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Abstract

Although genome-wide association studies (GWAS) have now discovered thousands of genetic 

variants associated with common traits, such variants cannot explain the large degree of “missing 

heritability,” likely due to rare variants. The advent of next generation sequencing technology has 

allowed rare variant detection and association with common traits, often by investigating specific 

genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are 

often concurrently observed in GWAS, most studies analyze only single phenotypes, which may 

lessen statistical power. To increase power, multivariate analyses, which consider correlations 

between multiple phenotypes, can be used. However, few existing multi-variant analyses can 

identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate 

Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with 

multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a 

single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean 

population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We 

then assessed validation of those genes by a replication study, using an independent dataset of 

3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then 

performed a simulation study to compare MAAUSS's performance with existing methods. Overall, 

MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than 

the existing methods. This study illustrates a feasible and straightforward approach for identifying 

rare variants correlated with multiple phenotypes, with likely relevance to missing heritability.
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Introduction

Genome-wide association studies (GWAS) have been commonly used to find genetic 

variants such as single nucleotide polymorphisms (SNPs) associated with common traits. 

Early GWAS focused on the analysis of common variants. Although GWAS have identified 

many variants associated with common traits such as diabetes, heart disease, and 

schizophrenia [hindorff et al., 2009; Zuk et al., 2014], such common variants could explain 

only small degrees of the heritability of those phenotypes, a phenomenon known as the 

missing heritability problem [Zuk et al., 2014; Manolio et al., 2009; Visscher et al., 2008]. 

For example, human height is known to be a complex trait with an estimated heritability of 

about 80%, and although at least 40 loci have been associated with the trait, the discovered 

variants could explain only about 5% of the phenotypic variance [Visscher et al., 2008].

Many researchers have endeavored to identify the primary causes of missing heritability, 

including gene-gene interactions [Zuk et al., 2012] and rare variants. Gene-gene interaction 

represents the effect of one gene on traits that are co-affected by other genes. With the 

development of next-generation sequencing (NGS) technology [Mardis et al., 2008], it is 

now possible to study rare variants at low cost and high throughput. Many statistical 

methods have now been developed to study rare variants, including the cohort allelic sums 

test (CAST) [Morgenthaler et al., 2007], combined multivariate and collapsing (CMC) [Li et 

al., 2008], weighted sum test (WST) [Madsen et al., 2009], and variable threshold (VT) 

[Price et al., 2010]. These methods are burden type tests in the sense that they test the 

association between a summary variable aggregating information on rare variants within a 

specific genomic region associated with a specific trait. All these burden type tests make 

some strong assumptions such as causality of all variants, identical effect sizes, and the same 

directions of effects. However, these assumptions may not be satisfied in biological systems. 

So, if one performs burden type tests to discover genetic variants associated with traits, 

statistical power could be lost. To address this problem, several non-burden type tests have 

been developed. The C-alpha test uses a sum of differences between the expected and actual 

variances of the distribution of an allele frequency [Neale et al., 2011]. Under certain 

conditions, the C-alpha test is equivalent to the sequence kernel association test (SKAT), an 

approach that aggregates individual score test statistics of SNPs in specific genomic regions 

to efficiently compute region level p-values, while also adjusting for covariates [Wu et al., 

2011].

Another effort to reduce missing heritability is to identify additional causal variants 

associated with a phenotype by increasing statistical power (e.g., larger sample sizes). In 

GWAS, the phenotype of interest is often derived from multiple variables. For example, 

diabetes is diagnosed from four phenotypes: two hours after plasma glucose level (≥200mg/

dl), fasting glucose (≥126mg/dl), random plasma glucose (≥200mg/dl), and HbA1c (≥6.5%), 

according to the American Diabetes Association [American diabetes association, 2010]. In 

addition, GWAS often collect multiple correlated phenotypes simultaneously, such as blood 

test measures, body size, or multiple answers to a questionnaire [Yang et al., 2012]. Most 

GWAS have focused on analyses of single phenotypes individually, followed by assembling 

the results for each single phenotype analysis to simultaneously identify genetic variants 

associated with multiple phenotypes [Yang et al., 2012]. It has been hypothesized that 
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GWAS may be underpowered to discern genetic variants having only moderate-to-small 

effects [Yang et al., 2012]. It is possible, however, to increase power by appraising their 

correlation to identify additional genetic variants with small effects associated with multiple 

phenotypes. Such joint analyses could also avoid multiple testing penalties caused by 

analyzing a single phenotype separately [Yang et al., 2012].

