
 Rare Time Series Motif Discovery from

Unbounded Streams
Nurjahan Begum

UC Riverside

nbegu001@cs.ucr.edu

Eamonn Keogh
UC Riverside

eamonn@cs.ucr.edu

ABSTRACT

The detection of time series motifs, which are approximately

repeated subsequences in time series streams, has been shown to

have great utility as a subroutine in many higher-level data

mining algorithms. However, this detection becomes much

harder in cases where the motifs of interest are vanishingly rare

or when faced with a never-ending stream of data. In this work

we investigate algorithms to find such rare motifs. We

demonstrate that under reasonable assumptions we must

abandon any hope of an exact solution to the motif problem as it

is normally defined; however, we introduce algorithms that

allow us to solve the underlying problem with high probability.

Keywords
Motif Discovery, Time Series, Streaming Data

1. INTRODUCTION
Time series motifs are approximately repeated patterns found

within a longer time series. Since their definition a decade ago

[18], dozens of researchers have used them to support higher-

level data mining tasks such as clustering, classification,

dictionary learning [5], visualization, rule discovery and

anomaly detection [25]. While the original time series motif

discovery algorithm was an approximate algorithm, the recently

introduced MK algorithm provides a scalable exact solution

[25]. For a user-defined length of interest, the MK algorithm

finds the pair of non-overlapping subsequences that have the

minimal Euclidean distance to each other. The algorithm has

been further generalized to a limited streaming setting; it is now

possible to find and maintain the motif pair in a sliding window,

say the last k minutes, of a continuous stream [24].

In spite of recent progress in motif discovery, there are two

related situations for which there are currently no tractable

solutions. If the motifs are extremely rare, then it is extremely

unlikely that we will see two of them within k minutes of each

other, as assumed by [24]. Depending on data arrival rates and

the hardware platform used, k might be as large as 20 minutes.

However, as shown in Figure 1, we may be interested in finding

patterns that occur only once a month or less. If we ignore the

streaming case and assume that the m-datapoints are stored in

memory, we are still limited by the scalability of the current

fastest known algorithm [23][25], which is O(mlog(m)) with

high constants. For some of the datasets we wish to consider (cf.

Section 6.3), this would require decades of CPU time.

In this work we introduce an efficient framework that allows us

to solve such problems with very high probability. Our key

observation is based on an understanding of how motif

discovery is actually used in domains as diverse as

electroencephalography [25], entomology and nematology [5].

Figure 1: A never-ending time series stream from a

weather station’s solar panel [2], only a fraction of which

we can buffer. A pattern we are observing now seems to

have also occurred about four months ago.

It is important to recognize that the narrowly defined time series

motif pair discovery problem as defined in [25] is really a proxy

problem for the underlying task of finding more generally

repeating patterns. For example, suppose that there are ten

examples of an unknown repeated behavior in a dataset with ten

million items, and we wish to discover them. We could employ

the MK algorithm, which would find the pair from the ten

patterns that are the minimum distance apart, and then use a

quick linear scan to find the other eight patterns. Indeed, this is

suggested in [25]. Note, however, that it would suffice for our

purposes to find any two of the ten repeated patterns; we do not

really need the smallest distance pair, or any specified pair. This

is a simple but important observation, because it allows us to

succeed if we find any one of 45 pairs, clearly a much easier

task. As we shall show, this slightly relaxed assumption allows

us to solve problems that are otherwise intractable, and to

discover repeated patterns in unbounded streams. The patterns

discovered by our algorithm can serve as an input to higher-

order algorithms that do semi-supervised learning [11], or look

for changes in the frequencies of the discovered patterns that

may signal anomalous behavior [18] etc.

2. DEFINITIONS AND NOTATION
In order to concretely state the problem at hand, we will define

the key terms used. We begin with a definition of our data type

of interest, time series:

Definition 1 Time Series: A time series TS = ts1, ts2, ...,tsm is an

ordered set of m real-valued variables, where tsm is the most

recent value.

We are only interested in the local properties of a time series;

thus, we confine our interest to subsections of the time series,

which are called subsequences:

Definition 2 Subsequences: Given a time series TS of length m,

a subsequence of TS is a sampling of length l ≤ m of contiguous

(Four months

omitted)

3 days ago 2 days ago now131 days ago 129 days ago 127 days ago : : : : :
0

20

40

Solar Panel

Current (mA)

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 41st International Conference on Very

Large Data Bases, August 31st - September 4th, 2015, Kohala Coast, Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 2

Copyright 2014 VLDB Endowment 2150-8097/14/10

149

positions from TS starting from position i. Formally, TSi,l = tsi,

tsi+1...tsi+l-1 for 1 ≤ i ≤ m-l+1.

The subsequences from a time series are extracted by the use of

a sliding window:

Definition 3 Sliding Window: For a time series TS of length m,

and a user-defined subsequence of length n, all possible

subsequences of TS can be found by sliding a window of size n

across TS.

It is well understood in the literature that (with very rare and

well-defined exceptions) it is meaningless to compare time

series unless they are z-normalized [15][18] .

Definition 4 Z-normalized Subsequence: If the values of a

time series subsequence TSP have an approximately zero mean

with standard deviation (and variance) in a range close to one,

then TSP is called a z-normalized subsequence.

A common task associated with subsequences is to determine if

a given subsequence is similar to other subsequences under

some distance measure. This notion is formalized in the

definition of a match:

Definition 5 Match: Given a positive real number T (called

threshold) and a time series TS containing subsequences TSP

and TSQ beginning at position P and Q, respectively, if D(TSP,

TSQ) ≤ T, then TSQ is called a matching subsequence of TSP.

These notations are summarized in Figure 2. The obvious

definition of a match is necessary to formally define a trivial

match. Clearly, the best matches to a subsequence tend to be

located one or two points to the left or the right of the

subsequence in question. Almost all algorithms need to exclude

such trivial solutions. The concrete definition is given below:

Definition 6 Trivial Match: Given a time series TS containing

subsequences TSP and TSQ beginning at position P and Q,

respectively, TSQ is a trivial match to TSP if either P = Q or a

subsequence TSQ
’ beginning at Q’ such that D(TSP, TSQ

’) > R

and either Q < Q’ < P or P < Q’ < Q does not exist.

We are now in a position to define objects, which are non-

overlapping subsequences from a time series stream:

Definition 7 Object: Given a time series TS = (ts1, ts2, ...,tsm)

two objects of length l are subsequences (TSi,l, TSj,l) of TS such

that 1 ≤ i ≤ i + l-1 < j ≤ m-l.

The reason we consider only non-overlapping subsequences is to

avoid trivial matches, which must be excluded to define the

success condition of our problem.

To measure the distance between objects, we use the ubiquitous

Euclidean distance measure [1][8]:

Definition 8 Euclidean Distance: Given two time series (or

time series subsequences) TSP and TSQ, both of length m, the

Euclidean distance between them is the square root of the sum

of the squared differences between each pair of the

corresponding data points:

The reader may imagine that using the Dynamic Time Warping

(DTW) distance measure could produce better results for the

task at hand. However, this is not the case. As shown in [25], for

time series objects which are very similar (suggestive of these

being motifs), the values of Euclidean distance and DTW must

be very tightly related. Given this, we use the ubiquitous

Euclidean distance measure for calculating the similarity

between the time series patterns [9][14][22][23]. We are now in

a position to give a concrete problem statement.

3. PROBLEM DEFINITION
Assume we are given a never-ending time series stream S that

mostly produces instances of patternless data in R, and with

some low probability p, instances of an unknown pattern in G

(we will define patternless later). As shown in our running

example in Figure 2, items in G appear visually similar to each

other, but are not perfectly similar. Our goal is simply to detect

an instance in G as early as possible.

Figure 2: A never-ending time series stream S produces

mostly patternless data in R, and with very low

probability, instances in G.

Note that our problem is to detect instances in G as early as

possible; but we are not interested in testing the significance of

these instances. Our algorithm is designed to be a subroutine for

higher level algorithms, and the ranking of the patterns in G in

terms of significance can be done by these algorithms [6][7][13].

