judge

how important is this particular shock for the economy.

Figure 4 shows the contribution of the spread shocks to the history of GDP

growth and hours worked. The black line shows the evolution of these variables

in deviations from the steady state, and the vertical bars show in each period the

median contribution of spread shocks to that variable at that point in time (whether

the shock originated in that period or before). In other words, it is the counterfactual

evolution of these variables if we were to shut down all other shocks. What we

observe from this figure is that the spread shock explains a large part of the recent

contraction throughout the Great Recession, which is widely attributed to financial

conditions disruptions. In the rest of the sample there is less evidence of its role.

However, there is some non-negligible contribution of this shock to the contractions

of these variables in both the 1974 and 1981.

Another way to evaluate how important are Student-t distributed shocks is to

run another counterfactual experiment. In this case we extract the shocks hitting the

economy and then eliminate the Student-t distributed component from them so that

we get the evolution of these variables in the absence of rare large shocks. Figure 5

shows this counterfactual for the same two variables, GDP growth and hours worked.

The black line is the actual data and the pink line is the counterfactual evolution

of the variables in the absence of rare large shocks.

In the case of GDP growth (top panel), the two lines are fairly similar. However,

the peaks and troughs (especially the latter) are much more tame in the absence of

the Student-t distributed component, especially obvious in the three contractions in
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which the spread is especially important: 1974, 1981 and 2008-2009. In particular,

in the absence of the Student-t distributed component, the “great recession” would

not be that much worse than the 1991 recession.

When it comes to hours worked, the Student-t distributed component explains

a large share of the fluctuations, especially in explaining the downturns. This is

very clear for the period from 1975-1985 and then from 2001-2009. The first was

the period of large shocks to the monetary policy rule and the latter the financial

crisis, both of which the Student-t distributed shocks capture fairly well.

5 Conclusions

To be written
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A Appendix

A.1 Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We

compile observations for the variables that appear in the measurement equation (42).

Real output is obtained by dividing the nominal series (GDP) by population 16 years

and older (LN16N), and deflating using the chained-price GDP deflator (JGDP).

We compute quarter-to-quarter output growth as log difference of real GDP per

capita and multiply the growth rates by 400 to convert them into annualized per-

centages. Our measure of hours worked is computed by taking total hours worked

reported in the National Income and Product Accounts (NIPA), which is at annual

frequency, and interpolating it using growth rates computed from hours of all per-

sons in the non-farm business sector (LXNFH). We divide hours worked by LN16N

to convert them into per capita terms. We then take the log of the series multi-

plied by 100 so that all figures can be interpreted as percentage changes in hours

worked. The labor share is computed by dividing total compensation of employees

(YCOMP) obtained from the NIPA by nominal GDP. We then take the log of the

labor share multiplied by 100. Inflation rates are defined as log differences of the

personal consumption expenditure (PCE) core price index (JCXFE) and converted

into annualized percentages. The nominal rate corresponds to the effective Federal

Funds Rate (FFED), also in percent. The spread is extracted by taking the differ-

ence between the Baa bond yield (FBAA) and the 10-year treasury yield (FCM10),

annualized and in percentages.

A.2 Marginal likelihood

The marginal likelihood is the marginal probability of the observed data, and is

computed as the integral of (12) with respect to the unobserved parameters and
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latent variables:

p(y1:T ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)

p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω

2
1:q̄)p(θ)

d(s1:T , ε1:T , h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, θ),

=
∫
p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2

1:q̄)

p(λ1:q̄)p(ω
2
1:q̄)p(θ)d(h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄, θ)

(44)

where the quantity

p(y1:T |h̃1:T , σ̃1:T , θ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)

p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )

is computed at step 1a of the Gibb-sampler described above.