In GWAS, several methods have been developed for multivariate analysis [Yang et al., 2012] 

to consider multiple phenotypes simultaneously. Current multivariate methods can be 

classified into three categories: regression analysis, variable reduction analysis, and 

combining approach [Yang et al., 2012]. First, regression analysis is a common statistical 

method that has been used in many GWAS, and includes multivariate analysis of variance 

(MANOVA), linear mixed effect models (LMM) [Laird et al., 1982], and generalized 

estimating equations (GEE) [Liang et al., 1986] analysis. MultiPhen uses a proportional 

odds logistic model that considers the number of minor alleles in a SNP as a response 

variable and multiple phenotypes as independent variables [O'reilly et al., 2012]. Secondly, 

variable reduction methods such as principal components analysis (PCA) [Ott et al., 1999] 

and canonical correlation analysis (CCA) have also been widely used for multivariate 

analysis. Finally, combining the test statistics or p-values of univariate analysis is another 

popular approach [O'Brien, 1984 ; Xu et al., 2003 ; Wei et al., 1985]. The Trait-based 

Association Test that uses Extended Simes (TATES) procedure combines p-values obtained 

from standard univariate GWAS to one p-value, while correcting for correlations between p-

values that are approximated by correlations between phenotypes [Sluis et al., 2013].

However, many of these existing methods for multivariate analysis cannot be applied to rare 

variant analyses directly. Rare variants are not appropriate for these analyses, due to their 

large numbers causing multiple comparison problems and their low frequency. Moreover, 

sparsity of data could cause problems in fitting regression models and applying variable 

reduction methods.

Rare variant and multivariate analysis could help reduce the missing heritability problem by 

detecting novel causal variants. In the current study, we propose the Multivariate Association 

Analysis Using Score Statistic (MAAUSS) method, an extension of the sequence kernel 

association test (SKAT), to identify genetic variants associated with multiple phenotypes. 

SKAT has been widely used in rare variant analysis because it is computationally efficient 

and uses a regression approach while adjusting for covariates [Wu et al., 2011]. However, 

since SKAT assumes that response variables are independent, one needs to estimate a 

variance-covariance matrix between phenotypes and extend statistics by considering the 

variance-covariance matrix. The variance-covariance matrix is estimated using a restricted 

maximum likelihood (REML) approach under the null hypothesis that genetic variants have 

no effects on the phenotypes of interest. Then, the MAAUSS method is developed for the 

following two cases: (1) homogeneous effects of SNPs (homo-MAAUSS); and (2) 

heterogeneous effects of SNPs (hetero-MAAUSS) on multiple phenotypes.

Here, we demonstrate that our proposed method is more powerful than TATES and a 

univariate analysis using SKAT. Furthermore, MAAUSS was applied to Whole Exome 

Sequencing (WES) data from a Korean population to successfully discover genetic variants 
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associated with levels of the liver enzymes alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST). We successfully identified 5 significant genes from analysis of the 

discovery dataset. Also, we validated the significant genes from real data analysis in a 

replication study using an independent Korean dataset. We detected the ZNF620 gene 

among 5 significant genes from real data analysis. Consequently, MAAUSS could likely 

address the missing heritability problem, with applications to “personalized medicine” 

(based on a specific patient's genome) and the discovery of “targeted therapies” designed to 

affect the activity of distinct gene products involved in important signal pathways.

Materials and Methods

Data

We used Whole Exome Sequencing (WES) data obtained from a discovery study of Type 2 

Diabetes Genetic Exploration by next-generation sequencing in Ethnic Samples (T2D-

GENES). Next-generation sequencing (NGS) was performed at the Broad Institute 

(Cambridge, MA, USA) with Agilent (Santa Clara, CA, USA) v2 capture reagents on a 

HiSeq platform (Illumina, San Diego, CA) from about 10,000 subjects from 5 different 

ancestry groups: African Americans, Hispanics, Eastern Asians, Southern Asians, and 

Europeans. We used subjects included in the Korean Association REsource (KARE) [Cho et 

al., 2009] study who were also included in Eastern Asians ancestry of T2D-GENES. The 

KARE study was initiated in 2007 to conduct a large-scale GWA analysis among 10,038 

participants from rural Ansung (n = 5,018) and urban Ansan (n = 5,020) cohorts to discover 

variants associated with numerous complex traits. The KARE dataset was produced from the 

Korean Genome Analysis Project (4845-301), the Korean Genome and Epidemiology Study 

(4851-302), and Korea Biobank Project (4851-307, KBP-2013-000) that were supported by 

the Korea Center for Disease Control and Prevention, Republic of Korea. The data was 

obtained by sending a request to the Distribution desk of Korea Biobank Network, National 

Institute of Health, Korea. The selected phenotypes were alanine aminotransferase (ALT) 

and aspartate aminotransferase (AST), traits both known to relate to liver function. The 

number of samples was 1,058, excluding subjects who took medication, and the samples 

used in the analysis were not related. For the analysis, we adjusted for covariates such as 

age, sex, and area (Ansung or Ansan).

