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Abstract

The objective of this article is to introduce valid and robust methods for the analysis of rare variants for family-based exome
chips, whole-exome sequencing or whole-genome sequencing data. Family-based designs provide unique opportunities to
detect genetic variants that complement studies of unrelated individuals. Currently, limited methods and software tools
have been developed to assist family-based association studies with rare variants, especially for analyzing binary traits. In
this article, we address this gap by extending existing burden and kernel-based gene set association tests for population
data to related samples, with a particular emphasis on binary phenotypes. The proposed approach blends the strengths of
kernel machine methods and generalized estimating equations. Importantly, the efficient generalized kernel score test can
be applied as a mega-analysis framework to combine studies with different designs. We illustrate the application of the pro-
posed method using data from an exome sequencing study of autism. Methods discussed in this article are implemented in
an R package ‘gskat’, which is available on CRAN and GitHub.
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Introduction

The high-throughput next-generation sequencing (NGS) tech-
nology has revolutionized genetic research, not only by dramat-
ically decreasing sequencing costs but also by increasing the
scale of genomic sequencing. The NGS advances open up the
entire spectrum of genomic variation for the genetic analysis of
complex diseases and traits. In genome-wide association stud-
ies (GWAS) era, we typically focus on common causal variants
with moderate effects, or more precisely, the single-nucleotide

polymorphisms (SNPs) in linkage disequilibrium with the causal
ones. Given the whole-genome sequencing, the interest has
shifted toward identifying rare variants that are associated with
diseases. Rare variants are potential contributors of the ‘missing
heritability’ that was widely debated after the 1st wave of
GWAS. However, the costs of NGS remain high for large-scale
whole-genome sequencing projects and thus hinder a wide-
spread application. As a result, it is more practical to consider
cost-efficient designs by targeting specific genomic regions (e.g.
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exome sequencing) and specific samples. Current strategies in-
clude extreme-phenotype sampling, family-based sampling as
well as the more involved two-stage designs. In this study, we
restrict our attention to family-based sequencing studies.

The family-based design is increasingly popular in sequenc-
ing studies because of its significant advantages in detecting
rare variant associations. Family-based designs also provide
unique opportunities to identify genetic variants that comple-
ment studies of unrelated individuals. Mendelian inheritance
information in family data can also be used in genotyping error
checks and can improve imputation of variants in unsequenced
family samples. For a general review of family-based designs for
sequencing studies, see [1]. On the other hand, applying family-
based sequencing analysis may be the only option available for
some cases. It is not unusual that family samples are easier to
collect compared with unrelated samples for some projects.
Also, many current genome sequencing studies tend to focus
on individuals ascertained from families based on previous
linkage analyses. There are, however, some limitations and
challenges, which must be considered in the use of family-
based studies. With common variants, an association analysis
using a family-based design is less powerful than an unrelated
case-control design with the same sample size, i.e. the statis-
tical efficiency per individual is typically lower unless it in-
cludes the phenotypes of the ungenotyped relatives [2, 3]. It is
also known that, in sequencing studies, family-based designs
can be less efficient for discovering novel variants than
population-based designs using the same sample size.

There are two main approaches to handling the correlated
or clustered structure in the family data. The first is to model
the dependence structure explicitly by specifying a random ef-
fect in the framework of the linear mixed model (LMM) and gen-
eralized LMM for binary traits (GLMM) [4–8]. The second is to fit
a marginal model with generalized estimating equations (GEE)
[9]. The basic idea of GEE is to replace the covariance matrix in
the GLMM with a ‘working’ covariance matrix that reflects the
cluster dependencies. The resulted estimator and testing are
more robust to model misspecification than GLMM. The pro-
posed approach in this article is based on our previous work
describing a common variant association test [10], which blends
the strengths of kernel machine (KM) [4, 11, 12] methods and
GEE. The KM-GEE score test retains the quadratic statistics form
as in the typical KM score test but has a more complicated null
distribution. Our work was mainly motivated by the challenges
in the current mental disease projects where only dichotomous
traits are available for analysis. Examples include the autism
data used in this article, as well as alcohol, cocaine and other
dependencies. Although KM methods such as sequence kernel
association test (SKAT) have been extended to incorporate fam-
ily structure [5, 13], none of them is readily applicable to binary
traits. It is thus the aim of the current article to present a valid
analysis workflow to address this gap, where both dichotomous
and continuous traits will be allowed in a KM testing frame-
work. The GEE techniques offer several advantages over the
GLMM-based methods for handling family data, including com-
putational rapidity and numerical reliability. A significant ad-
vantage of GEE framework is that it does not require a fully
parameterized dependence structure and does not require as-
sumptions regarding the joint family distribution. Therefore,
GEE framework is more robust and flexible for large-scale stud-
ies with a complex data structure.