We obtain the marginal likelihood using Geweke (1999)’s modified harmonic

mean method. If f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄) is any distribution with support con-

tained in the support of the posterior density such that∫
f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄) · d(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄) = 1,

it follows from the definition of the posterior density that:

1
p(y1:T ) =

∫ f(θ,h̃1:T ,σ̃1:T ,λ1:q̄ ,ρ1:q̄ ,ω2
1:q̄)

p(y1:T |h̃1:T ,σ̃1:T ,θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

p(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄|y1:T ) · d(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄)

We follow Justiniano and Primiceri (2008) in choosing

f(θ, h̃1:T ) = f(θ) · p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω

2
1:q̄), (45)

where f(θ) is a truncate multivariate distribution as proposed by Geweke (1999).

Hence we approximate the marginal likelihood as:

p̂(y1:T ) =

 1

nsim

nsim∑
j=1

f(θj)

p(y1:T |h̃j1:T , σ̃
j
1:T , θ

j)p(θj)

−1

(46)

where θj , h̃j1:T , and σ̃j1:T are draws from the posterior distribution, and nsim is the

total number of draws. We are aware of the problems with (45), namely that it does

not ensure that the random variable

f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄)

p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)
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has finite variance. Nonetheless, like Justiniano and Primiceri (2008) we found that

this method delivers very similar results across different chains.

A.3 Drawing the stochastic volatilities

We draw the stochastic volatilities using the procedure in Kim et al. (1998), which

we briefly describe. Taking squares and then logs of (3) one obtains:

ε∗q,t = 2σ̃q,t + η∗q,t (47)

where

ε∗q,t = log(σ−2
q h̃q,tε

2
q,t + c), (48)

c = .001 being an offset constant, and η∗q,t = log(η2
q,t). If η∗q,t were normally dis-

tributed, σq,1:T could be drawn using standard methods for state-space systems.

In fact, η∗q,t is distributed as a log(χ2
1). Kim et al. (1998) address this problem

by approximating the log(χ2
1) with a mixture of normals, that is, expressing the

distribution of η∗q,t as:

p(η∗q,t) =
K∑
k=1

π∗kN (m∗k − 1.2704, ν∗ 2
k ) (49)

The parameters that optimize this approximation, namely {π∗k,m∗k, ν∗k}Kk=1 and K,

are given in Kim et al. (1998). Note that these parameters are independent of the

specific application. The mixture of normals can be equivalently expressed as:

η∗q,t|ςq,t = k ∼ N (m∗k − 1.2704, ν∗ 2
k ), P r(si,t = k) = π∗k. (50)

Hence step (4) of the Gibbs sampler actually consists in two steps:

(4.1) Draw from p(ς1:T |σ̃1:T , ε1:T , h̃1:T , s1:Tλ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) using (49) for each q.

Specifically:

Pr{ςq,t = k|σ̃1:T , ε1:T , h̃1:T . . . } ∝ π∗kν−1
k exp

[
− 1

2ν∗ 2
k

(η∗q,t −m∗k + 1.2704)2

]
.

(51)

where from (47) η∗q,t = ε∗q,t − 2σ̃q,t.
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(4.2) Draw from p(σ̃1:T |ς1:T , ε1:T , h̃1:T , s1:Tλ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) using Durbin and Koop-

man (2002), where (47) is the measurement equation and (8) is the transition

equation.

Note that in principle we should make it explicit that we condition on ς1:T in the

other steps of the Gibbs sampler as well. In practice, all other conditional distribu-

tions do not depend on ς1:T , hence we omit the term for simplicity.
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Table 1: Priors on DSGE Model Parameters

Parameter Domain Density Para (1) Para (2) 5% 95%

Nominal Rigidities

dp [0,1) Gamma 3.000 1.000 1.390 4.549
dw [0,1) Gamma 3.000 1.000 1.418 4.548

Policy
ψ1 R+ Gamma 2.00 0.25 1.590 2.407
ψ2 R+ Gamma 0.20 0.10 0.046 0.346
ρr [0,1) Beta 0.50 0.200 0.170 0.827
π∗ R Normal 2.004 0.991 0.370 3.646
σr R+ InvGamma 0.150 4.000 0.080 0.298
hπ∗ R+ Gamma 40.00 5.000 31.630 47.954
σπ∗ R+ InvGamma 0.03 7.000 0.019 0.048