To validate the identified genes from our discovery analysis, we applied MAAUSS to other 

independent datasets from the Korean population, namely the Health Examinee (HEXA) 

cohort shared control study [Kim et al., 2011], for a replication study. The HEXA-shared 

control is part of the Korean Genome and Epidemiology Study (KoGES) population-based 

cohorts that were initiated in 2001. To build a shared control group for the Korean cancer 

and coronary artery disease (CAD) GWA studies, 3,445 subjects were randomly selected 

from the HEXA cohort (aged 40-69) and were genotyped using a HumanExome BeadChip 

v1.1 (Illumina, Inc., San Diego, CA) containing approximately 240,000 variants. The dataset 

was comprised of 3,445 individuals with ALT and AST data. The phenotypes were also 

adjusted for covariates such as age and sex.
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Multivariate Association Analysis Using Score Statistic (MAAUSS)

The proposed Multivariate Association Analysis Using Score Statistic (MAAUSS) is a 

SKAT-based method for analyzing associations between single nucleotide polymorphisms 

(SNPs) in a specific genomic region of interest and multiple phenotypes. SKAT is an 

association test for the joint effects of multiple genetic variants in a region of interest on a 

single phenotype. Such a region could be a known genetic region or a user-defined region. 

SKAT obtains a p-value for each region while also adjusting for covariate effects, based on a 

linear mixed effect model for a continuous phenotype, with the assumption of random 

effects of SNPs [Wu et al., 2011]. Also, adjustment for multiple testing such as family-wise 

error rate (FWER) or false discovery rate (FDR) controls is necessary, based on the large 

number of genes in a whole genome.

In this approach, we assume phenotypes to be continuous variables. Assuming that n 

subjects are sequenced with p SNPs in a region of interest, several variables such as age and 

sex might be considered for adjustment. For the i-th subject, yik denotes the k-th continuous 

response variable, Xi = (Xi1,Xi2, ..., Xiq) is the vector of q covariates, and Gi = (Gi1,Gi2, ..., 

Gip) is the vector of genotypes corresponding to p variants within the region. Assuming an 

additive genetic model, Gij = 0, 1, or 2 represents the number of copies of the minor allele in 

the j-th SNP.

MAAUSS uses the same procedure as the SKAT method but extends the dimension of the 

covariate matrix, genotype matrix, and corresponding vectors of coefficients to handle 

multiple phenotypes. Also, it is assumed that multiple phenotypes correlate with each other. 

However, because we actually do not know the covariance between phenotypes, it is 

necessary to estimate the variance-covariance matrix. For the i-th subject, yi = (yi1, ..., yim)′ 
is the vector of m multiple phenotypes, Zi = diag(Xi, ..., Xi), α0 = (α01, ..., α0m)′, and 

 are an m × (mq) extended covariate matrix and vectors of corresponding 

coefficients, respectively. εi is an error term following a multivariate normal distribution, 

with a mean of a zero vector and a variance-covariance matrix of V. Also, and a Bi and  are 

genotype matrix and a vector of random effects of SNPs on multiple phenotypes, 

respectively. Then, we can consider the multivariate linear model:

(1)

This model considers the heterogeneous effects of covariates on multiple phenotypes. Here, 

we consider the case when the random effects of a SNP are identical for all phenotypes and 

the case when they are different on each phenotype. For these two cases, a genotype matrix 

Bi and a corresponding vector  would be different.

Homogeneous Effects of SNPs on Multiple Phenotypes—Assuming that SNPs 

have homogeneous or heterogeneous effects on phenotypes, the homogeneous case (homo-

MAAUSS) supposes that the effects of a SNP on multiple phenotypes are identical. With an 

assumption of homogeneous effects,  and  are an m × p 
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genotype matrix of the i-th subject and a corresponding coefficient vector with length p, 

respectively. Evaluating whether the genetic variants have effects on the phenotypes in the 

model coincides with testing the null hypothesis , that is, β1 = ··· = βp = 0. 

MAAUSS assumes that each βj follows an arbitrary distribution with a mean of zero and a 

variance of τwj
2, where τ is a variance component and wj is a prespecified weight for the j-

th SNP. W = diag(w1, ..., wp) is a diagonal matrix with elements of the weights of p variants. 

A commonly used weight is the value of a density function of beta distribution with 1 and 25 

degrees of freedom for a given minor allele frequency (MAF) of the SNP, which means 

assigning greater weights to rarer SNPs. Then, testing the null hypothesis  is 

equivalent to testing H0 : τ = 0 using a variance component score test in the corresponding 

linear mixed effect model. The score statistic is then:

(2)

where  is an estimated mean of y under the null hypothesis, using general linear 

regression on the (nm) × (mq) extended covariate matrix Z = (Z1′, ..., Zn′)′. Here, y = 

y1′, ..., yn′)′ is a vector of multiple response variables of length nm, K = BWWB′ where B 

= (B1′, ..., Bn′)′ is a (nm) × p genotype matrix (W is described above), V̂ is an estimated m 

× m variance-covariance matrix between m phenotypes under the null hypothesis, using a 

Restricted Maximum Likelihood (REML) approach, and  is an estimated (nm) × 

(nm) variance-covariance matrix. K is an (nm) × matrix with the (i, i′)-th element equal to 

 is the “kernel function” and K(Gi, Gi′) measures 

the genetic similarity between i and i′-th response variables in the genomic region through p 

markers [Wu et al., 2011]. It means that when i and i′-th response variables are from 

different subjects, K(Gi, Gi′) presents the genetic similarity between the subjects. 