Further note that we are assuming that we are given the lengths

of the patterns-of-interest by domain experts, an assumption

which is typical in the data mining community [5][13][22][30].

However, recent work by [23] shows that this assumption can be

relaxed with little overhead.

Note that we assume there is no explicit test to check if a pattern

is in G. Concretely, patterns in G have statistical properties that

are also typical of data in R. Thus, the defining assumption of

this work is that the only way we can tell if an item is in G is to

note that it is sufficiently similar to another item also suspected

to be from G, which we call a match (cf. Definition 5).

More formally, we assume a distance threshold T such that:

 Any two objects, where at least one is not in G, are unlikely

to have a distance < T.

 Any two instances in G are likely to have a distance < T.

The former point is essentially an informal definition of

patternless, but must come with a caveat. As R approaches

infinity (recall we have an unbounded stream) and given that we

are dealing with z-normalized objects, the space of possible

shapes of a time series will eventually be exhausted and R must

eventually produce two instances that are less than the threshold

apart. Thus, the assumption of the existence of a distance

threshold T discussed above is relative to a sample size of S that

is approximately w, the amount of memory we can devote to this

task (measured in the number of instances that can be stored).

The threshold T may be given to us in the form of domain

knowledge, or we may have to learn it from the data (cf. [33]).

This idea is illustrated in Figure 3.

Figure 3: DG and DR represent the all-pair distance

distributions of the patterns in G and R, respectively. The

distance threshold T represents the boundary that

10 days ago 8 days ago 6 days ago 4 days ago 2 days ago now

S
R

G

T

Raw space distances
P(false dismissals)P(false positives)

A
C

B

D

DG DR

0

150

separates the decision whether the two patterns in

question belong to G or not.

Note that the two distributions here are Gaussian. This is often

the case for real data (cf. Figure 10 and Figure 12), and we adopt

this assumption for ease of exposition. We note, however, that

generalizations to other distributions are trivial. We further note

that for illustration purposes, the DR distribution is only slightly

larger than the distribution DG; however, in the problems we

wish to deal with, we expect the prior probability of the patterns

in R (i.e., 1-p) to be many orders of magnitude larger.

Finally, a critical observation from Figure 3 is that the two

distributions overlap. Thus, no matter what value of T we have,

we must deal with some probability of error. In particular, two

types of error can occur:

 The region marked C is proportional to the probability that

we will falsely believe that two patterns from R that happen

to be similar are exemplars from G.

 The region denoted D is proportional to the probability that

two exemplars that are from G will not be identified as

such because they happen to be farther apart than average.

For real-world problems we expect the area of C + D to be much

smaller than that illustrated in Figure 3. Obviously, we can

adjust the threshold based on our relative tolerance for each type

of error. This relative tolerance itself may depend on the

application [13].

We are finally in a position to formally define the task at hand:

Problem Statement: Given an unbounded time series stream S

that mostly produces instances in R, but with some very low

probability p, produces instances of an unknown pattern in G,

and a user-defined distance threshold T, detect and return an

instance in G such that the expected number of instances in S

seen is minimized.

For example, recall our running example shown in Figure 1 and

Figure 2. The distinctive pattern (shown colored/bold)

consisting of a smooth “dump” with a “dropout” near the center,
appears to have been caused by the shadow of a pole falling on

the solar panel during a rare cloudless day. Such patterns occur

five or six times a year (at that location), so if we wait long

enough we will probably see two close together, perhaps even

on consecutive days. However our task is to discover such

patterns as soon as possible, independent of when/how often,

they occur.

3.1 A Brute Force Algorithm
Given the assumptions above, a trivial algorithm suggests itself.

We can simply keep the first k items of S in memory, and then,

when the kth + 1 item arrives, we compare it to all k items

currently stored and report “current item is a member
of G” if we find that D(k + 1, j) < T and j < k + 1.

Note that this algorithm has some probability of making a type I

or type II error, but this is intrinsic to our assumptions, and no

algorithm can do better.

This brute force algorithm is clearly optimal, but also clearly

untenable. We are assuming that S is an infinite stream, and p is

a very small number. Thus, we will eventually run out of space

to store items, or the time needed to make all the comparisons.

We can at least mitigate the time complexity of the naïve

algorithm using off-the-shelf dynamic indexing techniques

(recall that because we are dealing with real-valued high

dimensional objects, we cannot avail of the O(1) equality tests

available to the discrete analogue problems) [10]. Therefore, we

concern ourselves here with the more difficult resource

limitation: space constraints.

3.2 Brute Force with Limited Memory
In our problem setting, we assume that we must work with C, a

cache of a fixed size w. Here, w is the number of instances that

can be stored in main memory. Note that while taking the

distances of the cached patterns, we only consider patterns

which are not trivial matches (cf. Definition 6) to each other (cf.

Section 2).

It is clear that the performance of any cache-based algorithm

depends critically on the size of the cache. Consider the two

following special cases. If w = ∞, then the cache-based

algorithm is as good as the trivial algorithm discussed above. If

w = 2, then the probability of an instance in G being in the cache

as another instance in G arrives is just p, and we will typically

have to wait a very long time before reporting success.

Given this observation, our metric of success can be seen as the

expected number of objects seen from S before detecting an

object in G. We are now in a position to give a derivation of this

metric, which we discuss in the next section.

3.2.1 Derivation of the Success Metric
In order to derive the theoretical model for the success metric,

we denote the number of objects that must be seen from S before

reporting success, .

By definition, at each time step, S produces an instance in G

with probability p. By the time we detect an instance in G, the

elements in C may or may not experience cache replacement(s).

Case 1: No cache replacement

Consider the case when there has not been any cache

replacement by the time we report success. In order to find the

probability of success, we denote the number of objects

observed from S until the first and second instances in G are in

C by  and ,respectively.

Each i is a geometric random variable with success probability

p. Because there has not been any cache replacement when we

report success, the probability of having the first two instances

in G be in C is: .

Case 2: Cache replacement

Now consider the case when there has been cache replacement

at least once. After discarding an element from the cache, the

remaining w-1 elements in the cache can be in either of the

following two categories:

Category 1: All of the w-1 patterns in C are instances in R.

The probability of this event is: .

Category 2: All but one of the w-1 patterns in C are

instances in R. The probability of this event is: .
We can report success if and only if the wth pattern to be inserted

into C is in G, and the previous w-1 patterns in C belong to

Category 2. Therefore, the probability of the success event is: .

151

If the patterns in C are such that no two of them are instances in

G, then we call it a failure event. We describe the probabilities

of this event below:

If the wth pattern to be inserted into C is in R, and the previous

w-1 patterns in C belong to Category 2, then the probability of

the failure event is: .

If the wth pattern to be inserted into C is in R, and the previous

w-1 patterns in C belong to Category 1, then the probability of

the failure event is: .

If the wth pattern to be inserted into C is in G, and the previous

w-1 patterns in C belong to Category 1, then the probability of

the failure event is: .

Given this analysis, the probability of having the first two

instances in G be in C is: .
Based on the analyses above, becomes: (1)

Therefore, after seeing n objects in S¸ the probability of failing

to detect an instance in G is: . Given this,

the probability of success after observing n instances in S is: .

More generally, Figure 4 shows the relationship between cache

size and the number of items seen before detecting an instance

in G, under the following concrete assumptions. One in a

hundred objects in S belongs to G; everything else belongs to R.

We further assume (just for this toy example) that the moment

we have two instances in G in the cache, we can unambiguously

detect that fact.

From Figure 4 we observe that if w = 20, then we have to see

about 2,857 objects to have a 0.99 probability of correctly

identifying an instance in G. As w gets larger, the number of

objects needed to reach this 0.99 probability threshold decreases,

but we can clearly see diminishing returns. Using a cache size

five times larger only reduces the number of objects we need to

see to about 918 objects, and moving to an arbitrarily large

cache size (w = ∞) further improves this down to about 227. For
comparison, with w = 2, the 0.99 probability is not reached until

we have seen 46,049 objects (this value is truncated from Figure

4 for clarity).