Importantly, this article presents a framework, which can be
readily applied to mega-analysis, in which raw (genotyping)
data from multiple sources and mixed designs are pooled and

processed in a uniform processing and analysis pipeline. The
common practice in the current large-scale multiple-center
GWAS is to perform analyses separately within each data set or
different population groups. The results are then combined
using meta-analysis techniques. For single-site association
tests, the meta-analysis can achieve the same statistical effi-
ciency and should yield equivalent results as compared with
the mega-analysis [14] that aggregates individuals from all
groups. However, mega-analysis provides significant advan-
tages in practice—which allows for more consistent data pro-
cessing and quality control, as well as a more sensible choice of
control subjects. More importantly, it was recently demon-
strated that, by theory and simulations, mega-analysis could
provide better power than meta-analysis in gene-based associ-
ation tests [15]. Mega-analysis can assess the pattern of signals
at the variant level across sites and then combine them at the
gene level across studies, whereas meta-analysis can only pool
information at the gene level. This feature makes mega-
analysis appealing for sequencing data, where rare variants
often need to be collapsed on a gene or region level and tested
based on a burden or SKAT method. The mega-analysis strategy
will provide not only a more powerful tool but also a valuable
complement to the results from the initial meta-analyses, and
is likely to shed new insight into the genetic mechanisms of
complex diseases. The remainder of this report is organized as
follows. We first describe the proposed model and the KM test
in the GEE framework for sequencing studies. We then present
simulation settings and results to evaluate the finite-sample
performance of the proposed method and compare the pro-
posed approach with the single-SNP-based minimum P-value
analysis. Finally, we apply the proposed method to a whole-
exome sequencing study to identify inherited causes of autism.

GEE kernel association test for family-based
sequencing data

We assume there are n families, and family i has mi members.
Suppose a single-nucleotide variant (SNV) set contains p vari-
ants. Let yij denote the continuous or discrete phenotype for the j
th individual in the i th family; Xij denote a vector of covariates
such as sex, age, environmental factors and the intercept; Zij de-
note a p� 1 genotype vector for the SNVs in the set, coded 0, 1, 2,
reflecting the number of copies of the minor allele. We model the
phenotypic value using a marginal generalized linear model:

gðEðyijjXij;ZijÞÞ ¼ XT
ijaþ ZT

ijb (1)

where gð:Þ is the corresponding link function, which can be the
identify function for a continuous trait and the logistic function
for a dichotomous trait. a and b are regression coefficient vectors
for the covariates and genotypes, respectively. To test whether
there is an overall genetic effect of the SNV set, i.e., H0 : b ¼ 0, we
assume the individual components of the regression coefficient
bjðj ¼ 1; . . . ; pÞ follow an arbitrary distribution with mean 0 and
common variance s. We can test H0 : s ¼ 0 using a GEE kernel as-
sociation test as proposed in Wang’s work [10]:

T ¼ ~U
T
WW ~U; (2)

where ~U is the GEE score estimated under the null, i.e. ~U
¼
Pn

i¼1 ZT
i DiV

�1
i ðyi � ~liÞ and ~li ¼ gðXT

ija0Þ. W ¼ diagðx1; . . . :;xpÞ
are variant weights that are based on external functional in-
formation or the minor allele frequency (MAF) of a variant, i.e.
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based on a beta density function Beta(MAF;a1 ¼ 1, a2 ¼ 25)
[11]. The GEE-SKAT statistics retains the quadratic form in the
original KM test. For continuous traits, it will be equivalent to
the KM score test for family data based on the LMM framework
[4] when the kinship working correlation is applied. Similarly,
it can be shown that the null distribution of the score statistic
T can be approximated asymptotically by a weighted sum of v2

distributions:
Pp

k¼1 kkv2
k;1, where v2

k;1 are independent v2 distrib-
uted random variables with one degree of freedom and ðk1; . . .