Consequently, the score statistic Q follows a mixture of chi-square distributions 

 where χ1,λ2 is an independent chisquare distribution with 1 degree of freedom, 

and λl is the l-th eigenvalue of  and 

Z̃ = [1,Z].

Heterogeneous Effects of SNPs on Multiple Phenotypes—In the case of the 

heterogeneous assumption (hetero-MAAUSS),  is an m × (mp) genotype 

matrix and  is a corresponding coefficient vector of length mp. The test statistic and its 

distribution take the same form shown in equation (2) for the homogeneous effects case, but 

uses different Bis. The assumption of homogeneous effects of SNPs on multiple phenotypes 

could increase statistical power, because it tests for a smaller number of parameters. 

Therefore, an assumption of homogeneous effects could bring better results if the 

assumption is satisfied.

In univariate cases, when the number of phenotypes m is one, hetero-MAAUSS is equivalent 

to homo-MAAUSS and SKAT. Under the same score statistic as MAAUSS, K = GWWG′, 
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and  is the predicted mean of y under H0, where  and  are the estimated 

coefficients under the null model using multiple linear regression, i.e., 

 where  We assume that the variance of yi is σ2, 

such that  is an n × n diagonal matrix with the elementis . Here, G is an n × p matrix 

with the (i, j)-th element being the genotype of the j-th SNP of the i-th subject, and W = 

diag(w1, ..., wp) is a diagonal matrix with elements of pre-specified weights of p variants. 

The score statistic Q follows a mixture of chi-square distributions , where χ1,l
2 

is an independent chi-square distribution with 1 degree of freedom, λl is the l-th eigenvalue 

of , and .

Numerical Experiments and Simulations

We next performed simulation studies to investigate whether or not MAAUSS preserved 

type 1 error rates, and to evaluate its power compared to univariate SKAT and TATES. For 

univariate SKAT, we obtained the results of each phenotype from SKAT, and then performed 

multiple comparisons via Bonferroni's correction. TATES also used the test results of SKAT 

to combine p-values from each phenotype.

Simulation for Type 1 Error—Simulation studies were used to evaluate whether 

MAAUSS preserved the desired type 1 error rate at a significant level, such as α = 10−6, 

which is smaller than Bonferroni corrected significance level when we performed gene level 

tests with all genes (2 × 10−6 = 0.05/25,000). To obtain the expected type 1 error rate at this 

significance level, at least 1 million simulation datasets were needed. However, generating 

genotypes was too time-consuming, due to computational burden. Therefore, we generated 

10,000 genotype datasets with lengths of 30kb, using SimRare, a program that generates 

variant data for a specific genomic region using forward-time simulations that incorporate 

realistic population demographic and evolutionary scenarios [Li et al., 2012]. We also made 

100 sets of continuous phenotypes to obtain 106 combinations of simulation datasets, using 

the model:

where Xi1 is a continuous covariate following a standard normal distribution, and Xi2 is a 

binary covariate following a Bernoulli distribution with a probability of 0.5. For simplicity, 

we performed the simulation study for the bivariate case. εi = (εi1,εi2)′ is an error vector 

following the bivaiate normal distribution with a mean of (0,0)′ and a variance-covariance 

of , where ρ is set to be one of (0.25, 0.5, 0.75). Note that the response 

variable, yik, was not affected by any of the genotype information to calculate type 1 error 

under the null hypothesis. The simulation study was performed on sample sizes of 500 and 

1,000. To apply MAAUSS, and compare it to other methods for rare variant analysis, we 

considered only rare variants having MAF ≤ 1%. We also filtered variants found in only one 
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or two individuals. The average numbers of variants in a gene after filtering were 280 and 

813, corresponding to sample sizes of 500 and 1,000, respectively.

Simulation of Empirical Power—We used similar approaches as above for type 1 error 

simulations, but also added genotype information to the phenotypes. Let t be the number of 

causal variants in a 10% subset randomly selected from the simulated rare variants passing 

the previous filtering criteria. We made 100 continuous phenotypes with a sample size of 

1,000, according to 100 genotype datasets randomly selected from the 10,000 genotype 

datasets generated for estimating type 1 error, using the model:

where Xi1, Xi2, and εik are defined the same as for the type 1 error rate simulations 

described above. βjk is the effect size of the j-th causal rare variant on the k-th phenotype. 

We set the value of βjk to ck|log10MAFj|, where MAFj is the minor allele frequency of the j-

th variant, meaning that rarer variants would affect more phenotypes. We next considered the 

ratio Δ (±2, ±1, ±0.75, ±0.5, ±0.25, ±0.1, 0) of c2 to c1; in other words, c2 = Δ × c1. Here, we 

set c1 to 0.05 and 0.2. We also took into account the directions of on βs a phenotype by 

randomly selecting a subset of βs in the opposite direction. We assumed that η% of the 

causal variants had effects in the opposite direction, where η = 0, 20, and 50. For example, 

when the value of η is 20, in the case of c1 = 0.2 and c2 = −0.1 (Δ = −0.5), 80% of causal 

SNP effects on the first and second phenotypes are 0.2|log10MAFj| and −0.1|log10MAFj|, 

respectively.