Note that our toy example considers the case when p = 0.01;

however, we expect to deal with real-world problems in which p

may be several orders of magnitude smaller. Such values of p

will “stretch” the x-axis, but our core observations about the

diminishing returns properties remain.

Figure 4: The number of objects that must be seen to

find a pattern in G, for different cache sizes w, with a

desired probability of success. The 0.99 probability is

highlighted with a horizontal dashed line.

Also note that we have not stated which cache replacement

policy we used in Figure 4. As we shall show below, the two

most obvious candidates, First-In-First-Out (FIFO) and Random

Replacement (RR), both correspond to this analysis.

3.3 Analysis of Cache Replacement Policies
Two obvious cache replacement policies are First-In-First-Out

(FIFO) and Random Replacement (RR) [28]. As the names

suggest, in FIFO, the oldest object in the cache is discarded at

each time step, whereas in RR, the object to be discarded is

selected randomly. Note that the FIFO replacement policy is

vulnerable to an adversarial case [3]. Imagine a version of our

problem in which S produces instances in G at uniform time

instances. If the number of objects produced by S after an

instance in G is greater than or equal to w-1, then we can never

detect an instance in G using the FIFO cache replacement

policy. The obvious solution to mitigate such a problem is to use

randomization, which is often used in algorithms to avoid such

pathological cases [21]. It is important to note that this

adversarial worst case is not pathologically unlikely. For

example, some manufacturing machines may produce a special

pattern as the machine is recalibrated during a shift change,

every eight hours. A FIFO policy with a cache size of seven

hours would never discover this pattern.

Using the analysis in Section 3.2, we can more formally define

the metric of success for our problem. For the case without any

cache replacement, the number of objects observed from S until

two instances in G are in C, i.e., is a negative binomial

random variable. We define as .

Because the expectation of a sum of random variables is the sum

of their expectations, we have: (Recall from Section 3.2, each i is a

geometric random variable with success probability p).

Therefore, if w >= 2/p, we expect no cache replacement.

For the case with at least one cache replacement, E() depends

on the number of objects seen from S immediately before the

cache replacement,replacement’, and after the cache

replacement(s),replacement, until we report finding a pattern in

G. replacement’ is simply w, and replacement is a geometric random

variable with success probability as in Equation 1.

Therefore, for this case, . Similar to our

observation about the case without cache replacement, if w <

2/p, we expect cache replacement(s) to occur.

In Figure 5 we show that the expected number of elements seen

from S before detecting an instance in G (our success metric

stated in Section 3.2) decreases with increasing cache size. In

addition to this, Figure 5 shows how closely the success metric

agrees with the empirical results for both of our candidate cache

replacement policies.

As Figure 5 suggests, the larger the cache is, the fewer objects in

S we can expect to see before detecting a pattern in G. This

observation does not seem directly exploitable, as the cache size

is a domain constraint. However, as we will show in Section 4,

we can “virtually” increase the cache size by changing the
representation of the data.

0 1000 2000 3000 4000 5000 6000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.991

w = 2

w = 20

w = 100
w = ∞

Number of objects seen before detecting an instance in G

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

152

Figure 5: The experimentally-determined success metric

for FIFO and RR policies closely agrees with the

theoretically-derived metric for a wide range of values of w.

3.4 A Magic Sticky Cache
The analysis in Section 3.3 shows that for a fixed w, the more

objects we see, the higher the probability is of detecting an

instance in G. Given w and p, we can predict the performance

using the analysis in Section 3.3. The results show that a larger

cache size helps improve the performance. Beyond making the

cache size larger, is there any other way we could improve the

performance?

To answer this question, we can perform a gedankenexperiment.

Imagine for a moment that we could “magically” control the
discard probabilities of the patterns in G and R from the cache,

such that patterns from G tend to “stick” in the cache for longer.
In particular, imagine we somehow can discard items in R with,

say, a 50 or 100 times greater probability than items in G. This

would improve the chances of an item from G remaining in the

cache as a new G exemplar arrives, and thus improve . This

intuition is illustrated with an experiment shown in Figure 6.

As we can see, making the cache “stickier” for items that might

be in G significantly improves our chance of detecting an

instance in G. However, it is not clear yet how we could imbue

the cache with this ability.

To summarize: The ideas in this section suggest two possible

approaches (which are not necessarily exhaustive or mutually

exclusive) that we can consider for improving the performance

in our problem:

Figure 6: The red/bold line here is identical to the w = 20

line in Figure 4. If we could somehow increase the

probability of discarding an element from R we would

obtain a significant improvement

 Find a cache replacement policy that minimizes the

probability of discarding instances in G as opposed to

instances in R= S - G (cf. Figure 6);

 Change the representation of the data, such that we can fit

more objects into C. This implicitly improves the

probability of keeping an instance of G in the cache (cf.

Figure 4 and Figure 5).

In the next section, we explore the latter idea, and in Section 5

we discuss the former idea.

4. DATA REPRESENTATION POLICY

4.1 Initial Observation
Recall from Figure 5 that the larger the cache is, the higher the

probability is of detecting an instance in G. We can emulate the

effect of a larger cache by changing the representation of the

data. Compressing or downsampling the data allows more

objects to fit in the cache; we can thus expect to detect an

instance in G sooner than in the raw space.

This idea requires some careful consideration. While time series

data is typically amiable to lossless compression techniques such

as delta encoding or Lempel Ziv, such methods require

decompression before the Euclidean distance calculations, and

are thus more suited to archiving data. They would clearly

introduce an intractable overhead for a fast-moving stream,

where we would have to (re)decompress each instance at every

cache insertion.

Downsampling (or equivalently, lossy compression) avoids this

problem, but introduces a new issue we must deal with. From

Figure 7, we can see that changing the representation of the data

inevitably changes the distances between objects.

Figure 7: top) DG and DR are identical to the all-pair

distance distributions of the patterns in G and R,

respectively, in Figure 3. bottom) After downsampling

the data, the new distance distributions (DGN and DRN)

and the new threshold TN shift left.

If we consider only orthonormal transformations (DFT, DWT,

SVD, etc.), the distances between any pairs of objects can only

be reduced [1]. Because of this lower-bounding property, the

distributions in Figure 7.top) can only shift to the left (Figure

7.bottom). As a consequence, the distance threshold T can also

only shift left in the approximate space (TN).

Note, however, that we cannot say how the overlapping area of

the distance distributions will change – because either of the

distribution’s standard deviations could increase, decrease, or

remain the same (Figure 7.bottom), therefore, the area C + D

could also change arbitrarily. In practice, however, this area

always increases, and in the next section we show how to

incorporate this into our cost model.

4.2 Cost Model
It is important to note that in our problem definition, of the two

errors we can make while detecting an instance in G, one

“hurts” more than the other. This is because if we falsely miss
two exemplars in G, then we still have the hope of detecting an

22
0

1000

2000

3000

4000

23
24

25 26 27 28 29

Cache size

E
x
p
ec

te
d
 n

u
m

b
er

 o
f

el
em

en
ts

p
ro

ce
ss

ed
 b

ef
o

re
 d

et
ec

ti
n
g
 a

p
at

te
rn

 i
n
 G

Random Replacement

FIFO

Analytical

(It is nearly impossible to discern

any difference in the three lines

in this plot. This is, of course, the

point of this figure)

0 300 600 900 1200 1500

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.991

P100 = Probability of discarding an element

from R is 100 times greater

P50 = Probability of discarding an element

from R is 50 times greater

P1 = Probability of discarding an element

from R is equal to the probability of

discarding an element from G

P100
P50

P1

P
ro

b
ab

il
it
y

 o
f

su
cc

es
s

Number of objects seen before detecting an instance in G

T

Raw space distances
P(false dismissals)P(false positives)

A
C

B

D

DG DR

0

TN

Approximate space distances
P(false dismissals)P(false positives)

DGN
DRN

0

A
C

B
D

153

instance in G in the future. However, if we mistakenly say two

exemplars are in G, when in fact at least one is in R, then we

can never detect two instances in G, as we immediately stop our

search. Of course, we could adapt our definition such that we do

not actually stop, perhaps buffering the tentative motif and

continuing the search. However, the tentative motif must be

examined by a human or algorithm at some point [13]. Thus,

these false positives do have an inescapable cost [13].