kpÞ are eigenvalues of the matrix defined in the
Supplementary Material. It is important to distinguish the null
distribution of the quadratic score statistics (i.e. the linear
combination of v2 random variables) from the mixture of v2

distributions with different degrees of freedom, as often used
in one-sided variant component tests and constrained hy-
pothesis tests.

Instead of using asymptotic approximations, an empirically
adjusted P-value can be calculated approximately by matching
the calculated small-sample moments. Instead of matching the
first two moments as in Satterthwaite’s method or the first
three moments as proposed in Liu’s method, we match the
mean, variance and kurtosis (the fourth moment about the
mean) to improve the tail fit. Therefore, the small-sample P-val-
ued is calculated by the following formula, which has also been
used in [16]:

1� FððT � blTÞ
ffiffiffiffiffiffiffiffi
2df

q
=
ffiffiffiffiffiffib�T

p
þ df jv2

df Þ (3)

where Fð:jv2
df Þ is the cumulative distribution function (CDF) of

a v2 distribution v2
df , with the modified degrees of freedom

df ¼ 12=bc. blT ,b�T and bc are the estimated sample mean, vari-
ance and kurtosis of the statistic under the null, respectively.
These moments can be calculated by resampling methods.
Alternatively, one can perform a direct comparison of the
statistics with the resampled null distribution, in which
much more permutations will be needed to approximate the
extreme tail probability of the null distribution. As shown in
the previous work, the small-sample mean is close to the
asymptotic mean of T; however, the small-sample variance
and kurtosis usually differ from the ones computed from the
asymptotic distribution. When there are no covariates and all
families have the same pedigree structure, a simple permuta-
tion method can be used as described in the previous work
[17]. For more realistic settings where there are covariates
and different pedigree structures, we propose a new resam-
pling method. In this new perturbation procedure, we form
the blockwise perturbed statistic ~Ub through assigning a ran-
dom weight to each family, i.e. ~Ub ¼

Pn
i¼1 ZT

i DiV
�1
i ðyi � ~liÞri,

where ri is a random variable generated from a Gaussian or
Rademacher distribution [18]. The main idea of this perturb-
ation procedure is thus similar to the block bootstrap [19],
which preserves the correlation structure by keeping all the
individuals who belong to the same family together. Suppose
a total of B samples of the perturbed score are generated, the
sample kurtosis can be calculated as described in
Supplementary Material. The adjusted P-value can then be
calculated using equation (3). This procedure is computation-
ally much more efficient than the traditional resampling
method, as it avoids repeated estimation of randomly per-
turbed data, and the tail of the distribution can be estimated
well based on a sampling of realistic size. We recommend B ¼
10 000 perturbation samples for a genome-wide scan and B ¼
100 000 on top hits for finer approximation.

Optimal test and perturbation procedures

The proposed test can be easily generalized to the optimal test
for maximizing the power over a broader range of scenarios.
Previous studies [16, 17] suggest that the proposed kernel asso-
ciation test can be less powerful than burden tests—when the
target region has a high proportion of casual variants with the
effects in the same direction. The unified test can be based on
the following statistic:

Tq ¼ ~U
T
WRqW ~U; (4)

where Rq ¼ ð1� qÞIþ q110; 0 � q � 1. 1 is the column vector of
one here, such that 110 is a matrix of ones everywhere. It can be
shown that Tq is equivalent to a weighted sum of GEE
burden and kernel score statistics, i.e.
Tq ¼ ð1� qÞTGEE�kernel þ qTGEE�burden. Therefore, the GEE-based
kernel and the burden test are special cases of the optimal test
when q equals 0 or 1. Under H0, the parameter q disappears and
thus is not identifiable. For a fixed q, the null distribution of Tq

can be approximated by the moment-matching procedure
described above.