The remaining 20% of effects are −0.2|log10MAFj| and 0.1|log10MAFj| on the first and 

second phenotypes, respectively.

Results

Simulation of the Type 1 Error

Table I shows the empirical type 1 error rates for univariate SKAT (after multiplying two p-

values, obtained from each phenotype using SKAT, by 2, if at least one of them was smaller 

than α, it was counted as a significant result), TATES, and MAAUSS for each significance 

level α = 10−3, 10−4, and 10−5 for a sample size of 500. These results suggest that the type 1 

error rate is protected for all methods and the empirical type 1 error rates are similar. 

However, at the significance level of α = 10−5, MAAUSS (both homogeneous and 

heterogeneous cases) was less conservative than the other two methods. That is, there were 

more cases when MAAUSS had p-values smaller than the other two methods. For the 

sample size of 1,000, the empirical type 1 error rates are presented in Table II. While the 

type 1 error rate was slightly higher than that in the sample size of 500, the type 1 error rate 

was still preserved.

Statistical Power of MAAUSS and Other Methods

We compared the power of MAAUSS with two other methods, using 100 simulated datasets 

for several cases. We set the effects of the j-th SNP on the first phenotype to be 0.2|

Lee et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



log10MAFj| (c1 = 0.2) and 0.05|log10MAFj| (c1 = 0.05). The effect on the second phenotype 

was assumed to be prorportional to the effects on the first phenotype (βj2 = Δ × βj1). The 

proportionality parameter Δ, ranging from −2 to 2, represents the difference of SNP effects 

on each phenotype. The results for c1 = 0.2 are whon in Figure 1. The nine graphs present 

the statistical power of MAAUSS compared to univariate SKAT and TATES in different 

scenarios of the direction of effects on a phenotype η, and the correlations between 

phenotypes ρ. The x-axis presents Δ, and the y-axis represents the statistical power 

estimates, i.e., the proportion of significant results among 100 tests at the significance level 

α=10−6. Three plots in each row show the different settings of η (0, 20, and 50 from left to 

right) and three plots in each column represent the different correlation ρ between 

phenotypes (0.25, 0.5, and 0.75 from top to bottom). The statistical power increased when 

the directions of the SNP effects on a phenotype became similar.

When Δ has negative values, hetero-MAAUSS has similar or greater power than univariate 

SKAT and TATES, while the power of homo-MAAUSS is close to zero in all settings, due to 

assuming the effects of SNPs on phenotypes are all the same. The average MAF was 

0.004189 for a sample size of 1,000, and the average effect size on the first phenotype was 

0.4756. When Δ was equal to −1, the average effect size on the second phenotype was 

−0.4756. The large difference between the two effects, and the opposite directions, offset the 

effects of SNPs on phenotypes under the assumption of homogeneity. As the correlation 

increases, the power of hetero-MAAUSS also increases. As η increases (i.e., the directions 

of effects on a phenotype become more different), the difference of the power between 

hetero-MAAUSS and univariate SKAT or TATES increases. Specifically, when ρ and η are 

0.75 and 50, respectively, hetero-MAAUSS far surpasses the performances of univariate 

SKAT and TATES.

As Δ changes from a negative to a positive value, the power of homo-MAAUSS rapidly 

increases. Furthermore, when the value of Δ is close to 1, homo-MAAUSS has greater power 

than univariate SKAT and TATES. When the correlation between phenotypes is low (ρ = 

0.25), the power of hetero-MAAUSS is also higher than the other two methods. When the 

correlation is high (ρ = 0.75), the power of hetero-MAAUSS is slightly lower than univariate 

SKAT and TATES. There are some cases when the power of univariate SKAT and TATES 

are similar or greater than both homo- and hetero-MAAUSS. However, as ρ increases and β 
decreases, the power of MAAUSS exceeds that of univariate SKAT and TATES, under more 

cases of Δ.

The results for c1 = 0.05 are shown in Figure 2. The power is much lower than that in the 

case of c1 = 0.2, because of the small effect sizes. In all settings, univariate SKAT, TATES, 

and MAAUSS had similar power when the value of Δ was positive. However, when Δ has 

negative values, the power of hetero-MAAUSS is much greater than the other methods. 

Furthermore, as the correlation between phenotypes increases, the power of hetero-

MAAUSS also increases, especially when (ρ,η,Δ) are (0.75,0,-2), the power of hetero-

MAAUSS is 0.83, while the power of both univariate SKAT and TATES is 0.18.