Endogenous Propagation and Steady State
α [0,1) Beta 0.330 0.020 0.297 0.363
s′ ′ R+ Gamma 4 1.500 1.592 6.304
h [0,1) Beta 0.700 0.150 0.471 0.946
a′ R+ Gamma 0.200 0.100 0.045 0.346
νl R+ Gamma 1.000 0.250 0.591 1.395
ζsp [0,1) Beta 0.051 0.019 0.023 0.082
r∗ R+ Gamma 1.5 1 0.106 2.883
γ R+ Gamma 2.000 0.750 0.822 3.162
g∗ R+ Gamma 0.300 0.100 0.143 0.459
spr∗ R+ Gamma 2.000 0.249 1.579 2.394

Exogenous Processes
hz R+ Gamma 6.000 5.800 0.100 13.676
hφ R+ Gamma 6.000 5.800 0.100 13.676
hλf R+ Gamma 6.000 5.800 0.100 13.676
hµ R+ Gamma 6.000 5.800 0.100 13.676
hg R+ Gamma 6.000 5.800 0.100 13.676
hσw R+ Gamma 6.000 5.800 0.100 13.676
σz R+ InvGamma 0.300 4.000 0.158 0.592
σφ R+ InvGamma 8.000 4.000 4.280 15.775
σλf R+ InvGamma 0.200 4.000 0.105 0.395
σµ R+ InvGamma 0.750 4.000 0.399 1.481
σg R+ InvGamma 0.500 4.000 0.271 0.999
σσw R+ Gamma .050 4.000 0.026 0.099

Notes: Para (1) and Para (2) correspond to means and standard deviations for the Beta, Gamma, and Nor-

mal distributions and to s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The last two columns report the 5th and 95th quintile of the prior distribution.
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Table 2: Posterior Means of the DSGE Model Parameters

Prior Posterior Mean

Parameter Mean Std.Dev. Gaussian TD SV SV+TD

α 0.330 0.020 0.335 0.337 0.336 0.337
dp 3.000 1.000 7.393 7.387 7.360 7.520
S′′ 4.000 1.500 3.157 2.971 3.554 2.738
h 0.700 0.150 0.697 0.778 0.732 0.728
a′′ 0.200 0.100 0.300 0.328 0.292 0.319
νl 1.000 0.250 1.917 2.023 2.074 2.192
dw 3.000 1.000 11.065 9.568 10.583 9.617
r∗ 1.750 0.250 1.303 1.394 1.442 1.349
ψ1 2.000 0.250 2.012 2.641 2.432 2.357
ψ2 0.200 0.100 0.170 0.159 0.166 0.170
ρr 0.500 0.200 0.599 0.642 0.602 0.621
π∗ 2.000 1.000 4.304 4.190 4.175 4.247
spr∗ 2.000 0.250 1.465 1.204 1.629 1.266
ζsp 0.050 0.020 0.063 0.066 0.042 0.067
γ 2.000 0.750 1.298 1.410 1.741 1.431
g∗ 0.300 0.020 0.298 0.299 0.297 0.297
Ladj 253.500 5.000 232.135 228.346 236.055 228.186
hz 6.000 5.800 1.091 1.274 1.148 1.159
hφ 6.000 5.800 0.600 0.583 0.591 0.560
hπ∗ 40.000 5.000 41.063 39.402 41.089 40.676
hλf 6.000 5.800 0.739 0.754 0.818 0.644
hµ 6.000 5.800 27.284 19.329 21.013 21.010
hg 6.000 5.800 16.126 17.008 15.126 16.971
hsigw 6.000 5.800 28.526 28.480 21.206 26.445
σz 0.300 4.000 1.053 0.903 1.060 0.846
σφ 8.000 4.000 3.924 3.679 3.584 3.428
σπ∗ 0.030 7.000 0.046 0.053 0.058 0.048
σλf 0.200 4.000 0.099 0.089 0.091 0.087
σµ 0.750 4.000 0.351 0.346 0.385 0.336
σg 0.500 4.000 0.250 0.211 0.236 0.211
σr 0.200 4.000 0.259 0.115 0.077 0.078
σsigw 0.050 4.000 0.081 0.043 0.089 0.035