Under the null hypothesis and for a fixed q, Tq is asymptotic-
ally distributed as

Pp
k¼1 kkv2

k;1, where v2
k;1 are independent v2

1 ran-
dom variables and ðk1; . . . ; kpÞ are eigenvalues of
B1=2CTWRqWCB1=2 as defined in [10]. The optimal unified test
can be constructed based on Toptimal ¼ inf0� q� 1pq, where pq is
the P-value from Tq. Toptimal can be obtained by a grid search
through a finite number of q: 0 ¼ q1 < . . . : < ql ¼ 1, and choose
the value of q that yields the smallest value, i.e.
Toptimal ¼minðpq1

; . . . ; pql
Þ. To get its P-value, we propose a per-

turbation procedure as follows:

1. Set a grid of equally spaced points, we use 11 points here
q1 ¼ 0;q2 ¼ 0:1; . . . ; q11 ¼ 1.

2. Compute Tq1
; . . . ;Tql

, and calculate P-values based on a modi-
fied moment-matching approximation based on the per-
turbed scores as described in our previous paper [10].

3. Find the minimum P-value: pmin ¼minfpq1; . . . ; pq11g.
4. Calculate the perturbed score ~Ub ¼

Pn
i¼1 ZT

i DiV
�1
i ðyi � ~liÞri,

where ri is a random variable generated from the standard
normal distribution. Calculate the perturbed statistic Tb for
each grid point of q, and compute the corresponding P-value
by using the modified moment-matching method (based on
the same perturbed scores used in step 2). Set
bpðbÞmin ¼minfpðbÞq1 ; . . . ; pðbÞq11g.

5. Repeat step (4) B times to obtain bpð1Þmin; . . . ; bpðBÞmin.
6. The final P-value for Toptimal is calculated by comparing pmin

with its empirical null distributions bpðbÞmin, i.e.
p ¼ B�1PB

b¼1 IðbpðbÞmin � pminÞ.

Population structure adjustment

Because the proposed GEE-KM model models test an association
unconditional on parental information, it is by nature not ro-
bust to potential population stratification. To control for the
stratification, the eigenvectors from the principal component
analysis for population should be adjusted as covariates in the
model. For family-based design, one solution is to use principal
component estimates derived from the unrelated samples, e.g.
all the parents [20]. Alternatively, we may apply principal com-
ponent analysis based on outside ancestry informative popula-
tions as reference panels such as HapMap and HGDP [21]. A
step-by-step protocol is well summarized in [22], which is ori-
ginally proposed to identify individuals of divergent ancestry.
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The protocol includes key steps and scripts to run from merging
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) format files
with HapMap data from four ethnic populations, extracting the
pruned SNP data, to conducting Principal Component Analysis
(PCA) on the merged data. The projected eigenvectors of related
members Ft can then be calculated by Ft ¼ ZPr, where Pr is the
genotype loading matrix from the training samples, i.e. the
merged reference and unrelated individuals.

In the analysis of autism data described below, we used the
HGDP data as the reference panel, which includes 938 unrelated
individuals from 53 worldwide populations and shares 13 688
autosomal SNPs with our autism data. Based on this shared set
of SNPs, we first constructed a reference map using PCA on the
HGDP data. We then placed one autism sample into the reference
map by applying PCA on the combined data of the autism sample
and the HGDP, followed by a Procrustes analysis [23] to transform
the new PCA map to match the reference map. This procedure
was repeated with the other autism samples, one at a time until
all samples were placed into the reference PCA map (Figure 1).
For the detailed PCA analysis protocol, one is referred to [24].

Simulations

We carried out a series of simulation studies to evaluate the
performance of the proposed method. All simulations were
based on a genomic region of length 1 Mb based on a coalescent
model using the software COSI [25]. A total of 10 000 haplotypes
were generated in this genomic region. We first generate the
genotypes of each pedigree founder by randomly sampling with
replacement two haplotypes from the 10 000 haplotype pool.

The genotypes of each offspring were generated using allele-
dropping algorithm, i.e. the parental haplotypes are transmitted
to an offspring with equal chance. We randomly picked a subre-
gion of 3 kb as our test region in each simulation.