Given this observation, we can design a cost model in which we

fix the probability that we mistakenly claim two patterns to be in

G (area C in Figure 7). This fixing results in an increasing

tendency of the probability of falsely dismissing two true

patterns in G (area D in Figure 7) as we downsample the data.

As a consequence, the probability that two patterns in the cache

are believed to be from G tends to decrease. We defer the

calculations of these probabilities until Section 4.2.1. However,

Figure 8 shows an empirical illustration of this observation.

Figure 8: left) When downsampling, the probability of

falsely dismissing two instances in G tends to increase if

we fix the probability that two cache patterns are

claimed to be in G by mistake. right) Consequently, the

probability that two patterns in the cache are believed to

be from G tends to decrease.

From Figure 8.left) we can see that if we fix the probability that

two patterns in C are falsely identified to be in G, then as we

downsample more, the probability of the false dismissals of two

cached patterns in G tends to increase. As a consequence, the

probability that two cached patterns are potential candidates in

G tends to decrease (Figure 8.right).

We are now in a position to describe the derivation of these

probabilities and to formally define the ‘costs’ involved.

4.2.1 Cost Calculation
Assume that we know the distance threshold T in the raw space,

which can come either from user input or from a threshold

learning model (cf. [33]). Further assume that we know the

means (,) and standard deviations (,) of both of

the distance distributions in Figure 7.top. Given these, we can

calculate the standard score of T corresponding to each of these

distributions as below:

Using the standard normal probability table, we can calculate the

area to the left of zFalse Positive, which is the probability of

mistakenly claiming two patterns to be in G. Similarly, we can

calculate the area to the right of zFalse Dismissal, which is the

probability of falsely dismissing two true patterns in G. In

Figure 7.top, these errors are represented as shaded areas labeled

C and D, respectively. From now on, we will refer to these

errors as α and β, respectively.

Given these two error probabilities, Figure 3 illustrates that the

probability that two cached patterns are believed to be

exemplars in G is:

 . (2)

As noted above, we fix α to be a constant independent of the

downsampling rate. Therefore, the probability of falsely

dismissing two true patterns in G in this space becomes greater.

We illustrate this error as the shaded area D in Figure 7.bottom.

We call this error βN, and calculate it as follows.

From the fixed α, we can calculate zFalse Positive. Using this zFalse

Positive, we can calculate TN (cf. Figure 7.bottom) as below:
where and are the mean and standard deviation of the

distance distribution in Figure 7.bottom.

We can calculate the standard score of TN corresponding to the

distribution in Figure 7.bottom as:

Using the standard normal probability table, we can calculate the

area to the right of zN, which is βN. β and βN correspond to the

probabilities shown in Figure 8.left) for the original and

downsampled spaces, respectively.

From the areas A, B, C and D in Figure 7.bottom), we can

calculate the probability that two cached patterns are believed to

be exemplars in G, using equation 2. and

correspond to the probabilities shown in Figure 8.right) for the

original and downsampled spaces, respectively.

More generally, Figure 9 shows the relationship between a

‘virtually’ large cache made by downsampling the data and the
number of objects we expect to see before reporting success,

under the following conditions. We make a synthetic dataset of

two classes, G and R, by distorting an instance of Gun point and

FaceAll datasets [16], respectively, with some Gaussian noise.

We assume the rareness of the patterns in G is 1/100 and our

cache is allowed to store just two patterns in raw format. Under

the assumption that we can unambiguously detect instances in

G, we show the expected number of objects we need to see

before reporting success in Figure 9.left).

Figure 9: left) The help factor: A larger cache allows

faster detection of instances in G. center) The hurt factor:

The greater the downsampling, the slower the detection.

right) The performance of the overall system is based on

the influence of these two factors, with downsample

factors of 2 to 4 performing best.

As noted above, due to downsampling the data, we can no

longer identify instances in G unambiguously; therefore, we

detect two instances in G with probability pG. Because we fix

the false positive error probability, the probability of falsely

dismissing true instances in G tends to increase as we

downsample more (Figure 8.left). This increased probability of

false dismissals of the patterns in G results in a decreasing

tendency of pG (Figure 8.right). As a consequence, we expect to

4 8 12 16

0.7

0.8

0.9

1

1

P
ro

b
a
b

il
it

y
 o

f
fa

ls
e
ly

 d
is

m
is

si
n
g

tw
o

 p
a
tt

e
rn

s
in

 G

Downsample Factor

0.02

0.06

0.1

0.14

0.18

4 8 12 161
Downsample Factor

P
ro

b
a
b

il
it

y
 t
h

a
t
th

e
 c

a
ch

e
h

a
s

tw
o

 p
o

te
n

ti
al

 c
an

d
id

at
es

 i
n

 G

E
x

p
e
c
te

d
 n

u
m

b
e
r

o
f

o
b

je
c
ts

 p
ro

c
e
ss

e
d

b
e
fo

re
 d

e
te

c
ti

n
g
 a

 p
a
tt

e
rn

 i
n

 G

Cache Size
2 6 10 14

0

10000

20000

30000

40000

7
Downsample Factor

1 3 5 2 6 10 14
Cache Size

7

Downsample Factor

1 3 5

154

see an increase in the expected number of objects in S we

examine before detecting an instance in G. This effect is

illustrated in Figure 9.center).

If we review these two observations: A larger cache allows

faster detection of an instance in G and A “larger” cache
(emulated by downsampling) causes slower detection of an

instance in G given the higher probability of not recognizing a

pair from G, they suggest that there must be a cache size that

maximizes this tradeoff, i.e., .
In Figure 9.right), this cache size is achieved with downsample

factors from two to four.

There are two important observations we must make before

moving on. First, note that the cache size that maximizes this

tradeoff has a fairly wide “valley,” suggesting that this
parameter is not too sensitive. Second, while the best

downsampling factor depends on the data and its sampling rate,

it can be robustly learned on a small amount of training data.

That is to say, if we find that the best downsampling factor for

one person’s electrooculography data at 1024Hz is about eight
to ten, we can expect this to generalize well to other individuals.

4.3 Dimensionality Reduction
In our simple analysis in the previous section, we assumed that

we placed more objects into the cache by downsampling.

However, the reader will appreciate that there are more

sophisticated dimensionality and cardinality reduction

techniques to reduce the size of a time series. Indeed, the

literature is replete with dimensionality reduction techniques,

such as Singular Value Decomposition (SVD), Discrete Fourier

Transform (DFT), Discrete Wavelet Transform (DWT), and

Piecewise Aggregate Approximation (PAA) [31]. Here we

consider PAA as the dimensionality reduction technique,

because it is simple, incrementally computable and has linear

time complexity [14]. We note that PAA and DWT are logically

identical if both the original and reduced dimensionality are

integer powers of two, and nearly identical otherwise [14].

Recall our observation in Figure 7; in Figure 10 we demonstrate

that we get a similar shifting of the distance distributions under

PAA as downsampling.

Figure 10: top) The all-pair distance distributions of the

patterns in G and R in the raw space. bottom) After

reducing the dimensionality by an integer factor of 5, the

new distance distributions shift left.

As noted in Section 3.3, a larger cache size allows faster

detection of a pattern in G, and dimensionality reduction

emulates the effect of a larger cache. But as described in Section

4.1, working in the dimensionality-reduced space also makes it

harder to determine if two objects in the cache belong to G.

Therefore, we should expect to see a similar “help and hurt”
effect as illustrated in Figure 9. To see this, in Figure 11 we

conducted a similar experiment on the same synthetic dataset in

Section 4.2.1 using PAA instead of downsampling.

Figure 11: help factor vs. hurt factor using PAA. The

tradeoff between both factors suggests that a

dimensionality reduction factor of about 10 is best here.