In summary, if the directions of effects of SNPs are different on phenotypes, hetero-

MAAUSS has better power than other methods, especially when the correlation between 
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phenotypes is high. Furthermore, when the effects become similar (i.e., in the same 

direction), homo-MAAUSS tends to have the largest power.

Application to Korean Exome data

We next analyzed Whole Exome Sequencing (WES) data from the Korean population using 

the proposed method MAAUSS, in comparison to univariate SKAT and TATES. The 

estimated correlation between ALT and AST was 0.7255, as estimated using an REML 

approach with covariate adjustment, and the correlation was 0.7129, without covariate 

adjustment. We analyzed the data with several filtering option of rare variants. We used two 

types of filtering conditions: minor allele frequency (MAF) and minor allele count (MAC). 

We perform the analysis using the SNPs having MAF less than 1% or 5%, and having MAC 

greater or equal than from 2 to 4. Table III present the five genes significant at the 5% 

significance level after the Bonferroni correction by any of four methods (univariate SKAT, 

TATES, homo-MAAUSS, and hetero-MAAUSS). Table III shows the number of SNPs in 

each gene, and the p-values that have at least one significant result from the analyses based 

on several filtering options. The result of univariate SKAT was obtained by calculating the 

minimum p-value between two phenotypes and comparing it to 2.5% for Bonferroni 

correction. There are several genes that have only one variant. For these cases, the univariate 

SKAT analysis provided similar results to those of standard single variant analysis. Slight 

differences were caused by using the fixed effects or random effects. MAAUSS can also 

handle the genes with single variants and provided similar results to those from the standard 

analysis.

The GPT gene was detected only by hetero-MAAUSS when selecting the SNPs with 

MAF≤1% or 5% and MAC≥ 2 (p-value=2.84 × 10−6) whose significance was caused by 

three SNPs (var_8_145729713, var_8_145730446, and var_8_145731280). For the SNPs 

with MAC≥3, there was only one SNP (var_8_145730446) left. The p-value of hetero-

MAAUSS increased slightly, but remained very small. The other methods, univariate SKAT, 

TATES, and homo-MAAUSS, did not provide any significant results. The GPT gene is 

known to encode cytosolic alanine aminotransaminase 1 (ALT 1), and also be associated 

with fatty liver disease and liver cirrhosis [Safran et al., 2010].

The PCDHGB1 gene was found by homo-MAAUSS only when selecting the SNPs with 

MAF≤5% and MAC≥ 4 (p-value=4.26 × 10−6). The PCDHGB1 gene is known to be related 

to operational tolerance in liver transplantation [Martinez-Llordella et al., 2007]. This gene 

is included in a functional category of cadherins, which significantly differ between 

operationally tolerant recipients of deceased adult donor liver transplants and liver recipients 

in whom drug weaning was attempted but led to acute rejection requiring reintroduction of 

immunosuppressors.

The ZNF620 gene was identified by hetero-MAAUSS when selecting SNPs with MAF≤1% 

or 5% and MAC≥2 or 3 (p-value=9.80 × 10−8) whose significance was caused by four SNPs. 

We could locate no literature reports on the ZNF620 gene or its effect on liver function.
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Replication Study

We next performed a validation study for the three genes identified from the analysis of the 

discovery data of Korean population. The replication dataset was the HEXA-shared control 

dataset. The replication analysis found one significant gene, ZNF620, among the three 

remaining genes at a significance level of α=0.05, using both homo- and hetero-MAAUSS 

with SNPs having MAF≤5% and MAC≥2 to 4 (p-value=4.66 ×10–2 and 3.66 × 10−2, 

respectively). Especially, the ZNF620 gene was significant at the Bonferroni's significant 

level in discovery study by only hetero-MAAUSS not univariate SKAT or TATES. The 

ZNF620 gene is unknown to associate with certain diseases or traits. Thus, ZNF620 is a 

good candidate gene associated with liver function or a disease that requires further study.

Discussion

Several methods have been proposed for identifying rare variants within specific genomic 

regions. Although multivariate analyses of common variants are available, there are few 

methods for multivariate analysis of rare variants within a distinct region. Here, we proposed 

a new approach, MAAUSS, an extended method of SKAT for multiply correlated 

phenotypes. MAAUSS is a statistical method for performing association tests between SNPs 

in a region of interest and multiple phenotypes. We demonstrated that MAAUSS 

successfully conserved type 1 error rates and in many cases, had a higher power than the 

univariate SKAT and TATES methods. Homo-MAAUSS yielded more significant results 

when the effects of SNPs on phenotypes tended to be similar. Also, Hetero-MAAUSS, in 

particular, detected many significant results when the difference between effects on 

phenotypes was large and especially, when the directions of effects were different across 

phenotypes.

Moreover, MAAUSS can be applied to multiply correlated binary phenotypes, handled by a 

working correlation matrix, using the generalized estimating equation (GEE) approach [Lian 

et al., 1986]. This quasi-score type of statistics can be easily constructed for association tests 

[Godambe et al., 1989], and MAAUSS could also handle correlated binary and continuous 

phenotypes in a similar manner, using the GEE framework.