The phenotype mean for each individual was simulated
from: logitðlijÞ ¼ a0 þ a1X1 þ a2X2 þ b1g1 þ � � � þ bsgs, where the
intercept a0 was chosen to set the prevalence to 0.01, X1 and X2

are two covariates and ðg1; . . . ; gsÞ are the genotypes of the
causal variants selected. Assuming rarer variants have larger ef-
fects, the magnitude of bk was set to be cj log10MAFkj. Unless
otherwise stated, we set c ¼ 1nð13=4Þ and 10% of the rare vari-
ants are causal, which gives maximum odds ratio ¼ 13 for vari-
ants with MAF ¼ 10�4. There are mainly two strategies to
simulate correlated binary phenotypes. The 1st strategy is to
simulate correlated binary random variables directly given the
mean vector and the correlation matrix [10]. We implemented
the described method in Park et al. [26] and included it in our
gskat package. A caveat to this strategy is that the means and
correlations for the binary variables must satisfy a set of con-
straints. Thus, some correlation matrices formed directly based
on the kinship matrix (where the correlations between parents
often set at zero) may not be working. The 2nd strategy, which
is more realistic, is to simulate the correlation structure impli-
citly through introducing a latent residual variable with
imposed correlation structure: (1) generate matrix normal vari-
able data matrix; (2) induce block correlation by multiplying the
Cholesky decomposition of a correlation matrix by the original
data matrix generated in the previous step, or directly generate
correlated multivariate normal variables using existing pack-
ages; (3) get residual random variable by taking the logit

Figure 1. PCA ancestry plot of the Autism WES data. Black circles indicate the ASD samples (including Middle East and US samples), and colored circles indicate sam-

ples from the HGDP populations including groups from Africa, Europe, Middle East, Asia and America. The principal component projection plots in C and D illustrate

the genetic mixture component of the ASD cohort. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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transformation on the CDF of the normal variables. Note that,
although the scheme of generating binary variables obtained
from a truncated liability model is more straightforward, it is
not recommended in the simulations for testing models with lo-
gistic parametrization. For each test, we simulate 700 nuclear
families ascertained with at least one disease individual in each
family. Each simulation was replicated 0.5 � 107 times for type I
error evaluation. Power evaluation was based on 1000 repli-
cates, assuming the type I error rate is 0.05. We compare the
GEE-based burden test against the original Kernel test based on
the simulated data.

Type I error and statistical power

The type I error control of the proposed method is tested based
on the data sets simulated under the null, where the
mean vector of the null logistic regression model is computed
as logit ðlijÞ ¼ a0 þ a1X1 þ a2X2. We use two resampling
approaches to obtain empirical P-values for each test: permu-
tation and perturbation. The permutation scheme is valid here
because in this simulation, we assume all families have the
same pedigree structure. The results are presented in the
quantile-quantile plots (Q-Q) in Supplementary Figure S1. It in-
dicates that both tests are valid, in which the type I error can
be well controlled across a wide range of P-value thresholds.
We do observe that Satterthwaite’s method provides a better
approximation for large P-values when compared with Liu’s
method and our method. However, for inference in GWAS, the
accuracy in the tail is apparently more important. We compare
the power of the kernel association test with three types of
burden tests in simulations under a broad range of scenarios
(by varying the values of a0, c , the sample size and the gen-
omic length of the tested region). The results, presented in
Figure 2, show that the kernel test outperforms the burden
tests across all simulation configurations considered. It also
shows that the weighted sum test (WST) method tends to out-
perform the other burden tests. As expected, the power of all
tests increases with sample size and effect size. It is found

that the kernel test is substantially more powerful than bur-
den tests at intermediate levels of the sample and effect size
parameters. It is known that burden test tends to outperform
SKAT-type test when a large proportion of variants in a SNP
set are truly causal and influence the phenotype in the same
direction and with similar magnitudes [16, 17]. The optimal
test introduced in this article is more robust to the effect size
structure than the previously developed GEE-SKAT [10]. As
shown in Figure 3, the optimal tests adaptively choose the
weight between burden and SKAT based on data, and achieve
a power either larger or close to the most powerful test under
all scenarios. When there is a high proportion (50% and 70%) of
casual variants in a region or gene, the optimal test and bur-
den test are more powerful than the GEE-KM test.