4.4 Cardinality Reduction
We use the SAX (Symbolic Aggregate Approximation) [18]

approach for cardinality reduction. This is because SAX is

unique in allowing a distance calculation in the symbolic space

that is commensurate with the Euclidean distance.

In Figure 12 we show that if we reduce the volume of time

series with cardinality reduction rather than dimensionality

reduction (cf. Figure 10), the distance distributions in the

approximate space do not shift to the left as much. This is a

promising sign that cardinality reduction might be a better

technique for the task at hand.

Figure 12: top) The all-pair distance distributions of the

patterns in G and R in the raw space. bottom) After

reducing only the cardinality of the data by a factor of 5

(6 bits), the new distance distributions shift left

(assuming the original data points are 32 bits).

As hinted at in the observation in Section 4.1, we get the similar

“help and hurt” behaviors after doing cardinality reduction on

the same synthetic dataset in Section 4.2.1. We illustrate this in

Figure 13.

Figure 13: The tradeoff between the help and hurt

factors using SAX suggests that a cardinality reduction

factor of about 8 is best.

We can now answer the following question: Of the three

techniques introduced to emulate a large cache, which is best?

To see this, we plot the results of the experiments in this section

on a single commensurate axis in Figure 14. We can see that

cardinality reduction gives the minimum value of the expected

number of objects we need to see before we report success.

Moreover, cardinality reduction has a very wide flat “valley,”

0 1 2 3

0 1 2 3

Euclidean Distances

PAA Distances

2 6 10 14 18 22
0

20

40k

1 3 5 7 9 11

Virtual Cache Size

Dimensionality Reduction

Factor

E
x

p
e
c
te

d
 n

u
m

b
e
r

o
f
o

b
je

c
ts

p
ro

c
e
s
se

d
 b

ef
o
re

 d
e
te

ct
in

g

a
 p

at
te

rn
 i
n

 G

0 1 2 3

0 1 2 3

Euclidean distances

SAX distances

2 4 16 32
0

20

40k

8

1 2 8 164

Virtual Cache Size

Cardinality Reduction Factor

E
x

p
e
c
te

d
 n

u
m

b
e
r

o
f o

b
je

c
ts

p
ro

c
e
s
se

d
 b

e
fo

re
 d

e
te

c
ti

n
g

a
 p

a
tt

e
rn

 in
 G

155

meaning a large range of parameter choices produces excellent

results.

Figure 14: Of the three data reduction techniques,

cardinality reduction dominates the other two over the

entire range of virtual cache sizes.

Note that these results are for a single dataset with a single

setting. However, many additional experiments (archived at

[33]) confirm this general behavior.

5. STICKY CACHE ALGORITHM

As hinted at in the thought experiment in Section 3.4, if we had

a ‘magic’ cache in which the potential instances in G tend to

remain for longer, the probability of early detection of an

instance in G increases significantly. In order to realize this idea,

we need to create a biased cache replacement policy that reduces

the probability of discarding potential G items from the cache as

opposed to instances in R. This seems to open a chicken-and-

egg paradox, as finding a pair of objects from G is our goal. In

this section we will show how we can use a Bloom filter [4] to

resolve this paradox.

A Bloom filter is a space-efficient randomized data structure (bit

array) to support membership queries with no false negative and

a small false positive probability [4]. It uses k independent hash

functions, each of which maps some set element to one of the m

bit positions of the array and sets the hashed bit positions. A

membership query takes an input element and feeds it to the k

hash functions to get k array positions. If any of the bit positions

is found to be 0, then the element is definitely not a set member;

otherwise, the element is probably a set member. Bloom filters

have been widely used in frequent pattern mining [17][27]. To

the best of our knowledge, this paper is the first work where

Bloom filters have been used for real-valued time series.

The high-level intuition behind our idea is as follows. For every

subsequence we see, we will use a Bloom filter to “remember”
seeing (a SAX representation of) it. Before inserting the SAX

word corresponding to the subsequence into the Bloom filter, we

check to see if we have already seen this SAX word. If we have,

this is suggestive that the subsequence may be from G. Given

that evidence, we should make sure that it “sticks” in the cache
longer than the subsequences we have only seen once.

There are some obvious caveats to this idea. Two SAX words

being identical does not guarantee that both original real-valued

sequences come from G, and two real-valued sequences that

come from G can map to different SAX words. However, as we

shall show, for reasonable SAX parameters false positives and

false negatives are rare, and a collision in the SAX space is

really highly predictive of membership in G.

Note that for this idea to work we actually need to see three

items from G. The first is inserted into the Bloom filter as with

all items. The second item collides with the first, which tells us

to store the real-valued version of the second item in the cache,

marked with low priority for deletion. Finally, when the third

item arrives it will be recognized to be within threshold T of the

second item, and we can report success.

The success of our method depends on finding reasonable values

for the two SAX parameters - word and alphabet size. This is

straightforward, so we relegate the discussion to [33].

5.1 Setting Appropriate Bloom Filter Size
As noted in Section 5, we require a biased cache replacement

policy to detect instances in G earlier. The Bloom filter tags

each instance in S as potential members in G or R. Based on

these tags, we make the potential instances in R ∑ times more

likely to be discarded from the cache than that of a potential

instance in G. It is important to note that ∑ is not a critical

parameter. Consider the two extreme situations. If ∑ = 1, then
the sticky cache policy degenerates to RR. In contrast, if ∑ = ∞,
the cache gets filled with potential instances in G, which results

in frequent flushes of the cache, and decreases the probability of

detecting instances in G. Note that the Bloom filter is not “free”;

therefore, we must use up a portion of C for it. As the reader will

appreciate, the two extreme choices of using almost all of C, or

almost none of C (thus essentially degenerating to RR), are

unlikely to perform well. The following analysis allows us to

derive the appropriate size allocation for the Bloom filter in C.

Assuming C can hold at most ρ instances of length λ each, then

the size of C in bytes is: 1. If we restrict C to hold

at most ρr instances (ρr ≤ ρ), and allocate the remaining space to

the Bloom filter, then the size of the Bloom filter in bytes

is: . Therefore, the number of

unique elements hashed into the Bloom filter is: 2.

Based on the analysis above, we perform an experiment in

which we vary the cache /Bloom filter allocation in C to identify

the region in which we obtain significant performance

improvement over the naive RR policy. We use a fixed buffer

which can hold at most 32 patterns each of length 150; thus, 38,400 bytes. We vary the number of cache elements/

Bloom filter allocation. From Figure 15 we can see that the

cache holding 8 to 12 patterns performs best and beyond this

allocation, the performance starts degrading.

Figure 15: For a fixed w = 38,400 bytes (32 patterns of

length 150), ∑ = 64, and p = 1/100, a cache allocation of

9,600 to 14,400 bytes (i.e., 8 to 12 patterns) performs

best.

The reader will have anticipated the following question: if we

exploit the performance improvement of the sticky cache in

addition to the cardinality reduction technique (the best

1 Each value of the time series takes 8 bytes.

2 9.58 bits per element for 1% FP probability of the Bloom filter.

16 20 24 300

4

8

12k

2 4 8 12

E
x
p

e
c

te
d
 n

u
m

b
e

r
o
f

o
b

je
c

ts

p
ro

c
e

ss
e

d
 b

e
fo

re
 d

et
e

ct
in

g

a
 p

a
tt

e
rn

 i
n
 G

Virtual Cache Size

4 6 8 10 12 14 16
50

250

450

E
x

p
e
c
te

d
 n

u
m

b
e
r

o
f
e
le

m
e
n
ts

s
e
e
n

 b
e
fo

re
 g

e
tt

in
g
 a

 h
it

Cache Size

22 19 16 14 12 10 0.4

Bloom Filter Size (K)

156

technique from Section 4.4), can we do even better? To see this,

we perform cardinality reduction of the patterns by a factor of 8

(the best reduction factor as of Figure 13), and redo the sticky

cache experiment. We plot the results of this experiment with

the other data reduction techniques in Section 4 with the same

setup and plot the results on a common axis in Figure 16.