MAAUSS can be used under the assumption of homogeneous effects of a SNP on 

phenotypes or with no such assumption. If users have some information about the 

homogeneity of SNP effects in advance of the analysis, a more reasonable choice could be 

selected. However, that information is usually not known. Hetero-MAAUSS allows different 

effects of a SNP on phenotypes, although the dimension of the genotype matrix is larger 

than that in the homogeneous case, resulting in a lower speed of computation. The 

homogeneity of effects on phenotypes could be tested using statistical methods such as 

likelihood ratio tests. If the hypothesis of homogeneity is rejected, then hetero-MAAUSS 

should be used to analyze association.

Furthermore, our proposed MAAUSS method uses the same variance component τ for all 

phenotypes, meaning that MAAUSS assumes the same variance of SNP effects of on all 

phenotypes, even in the heterogeneous case. If the ranges of phenotypes are different, or the 

magnitudes of effects are distinct, assuming the same variance may not be appropriate. It 
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would also be possible to put a different variance component on each phenotype and then 

derive a statistic along with its distribution.

Computational time might be a weakness of MAAUSS. Since MAAUSS is an extended 

method of SKAT that expands a dimension of phenotypes and design matrices, analyzing a 

large number of phenotypes and a large sample size could become a computational burden. 

For example, if the number of phenotypes of interest is 10, then the length of a phenotype 

vector, the number of columns and rows of a covariate matrix would be 10 times larger (i.e., 

a 100 times larger covariate matrix), and also the genotype matrix would be 10 and 100 

times larger in the homogeneous and heterogeneous cases, respectively. We measured the 

computation times for the analysis of various number of phenotypes for sample sizes of 

1,000 and 5,000, and the results are presented in Table IV. The number of genes and 

covariates were 15,866 and 12 (age, sex, and top 10 principal components of genetic 

variation [Price et al., 2006]), respectively. For reducing the computation time and using 

software available, the covariates under the null were estimated first by the generalized least 

squares method. After estimating the covariates, the residuals from the null model were 

decomposed orthogonally. Finally, the meta-SKAT method applied to the decomposed 

residuals for estimating the score-type statistics. Although our effort for reducing the 

computation time, the computational time taken for analysis naturally increases as the 

number of phenotypes or samples increases. Such an increase of computational time might 

be caused by calculating score statistics. However, the computational time is smaller than m 

times of a univariate case, except for the sample size of 5,000 and the number of phenotypes 

of 10. So, the computational time of MAAUSS would not be a big hurdle.

In summary, we have introduced MAAUSS as a statistical method for genomic regionally-

based multivariate analysis that retains the beneficial features of SKAT, and considers either 

homogeneous or heterogeneous effects of a SNP on a phenotypes. We demonstrated 

MAAUSS to achieve increased power through a large number of simulations over a wide 

range of scenarios. Consequently, we propose the use of MAAUSS for rare variant analysis 

of multiply correlated phenotypes. Such knowledge could increase the efficacy of 

genotyping for phenotype prediction, including the recent adoption of genomic 

“personalized medicine.”
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Figure 1. The power of MAAUSS compared with univariate SKAT and TATES when c1 = 0.2

The effect of the j-th SNP on the first phenotype βj1 is 0.2|log10MAFj| and the effect on the 

second phenotype is Δ × βi1. The x-axis presents Δ and the y-axis represents the statistical 

power, i.e., the proportion of significant results among 100 tests at a significance level of α = 

10−6. The three plots in each row show the different settings of η. that are the proportions of 

different directions of effects on a phenotype. The three plots in each column represent the 

different correlations between phenotypes, ρ.
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Figure 2. The power of MAAUSS compared with univariate SKAT and TATES when c1 = 0.05

The effect of j-th SNP on the first phenotype βj1 is 0.05|log10MAFj|, and the effect on the 

second phenotype is Δ × βj1.
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Table I

Estimated type 1 errors of SKAT, TATES, and MAAUSS for a sample size of 500.

ρ α Univariate SKAT TATES Homo-MAAUSS Hetero-MAAUSS

0.25

10−3 6.51E-04 6.63E-04 7.08E-04 6.66E-04

10−4 4.90E-05 5.00E-05 5.20E-05 4.70E-05

10−5 2.00E-06 2.00E-06 3.00E-06 4.00E-06

0.5

10−3 6.36E-04 7.00E-04 6.46E-04 6.40E-04

10−4 5.90E-05 6.70E-05 6.00E-05 5.70E-05

10−5 2.00E-06 2.00E-06 8.00E-06 6.00E-06

0.75

10−3 6.13E-04 7.95E-04 6.63E-04 6.54E-04

10−4 5.20E-05 6.60E-05 6.30E-05 5.40E-05

10−5 3.00E-06 4.00E-06 7.00E-06 5.00E-06

The values in each cell represent the proportion of p-values under each significance level α for the results of 106 simulated phenotypes.
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Table II

Estimated type 1 errors of SKAT, TATES, and MAAUSS for a sample size of 1,000.