Application to whole-exome sequencing data

We illustrate the application of the proposed method using data
from an ongoing exome sequencing study to identify genes
associated with autism spectrum disorders (ASDs). Whole-
exome sequencing was performed on whole blood DNA samples
from a total of 831 individuals selected from a larger ASD co-
hort. Study populations consisted both of nuclear families and
case-control sample sets from populations with ethnic groups
in the Middle East and the United States. Most of the families
were small nuclear families (including 192 trios) with at least
one affected offspring. After variant calling and quality control
procedures, a total of 534 692 SNVs were identified across the
tested samples, about 88% of which have an MAF <0.05 and
about 81% have an MAF <0.01.

To adjust for population stratification, we need to apply
principle component analysis based on outside population ref-
erence panels. Note that there are many consanguineous fami-
lies included in this study. Therefore, we are unable to use
principle component estimates derived from the parents
(assuming they are unrelated) selected from each family and
then project the rest of the family members (11). We have out-
lined the key steps above.

Figure 2. Power comparisons of the GEE-KM and different SNP set tests using simulated data. This shows that power estimates of GEE-KM, GEE-WST, GEE-CAST

and GEE-Count. The plots consider different simulation settings by varying prevalence, effect size, sample size factor and genomic length of the gene region. A colour

version of this figure is available at BIB online: https://academic.oup.com/bib.
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A total of 19 629 genes were tested in the genome-wide gene-
level analysis using the proposed method. The Q-Q plots of the
P-values from the genome-wide scan is shown in Figure 4. In our
top list of 50 genes ranked on P-values, five genes (RAPGEF4,
SLC1A1, SLC6A4, PXN and LEP) have been identified in associ-
ation with autism by previous GWAS (www.gene.sfari.org).

We note that this preliminary analysis is mainly used to dem-
onstrate the utility of gene-based association test with family sam-
ples and to show that our analysis strategy is well calibrated in
terms of type I error. Clearly, the candidate genes need to be fur-
ther validated in additional samples, and even by using additional
analysis methods. There are many aspects that are worth further
exploration and discussion in building analysis pipelines, including
the selection of the correct inheritance model, the choice of SNP
weights (we simply used MAF weights in this exemplary analysis)
and whether to exclude synonymous SNPs from each gene.

Discussion

The burden test and sequence (SNP-set) kernel association test
statistic are two most popular methods for rare variants associ-
ation test, which have been routinely used in data analysis
workflows for projects using exome chips, whole-exome
sequencing or whole-genome sequencing. Where recent efforts
to extend these statistics to related samples focus on continu-
ous traits, our proposed approach addresses the family-based
burden and SKAT statistics for both dichotomous and

continuous traits. It can also be extended to consider a mixture
of discrete and continuous traits. We have created an efficient
statistical strategy to tackle this challenge by combining the KM
and the generalized estimating equation methods. This new de-
velopment is particularly important in the association studies
of many complex diseases (such as psychiatric disorders) stud-
ies where binary phenotypic values are more often considered.
The method is shown to be a powerful and computationally ef-
ficient test for rare variants, and more importantly it allows for
both continuous and binary phenotypes. Both simulations and
real data analysis demonstrate the proposed test can control
type I error well under various scenarios. By leveraging the
strength of the KM framework, the KM-based methods improve
power by capturing the combined effects of multiple genetic
variants and by providing a statistic with adaptively estimated
degrees for freedom. They are also able to incorporate nonaddi-
tive and higher-order effects by expanding the feature space im-
plicitly. By using the proposed strategy for correcting for the
population stratification in the family data, our method allows
for further power improvement of association tests through
pooling samples from different ethnic groups.

Similar to the methods based on mixed-effect and generalzied
linear models [13], our method allows easy modeling of covariates
and, if interest exists, interactions among environmental and gen-
etic factors [27]. It can also incorporate data on different combin-
ations of related and unrelated individuals. However, the
marginal model GEE method offers additional advantages over

Figure 3. Power comparisons of the optimal method, burden and GEE-SKAT. From left to right, the plots consider settings in which 20% of rare variants were causal,

50% of rare variants were causal and 70% of rare variants were causal, respectively. The effect size factor c is scaled down with larger percentages of casual variants.