Figure 16: Out of all optimization techniques we discuss,

the Sticky cache approach with a cardinality reduction

factor of eight performs best. See also Figure 14, which

shows a subset of this data.

In the next section we more formally describe the sticky cache

algorithm.

5.2 Algorithms
In order to elucidate our sticky cache framework, we first

explain how we use the Bloom filter in order to identify

potential instances in G. Later we describe the cache

maintenance policy.

5.2.1 Detection of Potential Target Instances
For a given alphabet size a and word size ω, we call the

probability that two instances in G and R will map to the same

SAX string pGsameSAXString(a,ω) and pRsameSAXString(a,ω), respectively.

As explained in Section 5.1, in order to exploit the Bloom filter

for detecting potential instances in G, we have to determine the

approximate SAX parameters so that pGsameString is maximized

and pRsameString is minimized. In Table 1, we describe the

algorithm.

Recall our assumption of the existence of a distance threshold as

a form of domain knowledge in Section 3. Based on this domain

knowledge, we form a buffer of instances in G in line 1. We

randomly sample patterns of the length of our interest from our

input time series in order to form a buffer of instances in R in

line 2. From lines 3-9, we determine the appropriate SAX

parameters using the scoring function outlined in [33].

Table 1: SAX Parameter Selection Algorithm

I
n
p
u
t

TS, the input time series
l, length of the subsequences
A, predefined set of SAX alphabet sizes
Ω, predefined set of SAX word sizes O

u
t
p
u

t
 a, the appropriate SAX alphabet size

ω, the appropriate SAX word size

1
2
3
4
5
6
7
8
9

GBuffer = formGbuffer(TS,l) //using domain knowledge
RBuffer = formRbuffer(TS,l) //by random sampling
for i = 1 to size(A)
 for j = 1 to size(Ω)
 pnormalizedGsameSAXString =findNormalizedProbability(GBuffer,i,j)
 pnormalizedRsameSAXString =findNormalizedProbability(RBuffer,i,j)
 end
end

(a,ω)=findMaxNormalizedScore(pnormalizedGsameSAXString,
pnormalizedRsameSAXString)

We are now in a position to use the Bloom filter in order to

detect potential instances in G. In Table 2, we outline the

algorithm.

Table 2: Potential Target Instance Selection Algorithm

I
n
p
u
t

TS, the input time series
subSeq, subsequence in question

a, the appropriate SAX alphabet size
ω, the appropriate SAX word size
∑S, likeliness factor of potential instances in R to be
 discarded from the cache

O
u
t
p
u
t

∑, weight of the potential instances in R

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

SAX_word = quantizeBySAX(subseq, a, ω);
bool exists = existsInBloomFilter(SAX_word)
if exists == true
 ∑ = 1
 return
else

 ∑ = ∑S;
 if saturatedBloomFilter()== false
 insertInBloomFilter(SAX_word)
 return;
 else
 flushBloomFilter()
 insertInBloomFilter(SAX_word)
 return
 endif
endif

In line 1, we quantize the input subsequence with the

appropriate SAX parameters we discovered in Table 1. We

check whether the discretized SAX word exists in the Bloom

filter in line 2. If the SAX word exists, then we mark it as a

potential instance in G and assign weight 1 (line 4). Otherwise,

the potential instances in R are assigned the weight that

determines how likely they are to be discarded from the cache

(line 7) and insert the word into the Bloom filter (lines 9 and

13). We check to see whether the Bloom filter is saturated or not

(lines 8 and 11). In case the filter is saturated, we flush it (line

12).

5.2.2 Cache Maintenance

Using the algorithm outlined above, we ‘tag’ the instances by a

user-defined factor, which determines the relative discard

probabilities for potential instances R and G. We describe the

algorithm in Table 3.

Table 3: Cache Maintenance Algorithm

I
n
p
u
t

subSeq, subsequence in question

w, size of the cache
C, the cache
∑, likeliness factor of subSeq to be discarded from
the cache
LikelinessBuffer, the buffer storing ∑

O
u
t
p
u
t

success, flag indicating successful cache insertion

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

if currentCacheElementCount ≤ w //underflow
 currentCacheElementCount++
 InsertInCache(subSeq, currentCacheElementCount)
 //insert ∑ in LikelinessBuffer
 InsertInLikelinessBuffer(∑,currentCacheElementCount)
 success = true
else //overflow
 //Pathological Situation 1
 //if all potential instances in G are in C
 if sum(LikelinessBuffer) == w
 flushBloomFilter()
 flushCache()
 flushLikelinessBuffer()
 currentCacheElementCount = 0
 InsertInCache(subSeq,1)//insert in first location
 InsertInLikelinessBuffer(∑,1)
 SAX_word= quantizeBySAX(subseq, a, ω)
 insertInBloomFilter(SAX_word)
 currentCacheElementCount++
 //Pathological Situation 2
 else if saturatedBloomFilter()==true
 flushBloomFilter()

0 50 100 150 200 250 300 350

100

1000

400E
x

p
e
c
te

d
 n

u
m

b
e
r
o

f
e
le

m
e
n

ts

se
e
n

 b
e
fo

re
 g

e
tt

in
g
 a

 h
it

Virtual Cache Size

Downsampling

Dimensionality

Reduction

Cardinality

Reduction

Cardinality

Reduction with Sticky cache

157

23
24
25
26
27
28
29
30
31
32
33

 currentCacheElementCount++
 InsertInCache(subSeq, currentCacheElementCount)
 InsertInLikelinessBuffer(∑,currentCacheElementCount)
 SAX_word= quantizeBySAX(subseq, a, ω)
 insertInBloomFilter(SAX_word)
 else
 loc = calculateCacheDiscardLocation(LikelinessBuffer)
 InsertInCache(subSeq, loc)
 InsertInLikelinessBuffer(∑,loc)
 endif
 success = true

If there is no cache overflow, we insert the subsequence into the

next available cache slot (lines 1-6). Otherwise, we check for

two pathological situations. If the cache is full of potential

instances in G (which is extremely unlikely to occur provided

that we have set a, ω properly), then we flush the cache, the

Bloom filter and the buffer storing the likeliness factor of each

cache element, and start from scratch (lines 10-19). We also

check for saturation of the Bloom filter, and if we find it, we

flush the Bloom filter (lines 21-22). Otherwise, we determine

the discard location based on the likeliness factors of the

elements and insert instances into the cache accordingly (lines

28-32). We describe the cache discard location algorithm in

Table 4.

Table 4: Cache Discard Location Calculation Algorithm

I
n
p
u
t

LikelinessBuffer, the buffer storing ∑

O
u
t
p
u
t

loc, cache discard location

1
2
3

4
5

ind = generateRandomIndex([1,sum(LikelinessBuffer)])
cumSumArray = cumulativeSum(LikelinessBuffer)
//find the first smallest index greater than or equal
//to ind in cumSumArray
loc = firstSmallestIndex(cumSumArray,ind)
return

We generate a random index between 1 and the total weight in

the LikelinessBuffer (line 1). We calculate the desired discard

location so that potential instances in R are ∑ times more likely

to be discarded (lines 2-4), and return.

6. EXPERIMENTAL EVALUATION

We begin by noting that all experiments (including all the

figures above) are completely reproducible. All experimental

code and data (and additional experiments omitted for brevity)

are archived in perpetuity at [33].

The goal of our experiments is to show that our algorithm is

more efficient than any obvious strawman technique, and that it

is not particularly sensitive to the parameter choices. In addition,

we show the utility of our approach with case studies on two

real-world datasets.

6.1 Rate of Detection
We begin by comparing our algorithm with the naive RR cache

replacement policy. RR is a simple, but highly effective

algorithm for many problems.

From the UCR archive we take examples of class 1 from the

MALLAT dataset [16] and consider them as target motifs. We

randomly embed these into a much longer random walk time

series with different occurrence probabilities, and our task is to

recover at least one matching pair as soon as possible.