Notes: We consider a prior mean of 6 degrees of freedom for the Student-t distributed component. The

stochastic volatility component assumes a prior mean for the size of the shocks to volatility of (0.01)2.
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Table 3: Marginal Likelihoods

Baseline

Post-84 sample

Financial Frictions

Post-84 sample, with Spreads

Gaussian Shocks

-681.78 -716.26

Student-t distributed Shocks

λ = 15 -679.00 -690.29

λ = 9 -676.43 -683.02

λ = 6 -678.49 -677.45

Notes: The parameter λ represents the degrees of freedom in the Student-t distribution. The marginal

likelihoods of the Baseline and Financial Frictions models are not comparable, as the set of observables is

different.
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Table 4: Marginal Likelihoods

Panel A: Baseline Model

No Stoch. Vol. S.Vol. (ω2 = (0.01)2)

Gaussian -1503.944 -1423.765

Student-t (λq prior mean 9) -1428.752 -1404.383

Student-t (λq prior mean 6) -1424.361 -1411.316

Panel B: Financial Frictions Model

No Stoch. Vol. S.Vol. (ω2 = (0.01)2) S.Vol. (ω2 = (0.06)2)

Gaussian -1586.542 -1531.557 -1505.186

Student-t (λq prior mean 9) -1422.333 -1446.649 -1456.306

Student-t (λq prior mean 6) -1416.991 -1427.833 -1449.519

Notes: The parameter λ represents the degrees of freedom in the Student-t distribution. The marginal

likelihoods of the Baseline and Financial Frictions models are not comparable, as the set of observables is

different.
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Table 5: Student’s t Degrees of Freedom Posterior Mean

Panel A: Baseline Model

z φ λf µ g r

Student-t 7.00 6.14 9.04 7.09 9.36 4.00

SV + Student-t 8.61 5.69 10.99 9.72 9.96 11.24

Panel B: Financial Frictions Model

z φ λf µ g r σω

Student-t 6.14 7.12 6.59 5.14 6.95 2.49 2.64

SV + Student-t 6.08 7.50 6.46 5.49 6.81 7.17 2.88

Notes: Specifications shown with degrees of freedom’s prior mean of 9 for the Baseline model, and 6 for the

Financial Frictions model.
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Figure 1: Smoothed Shocks under Gaussianity (Absolute Value, Standardized)
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Figure 2: Shocks and “Tamed” Shocks (Absolute Value, Standardized)
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Notes: Estimation with Student-t distribution with λ = 6 of the Financial Frictions Model. The solid line is

the median, and the dashed lines are the posterior 90% bands. Shocks are expressed in units of the standard

deviation σq .
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Figure 3: Shocks (Absolute Values) and Smoothed stochastic volatility component,

σqσq,t
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Notes: Estimation with Student-t distribution with λ = 6 of the Financial Frictions Model. The solid line

is the median, and the dashed lines are the posterior 90% bands.
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Figure 4: Contribution of the spread shock to output and hours worked fluctuations,

Financial Frictions Model, estimation with Student-t distributed shocks.
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Notes: λ = 6. The black line is the historical deviations from the mean for the variable, and the pink line

is the median counterfactual evolution of the same variable if only spread shocks had taken place (shutting

down all other shocks).
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Figure 5: Counterfactual evolution of output and hours worked when the Student-

t distributed component is turned off, Financial Frictions Model, estimation with

Student-t distributed shocks.
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Notes: λ = 6. The black line is the historical evolution of the variable, and the pink line is the median

counterfactual evolution of the same variable if we shut down the Student-t distributed component of all

shocks.