Total family sizes considered were 300, 500, 700, 900 and 1100, respectively. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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the mixed model method. First, the generalized mixed model is
computationally more demanding and tends to yield less stable
results in its implementation, making it less appealing for the
analysis of binary phenotypes. Second, the GEE model is robust to
the misspecification of correlation matrices among family mem-
bers. Like most GEE-based approaches, the better the working cor-
relation is specified, the more powerful is the test. The proposed
quadratic score test will lose efficiency when the working correl-
ation matrix is incorrectly assigned, especially when the family
size is not constant [28, 29]. For the selection of working correl-
ation structures, one may use the expected relatedness (kinship
matrix) or realized relatedness calculated base on whole-genome
marker data. However, we recommend simply using the identified
working correlation matrix, especially for the initial exploratory
analysis or when the family relationship is unknown or
complex. We are concerned that the currently widely used empir-
ical or realized kinship matrix calculated based on all SNP markers
may not represent the true structure of dependence between the
family members. But the misuse of the kinship matrix may have a
greater impact on GLMM methods where more assumptions
are required. The selection of the optimal working correlation ma-
trix in the context of GEE-KM quadratic score test is worth fur-
ther investigation. The choice can be possibly based on
criteria such as the quasi-likelihood under the independence
model criterion (QIC) [30] and the correlation information criterion
(CIC) [31] or can be implicitly done based on the quadratic infer-
ence function (QIF) [32].

Because the information from parental and all other
individuals is fully incorporated, both the GEE and the mixed
model method will provide generally more powerful tests than
the allelic transmission-based test such as the transmission dis-
equilibrium test (TDT) and family-based association test (FBAT),
especially in the current sequencing studies where the sample
size is still limited. Compared with similar SKAT-type test de-
veloped based on FBAT [33], the GEE-SKAT allows for more flex-
ible family structure. However, GEE-SKAT tests are conducted
unconditional on parental genotypes, which are thus not robust
to possible population stratification. The principal components

of population structure need to be adjusted as covariates in all
analyses. In this study, we applied a modified PCA by using the
HGDP data as the reference map. This method overcomes the
challenge in our data in which the PCA cannot be performed on
parents because they are related. It also avoids the shrink-
age phenomenon observed in calculating the predicted princi-
pal component scores [34]. Therefore, it is also effective when
used in combination with other family-based association
tests that are based on the generalized mixed model or GEE
methods.

We have implemented the proposed method in an R package
‘gskat’ along with other useful functions for simulations.
Although the asymptotic distribution of the GEE-KM is derived
and implemented in the package, we recommend using P-
values that are computed based on the perturbation method
proposed in this article. Results from extensive simulations and
real data applications show that this resampling method is
much less affected by small sample sizes, ascertainment
schemes and proportions of cases in collected samples. The
genetic background of families that leads to developmental de-
fects is of keen interest to both basic and clinical-oriented re-
searchers. Combining SNVs and copy number variants [35] and
other variant types together in a complete test will lead to a bet-
ter assessment of inherited genetic burden and will be a valu-
able future extension.

In the same vein of the GEE framework, the method
described can be readily applied to the association test with
multiple related phenotypes. It is known that—when multiple
phenotypes are correlated and measure the same or related
underlying trait—a more powerful test can be constructed by
jointly testing the common effect of a variant on multiple
phenotypes. Similar to the correlation of effect size among
SNPs in the family-based test, the correlation of effects of the
same variant on different phenotypes will be unknown.
Under the null hypothesis, the parameterq disappears and
is not identifiable. Thus, the same technique of calculating
P-value can be used in the optimal test for multiple
phenotypes.

Figure 4. Q-Q plots for autism WES data. Results are shown for the burden (A) and GEE-SKAT (B) tests. The x axis represents �log10 expected P-values, and the y axis

represents �log10 observed P-values. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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Key Points

• gskat is a set of useful tools for gene prioritizing with
mixed family and unrelated samples.

• GEE-KM provides a promising testing framework for
large-scale mega-analysis.

• Need to further extend the KM and improve the com-
putational efficiency to incorporate difference types of
variants.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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