We consider the cache size to be a function of the target

patterns’ occurrence probability. In particular, our cache can
buffer at most only 10% of the rareness of the target motifs. In

other words, if our target motifs have 1/100 occurrence

probability, then our cache can hold at most only 10 patterns. In

addition, we use 3.2, 12 and 16 as the values of T, a, and ω,

respectively. Furthermore, we will show that the setting of these

parameters is not a black art; there exists a wide range of

possible values of the parameters that have no significant impact

on the performance of our algorithm.

In order to show how quickly we detect the target patterns, we

do the following. We run our sticky cache algorithm and the RR

algorithm under the same experimental conditions and record

the average number of objects we must process until we get the

first true positive (i.e., a pair of patterns are in the cache, and

our algorithm recognizes this fact).

As we are interested in our algorithm’s performance relative to

RR, as shown in Figure 17, we plot the results relative to the

mean performance of RR, with values less than one indicating

that our algorithm offers an improvement. In addition, to show

the quality of our algorithm, we record the number of false

positives we see before we attain success.

Figure 17: top) For the sticky cache algorithm, the
average number of objects seen before the first true
positive is expressed with respect to the results for RR
policy at different rareness factors. bottom) The
parameter robustness of our algorithm offers a wide
range of possible values that have no significant impact
on performance (from left to right ω, a and T).

From Figure 17.top), we can see that in the worst case, the

sticky cache algorithm is faster than the RR policy by a factor of

2. In addition to this, because the median score of the sticky

cache algorithm remains almost constant (~0.18) for different

rareness factors, we can say that on average, our algorithm is ~6

times faster than the RR policy. In particular, on average, the

probability that an object is a false positive before we attain

success is at most only ~2% [33]. The results above suggest the

utility of an adaptive T as a function of the rareness factor. We

modified our model to achieve this; however, because this is

straightforward, we relegate the discussion to [33].

Recall our claim that our algorithm is not sensitive to the

parameter choices. In order to show this, we do the following

experiment. Assume that our data generator generates the target

patterns with a probability of 1/100. Keeping the same

experimental setup we discussed above, we vary ω, a and T, and

show the result in Figure 17.bottom). The results show too

conservative or too liberal values of ω and a result in an increase

in the average number of objects we see before the first true

positive. In addition, if we make T too liberal, then the average

false positive count increases and vice versa. However, the

results clearly show the existence of a wide range of choice of

these parameters which confirms our algorithm is not parameter-

sensitive.

0

0.2

0.4

0.6

0.8

1

1/100 1/1000 1/10000
R

R
 s

co
re

1/100000

Rareness of the target patterns

2 5 15 25 35 45350

450

550

650

Word Size

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

O
b

je
c
ts

 S
e
e
n

 B
e
fo

re
 t

h
e

F
ir

st
 T

P

2 4 6 8 10 12 14 16

350

450

550

Alphabet Size

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

O
b

je
c
ts

 S
e
e
n

 B
e
fo

re
 t

h
e

F
ir

st
 T

P

2 2.4 2.8 3.2 3.6

350

450

550

650

0.05

0.15

0.25

Distance Threshold

A
v

e
ra

g
e
 F

P
 c

o
u

n
t

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

O
b

je
c
ts

 S
e
e
n

 B
e
fo

re
 t

h
e

F
ir

st
 T

P

158

6.2 Worst-Case Time Complexity
Consider the worst-case scenario. For each pattern TSi of length

m in question, we make its SAX representation first. This step

needs O(m) time. In order to detect whether TSi is a potential

instance in G or R, we hash it into the Bloom filter. Assume the

number of independent hash functions we use in the Bloom filter

is h. Given this, querying if the SAX representation of TSi is in

the Bloom filter, and if not, hashing it into the Bloom filter,

requires O(h) time. In the worst possible case, the Bloom filter

will be saturated, and we flush it. This is a constant-time

operation. After this, we insert TSi into a cache of size w. For an

overflowed cache, discarding a cache element requires O(1)

time. After we insert TSi into the cache, we calculate its distance

from all cache elements (recall this is the worst-case scenario)

until the participating patterns pass the threshold test. This needs

O(wm) time. Therefore, the overall worst-case time complexity

of our algorithm is O(m) + O(h) + O(wm). In practice, this

means our somewhat naive implementation can handle 250Hz

under typical parameter settings, and a carefully optimized

implementation could easily handle 1,000Hz.

6.3 Case Studies

6.3.1 Wildlife Monitoring
Wildlife monitoring by examining sensor traces has been shown

to be a useful tool for measuring the health of the environment

[29]. In some cases, we may have a known bird call we would

like to monitor, but here we consider the more difficult task of

detecting previously unknown calls. Our only assumptions are

that the call will be repeated at least once.

Assume we monitor the audio trace of a ten-hour-long night of a

forest [26]. Given a data rate of 62 Hz in the Mel-Frequency

Cepstral Coefficients (MFCC) space, we will see about 2.2

million data points. Assume we have a fixed-size memory which

can buffer at most only 1/4000 of the subsequences that appear

on this night. Our final assumption is that we have a predefined

distance threshold for detecting a pair of target patterns (which

we learned offline on a handful of known bird calls). Given

these assumptions, if a bird calls randomly ten times during this

night, we can ask the following question: What fraction of nights

can we expect to detect at least one pair (any pair) of bird calls?

Recall that detecting a single pair is sufficient for the wildlife

monitoring task. In order to answer this question, we perform

the following experiment. In a ten-hour-long audio trace of

environmental sounds, we randomly insert ten approximately

three-second-long calls of a White Crowned Sparrow

(Zonotrichia leucophrys) [32]. We run our sticky cache

algorithm ten times on this dataset and in each run we continue

monitoring until we detect the first true positive pairs in the

cache.

Our experimental results tell us we can expect to detect the

target bird 98 out of 100 nights. Impressive as these results are,

they are somewhat pessimistic. After a careful analysis of the

results we discovered that the “false positives” are actually true
bird sounds. In Figure 18 we show examples of both the

injected bird calls we recovered, and other bird calls (unknown

species) we recovered.

We do not report the timing experiments, except to note that we

can easily search a dataset with an arrival rate much faster than

real-time on a laptop, suggesting we could handle real-time even

on a resource-limited recording device.

Figure 18: top) A snippet of the ten-hour-long audio
trace in the MFCC space. The injected bird calls are
shown in green/bold. bottom) A) The detected motif pairs
occurring at 37 minutes and 2.3 hours, respectively. B –
D) Three examples of unknown bird calls discovered.

6.3.2 Energy Disaggregation
The problem of reducing energy consumption has attracted

increasing interest in recent years. To illustrate how our

approach may help in solving energy disaggregation problems,

we consider one year of energy usage data, containing 0.5

million points [20]. For simplicity, we consider a meter that

monitors the electricity usage of just two appliances– a

refrigerator and a dishwasher. From personal experience, we

assume the dishwasher cycles are approximately 1.5 hours long.

As before, we use a cache which buffers at most 5% of the data,

and had 20, 12, and 7.5 as values of ω, a, and T, respectively. In

order to show how effective our algorithm is, we annotate the

ground truth by careful human inspection. As soon as our

algorithm detects a target motif pair, we flush the cache and

continue scanning the dataset. We show the result in Figure 19.

Figure 19: top) An excerpt of the electricity usage of a
refrigerator and dishwasher. The dishwasher patterns
have been marked in green/bold. bottom) The ground
truth locations (dishwasher usage occurrences) are
shown as green arcs. The locations identified by our
algorithm are shown as blue arcs.

From Figure 19 we can see that our algorithm detected eight

dishwasher motif pairs, most of which are many days apart.

7. RELATED WORK

In recent years researchers have devoted significant attention to

efficiently discovering motifs in static offline databases

[9][19][30]. Until [25], all scalable motif discovery algorithms

were approximate. In [25], the authors proposed an exact motif

discovery algorithm which was tenable for a database of

millions of objects. Although the worst case time complexity of

[25] was quadratic, in practice this is a very pessimistic bound

and it was shown to be fast enough to serve as a subroutine for

summarization, near-duplicate detection, etc.