ρ α Univariate SKAT TATES Homo-MAAUSS Hetero-MAAUSS

0.25

10−3 7.45E-04 7.60E-04 7.50E-04 7.82E-04

10−4 7.10E-05 7.10E-05 7.10E-05 7.50E-05

10−5 2.00E-06 2.00E-06 7.00E-06 7.00E-06

0.5

10−3 7.32E-04 8.00E-04 7.73E-04 7.40E-04

10−4 7.50E-05 8.40E-05 8.40E-05 6.20E-05

10−5 5.00E-06 6.00E-06 5.00E-06 8.00E-06

0.75

10−3 6.68E-04 8.42E-04 7.48E-04 7.42E-04

10−4 6.40E-05 7.60E-05 6.40E-05 6.30E-05

10−5 5.00E-06 7.00E-06 5.00E-06 6.00E-06

The values in each cell represent the proportion of p-values under each significance level α for the results of 106 simulated phenotypes.
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Table III

Analysis results for testing rare variant effects on ALT and AST using univariate SKAT, TATES and MAASS 

for rare variants with different filtering options.

GPT PCDHGB1 ZNF620

MAF ≤1%

MAC ≥2

Discovery for 13,317 genes (cut off : 3.75E-06)

# of SNPs 3 3 4

ALT 5.51E-03 3.17E-02 3.52E-01

AST 4.70E-01 8.32E-05 3.98E-06

TATES 8.88E-03 1.34E-04 6.42E-06

Homo-M 7.59E-01 1.77E-04 8.02E-05

Hetero-M 2.84E-06 4.90E-04 9.80E-08

replication

# of SNPs 2 14 -

Homo-M 1.00E+00 9.47E-01 -

Hetero-M 9.96E-01 7.97E-01 -

MAC ≥3

Discovery for 11,348 genes (cut off : 4.41E-06)

# of SNPs - 2 4

ALT - 3.30E-02 3.52E-01

AST - 8.45E-05 3.98E-06

TATES - 1.36E-04 6.42E-06

Homo-M - 2.55E-04 8.02E-05

Hetero-M - 5.99E-04 9.80E-08

replication

# of SNPs - 14 -

Homo-M - 9.47E-01 -

Hetero-M - 7.97E-01 -

MAC ≥4

Discovery for 9,818 genes (cut off : 5.09E-06)

# of SNPs - 2 -

ALT - 3.30E-02 -

AST - 8.45E-05 -

TATES - 1.36E-04 -

Homo-M - 2.55E-04 -

Hetero-M - 5.99E-04 -

replication

# of SNPs - 14 -

Homo-M - 9.47E-01 -

Hetero-M - 7.97E-01 -

MAF ≤5% MAC ≥2

Discovery for 13,731 genes (cut off : 3.64E-06)

# of SNPs 3 6 4

ALT 5.51E-03 1.44E-03 3.52E-01

AST 4.70E-01 3.62E-06 3.98E-06

TATES 8.88E-03 5.83E-06 6.42E-06

Homo-M 7.59E-01 4.00E-06 8.02E-05

Hetero-M 2.84E-06 2.06E-05 9.80E-08

replication

# of SNPs 2 25 -

Homo-M 1.00E+00 4.12E-01 -

Hetero-M 9.96E-01 9.50E-02 -
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GPT PCDHGB1 ZNF620

MAC ≥3

Discovery for 12,139 genes (cut off : 4.12E-06)

# of SNPs - 5 4

ALT - 1.48E-03 3.52E-01

AST - 4.01E-06 3.98E-06

TATES - 6.46E-06 6.42E-06

Homo-M - 4.26E-06 8.02E-05

Hetero-M - 1.77E-05 9.80E-08

replication

# of SNPs - 25 -

Homo-M - 4.12E-01 -

Hetero-M - 9.50E-02 -

MAC ≥4

Discovery for 10,954 genes (cut off : 4.56E-06)

# of SNPs - 5 -

ALT - 1.48E-03 -

AST - 4.01E-06 -

TATES - 6.46E-06 -

Homo-M - 4.26E-06 -

Hetero-M - 1.77E-05 -

replication

# of SNPs - 25 -

Homo-M - 4.12E-01 -

Hetero-M - 9.50E-02 -

Five genes had at least one significant result using the four methods at the Bonferroni significance level. The significant results are shown in bold 

for each Bonferroni cutoff.
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Table IV

Computation time taken to analyze real data using SKAT and MAAUSS.

Time (min.) Univariate (SKAT)
2 phenotypes 3 phenotypes 5 phenotypes 10 phenotypes

Homo- Hetero- Homo- Hetero- Homo- Hetero- Homo- Hetero-

1,000 samples 6.46 6.59 6.65 8.87 9.04 14.60 14.72 49.30 50.45

5,000 samples 14.76 21.81 22.15 33.27 33.92 59.59 61.88 301.69 315.67
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