Because most data sources are not static, and we may need to

deal with unbounded streams, the necessity of online discovery

of time series motifs has been noted [24]. However the only

work devoted to this problem limits its consideration to the last k

minutes, for some small k [24]. This means that [24] maintains

motifs based on the most recent history of the stream. However,

as we noted in our real-world case studies, we may need to find

37 minutes : : : : : : : : : : : : : : : : : : : 140 minutes

(omitted section)

0 40 80 120 160 200

36 min 54 sec

2.3 hours

A

0 40 80 120 160 200

1 min 57 sec

B

0 40 80 120 160 200

31 min 27 sec

D

21 min 35 sec

0 40 80 120 160 200

C

Day 308 Day 311: : : : : : : : : : :

(omitted section)

Day 70 Day 140 Day 210 Day 280 Day 350

Day 70 Day 140 Day 210 Day 280 Day 350

Ground Truth

Motifs Detected

159

patterns that repeat hours, days or even weeks apart. For such

cases, it is very unlikely that motifs will occur in the same

window. In addition to this, if we consider the huge volume of

data that we wish to process, we are bounded by the scalability

of the fastest offline algorithm for this problem [23][25]. Our

work is different in a sense that we detect very sparse motifs

using a very limited buffer compared to the size of the data with

very high probability. In the context of the data volume, the

interested reader might think of [22], which detects motifs from

gigabyte-scale databases. However, [22] is a multi-pass

algorithm, whereas we explicitly address situations where we

can scan the data only once to detect motifs.

Various discrete analogues of our problem have seen significant

research; see [10] and the references therein. In the discrete

space the ability to directly test for equality and to directly hash

that data, makes the “rare pattern” problem significantly easier.
However our use of Bloom filters was inspired by this

community’s literature [10]. Bloom filters have been an area of

active research in the database community for the last decade,

with research effort in both applying them to various problems

and introducing variants such as “forgetting” Bloom filters [10].

8. CONCLUSIONS

We have argued that for most applications, finding the closest

pair of subsequences is intractable and unnecessary. It suffices

to find any pair of repeated patterns. Any pair can be used to

alert an ornithologist to listen to a snippet of bird calls (cf.

Section 6.3.1), or allow a technician to build a “dictionary” of
electrical demand patterns (cf. 6.3.2), etc. Based on this

observation, we have introduced the first algorithm that can

detect repeated patterns in unbounded real-valued time series.

We have demonstrated efficiency and effectiveness of this

algorithm on both synthetic and real-world datasets.

9. REFERENCES
[1] Agrawal, R., Faloutsos, C., and Swami, A. Efficient

Similarity Search in Sequence Databases. Springer, 1993.

[2] Barrenetxea, G., et al. Sensorscope: Out-of-the-Box

Environmental Monitoring. IPSN, 2008.

[3] Bhattacharjee, R., Goel, A., and Lotker, Z. Instability of

FIFO at Arbitrarily Low Rates in the Adversarial Queuing

Model. SIAM Journal on Computing 34, no. 2, pp. 318-

332, 2005.

[4] Bloom, B. H. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM, vol. 13,

issue 7, pp. 422 – 426, 1970.

[5] Brown, A. E. X., et. al. A Dictionary of Behavioral Motifs

Reveals Clusters of Genes Affecting Caenorhabditis

elegans Locomotion. Proceedings of the National Academy

of Sciences 110, no. 2 pp. 791-796, 2013.

[6] Carton, C. et. al. Fast Repetition Detection in TV streams

Using Duration Patterns. CBMI, 2013.

[7] Castro, N. C., et al. Significant Motifs in Time Series.

Statistical Analysis and Data Mining 5, 2012.

[8] Chan, K. P., and Fu, A. W. C. Efficient Time Series

Matching by Wavelets. Proc’ of the 15th IEEE ICDE, 1999.

[9] Chiu, B., Keogh, E., and Lonardi, S. Probabilistic

Discovery of Time Series Motifs. ACM SIGKDD, 2003.

[10] Cormode, G., and Hadjieleftheriou, M. Methods for

Finding Frequent Items in Data Streams, VLDB

Journal, 19(1), 3-20, 2010.

[11] Dasgupta, D., et. al. Novelty Detection in Time Series Data

Using Ideas from Immunology. Proc’ of the International

Conference on Intelligent Systems, 1996.

[12] Hamming, R. W. Error Detecting and Error Correcting

Codes. Bell System Technical Journal 29, no. 2, 1950.

[13] Hao, Y., Chen, Y., Zakaria, J., Hu, B., Rakthanmanon, T.,

and Keogh, E. Towards Never-Ending Learning from Time

Series Streams. Proc’ of the 19th ACM SIGKDD, 2013.

[14] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S.

Dimensionality Reduction for Fast Similarity Search in

Large Time Series Databases. KAIS 3, pp. 263-86, 2001.

[15] Keogh, E., and Kasetty, S. On the Need for Time Series

Data Mining Benchmarks: A Survey and Empirical

Demonstration. Proc’ of the 8th ACM SIGKDD, 2002.

[16] Keogh, E. The UCR Time Series Classification/ Clustering

Page: www.cs.ucr.edu/~eamonn/time_series_data

[17] Lan, B., Ooi, B. C., and Tan, K. L. Efficient Indexing

Structures for Mining Frequent Patterns. Proceedings of

the IEEE 18th ICDE, pp. 453-462, 2002.

[18] Lin, J., Keogh, E., Wei, L., and Lonardi, S. Experiencing

SAX: A Novel Symbolic Representation of Time Series.

DMKD vol. 15, no. 2, pp. 107 – 144, 2007.

[19] Lin, J., Keogh, E., Lonardi, S., Patel, P. Finding Motifs in

Time Series. Proc. of the 2nd Workshop on Temporal Data

Mining. 2002.

[20] Makonin, S., et. al. AMPds: A Public Dataset for Load

Disaggregation and Eco-Feedback Research. EPEC, pp. 1-

6. 2013.

[21] Mitzenmacher, M., and Upfal, E. Probability and

Computing: Randomized Algorithms and Probabilistic

Analysis. Cambridge University Press, 2005.

[22] Mueen, A., et al. "A Disk-aware Algorithm for Time Series

Motif Discovery." Data Mining and Knowledge

Discovery 22.1-2, 2011.

[23] Mueen, A. Enumeration of Time Series Motifs of All

Lengths. Proc’of the IEEE ICDM, pp. 547-556, 2013.

[24] Mueen, A., and Keogh, E. Online Discovery and

Maintenance of Time Series Motifs. Proc’ of the 16th ACM

SIGKDD, 2010.

[25] Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, M.

B. Exact Discovery of Time Series Motifs. Proc’of the 9th

SIAM SDM, pp. 473-484, 2009.

[26] URL http://www.youtube.com/watch?v=ndL6m5vHVhw

[27] Pietracaprina, A., Riondato, M., Upfal, E., and Vandin, F.

Mining Top-K Frequent Itemsets Through Progressive

Sampling. DMKD, vol 21, no. 2, 2010.

[28] Smith, J. E., and Goodman, J. R. Instruction Cache

Replacement Policies and Organizations. IEEE

Transactions on Computers, 1985.

[29] Trifa, V., et. al. Automated Wildlife Monitoring Using Self-

Configuring Sensor Networks Deployed in Natural

Habitats, 2007.

[30] Vahdatpour, A., et. al. Toward Unsupervised Activity

Discovery Using Multi-Dimensional Motif Detection in

Time Series. IJCAI. Vol. 9. 2009.

[31] Wang, X., et al. Experimental Comparison of

Representation Methods and Distance Measures for Time

Series Data. DMKD, vol. 26, issue 2, pp. 275 – 309, 2013.

[32] Xeno-canto, Sharing Bird Sounds from Around the World,

www.xeno-canto.org/, accessed on Feb 11, 2014.

[33] Project website: www.cs.ucr.edu/~nbegu001/RareMotif.htm

160

