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Abstract 104 

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-105 

scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests 106 

now provide an opportunity to assess the associations between rare variants in lncRNA genes 107 

and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 108 

participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the 109 

National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine 110 

(TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare 111 

variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant 112 

aggregate association tests using the STAAR (variant-Set Test for Association using Annotation 113 

infoRmation) framework. We performed STAAR conditional analysis adjusting for common 114 

variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our 115 

analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all 116 

of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids 117 

Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally 118 

independent of common regulatory variations and rare protein coding variations at the same loci. 119 

We replicated 34 out of 61 (56%) conditionally independent associations using the independent 120 

UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare 121 

variants in lncRNA, implicating new therapeutic opportunities.122 
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Introduction 123 

Blood lipid levels, including low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), 124 

triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), are quantitative clinically 125 

important traits with well-described monogenic and polygenic bases1–19. Abnormal blood lipid 126 

levels contribute to risk of coronary heart disease (CHD) and, in clinical practice, several 127 

treatments, including statins, PCSK9 and ANGPTL3 inhibitors20–22, are available to reduce the 128 

risk of developing CHD. Each of these therapeutics has supporting evidence of their efficacy 129 

from human genetic analysis of blood lipid levels21–23.  130 

 131 

Long non-coding RNAs (lncRNAs) are broadly defined as transcripts greater than 200 132 

nucleotides in length that biochemically resemble mRNAs but do not code for proteins24. 133 

lncRNAs are known to perform important regulatory functions in lipid metabolism25–27. Rare 134 

variants (RVs) in lncRNAs have not been systematically explored for their impact on blood lipid 135 

levels as they are not comprehensively genotyped or imputed on non-WGS platforms. In 136 

addition, there are difficulties in defining testing units and selecting qualifying variants28. 137 

Rapidly growing knowledge about the regulatory elements of the non-coding genome29–33, large-138 

scale WGS studies 34–36, and new statistical methods 37–39 for variant set tests provide the 139 

possibility to assess the associations between plasma lipid traits and the genome-wide impact of 140 

lncRNAs.  141 

 142 

We examined the associations of rare variants in lncRNA genes from high-coverage WGS of 143 

66,329 participants from diverse ancestry who have blood lipid traits (LDL-C, HDL-C, TC and 144 

TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-omics for Precision 145 
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Medicine (TOPMed) program freeze 8 data34. We show that the rare noncoding variants in 146 

lncRNA genes located near known Mendelian dyslipidemia genes contribute to phenotypic 147 

variation in lipid levels among unselected individuals from population-based cohorts biobanks 148 

independently of common variants associated with blood lipid levels. 149 

 150 

Results 151 

Overview 152 

We performed a comprehensive evaluation of the association between quantitative blood lipid 153 

traits and rare variants in lncRNA genes across the genome (Figure 1). We systematically 154 

curated more than 165k lncRNA genes from the union of four human genome lncRNA 155 

annotations, including GENCODE 29,30, FANTOM5 CAT31, NONCODE32 and lncRNAKB33. 156 

We utilized the TOPMed Freeze 8 dataset of 66,329 participants from 21 studies with WGS and 157 

measured blood lipid levels and performed the rare variant (MAF <1%) association tests of 158 

curated lncRNA genes with four blood lipid phenotypes: LDL-C, HDL-C, TC, and TG. We 159 

further conducted the conditional analysis adjusting for known genome-wide association study 160 

(GWAS) variants from the Global Lipids Genetics Consortium (GLGC)18. Associations between 161 

lncRNA genes and lipids that were conditionally independent from the GWAS variants 162 

(conditional P value < 6.0e-04) were then tested using STAAR procedure for conditional 163 

analysis adjusting for rare nonsynonymous variants (MAF < 1%) within the closest protein 164 

coding gene and the nearby known lipid monogenic genes in the region. We performed 165 

replication in ~140�K genomes from UK Biobank40. We intersected our results with the gene 166 

expression signatures of lipid traits in 1,505 participants from the Framingham Heart Study 167 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.28.23291966doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.28.23291966
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

 

(FHS)41 with RNA-seq data and blood lipid levels and observed evidence that the lncRNA RVs 168 

may both influence their gene expression levels and impact lipid traits.  169 

 170 

Figure 1. A schematic illustration of the study.  171 

 172 

 173 

Characteristics of TOPMed participants 174 

We included 66,329 diverse participants from 21 cohort studies in the NHLBI TOPMed 175 

consortium with blood lipid levels. The discovery cohorts consisted of 29,502 (44.5%) self-176 

reported White, 16,983 (25.6%) self-reported Black, 13,943 (21.0%) self-reported Hispanic, 177 

4,719 (7.1%) self-reported Asian, and 1,182 (1.8%) self-reported Samoan participants 178 

(Supplementary Table 1, Supplementary Text). Among the 66,329 participants, 41,182 (62%) 179 

9 
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were female. The mean age of the 66,329 participants was 53 years (SD = 15). The mean ages at 180 

lipid measurement varied across 21 cohorts from 25 years (SD = 3.56) for the Coronary Artery 181 

Risk Development in Young Adults (CARDIA) to 73 years (SD = 5.38) for the Cardiovascular 182 

Health Study (CHS). We observed that the Amish cohort had a higher concentration of LDL-C 183 

(140 [SD = 43] mg/dL) and HDL-C (56 [SD = 16] mg/dL) as well as lower TG (median 63 [IQR 184 

= 50] mg/dL) consistent with the known founder mutations in APOB and APOC335. 185 

 186 

Identification of rare lncRNA variants associated with blood lipid traits 187 

We defined lncRNA testing units using the available genomic positions in four genome 188 

annotation projects described in the Methods. There were 11,349 lncRNA genes obtained from 189 

GENCODE29,30, 16,227 from FANTOM5 CAT31, 78,166 from NONCODE32 and 59,633 from 190 

lncRNAKB33. In total, we tested 165,375 lncRNA genes, among which, the average number of 191 

rare variants in each lncRNA was 483 (SD = 572). The minimum and the maximum number of 192 

rare variants among the lncRNAs being tested are 2 and 2947, respectively.              193 

 194 

Our aggregation of lncRNAs across four lncRNA resources led to an overlap in the lncRNA 195 

units, leading to non-independent tests of association of the lncRNAs with blood lipid levels. We 196 

estimated the effective number of tests (Meff) using a principal component analysis (PCA) based 197 

approach42 since the traditional Bonferroni correction would be too conservative and reduce 198 

power to detect association with blood lipid levels28. Meff was estimated as 111,550, providing a 199 

significance threshold of � � 0.05/111,550 � 4.5 
10-7. 200 

 201 

 202 
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Table 1. Summary of significant lncRNA associations for unconditional analysis, 203 

conditional analyses, and replication.  204 

Method LDL-C TC HDL-C TG Total No. 

STAAR Unconditional analysis* 28 20 19 16 83 

Conditioning on known lipid-associated 

variants ** 

20 14 15 12 61 

Conditioning on rare nonsynonymous 

variants within the closest gene and 

nearby lipid monogenic genes *** 

18 13 15 12 58 

Conditioning on rare synonymous 

variants within the closest gene and 

nearby lipid monogenic genes *** 

20 14 15 12 61 

Conditioning on rare pLoF variants 

within the closest gene and nearby lipid 

monogenic genes *** 

20 14 15 12 61 

Replication in UKBB WGS *** 13 7 8 6 34 

* Bonferroni correction level of 0.05/111,550 = 4.5e-07 205 

**Bonferroni correction level of 0.05/83 = 6.0e-04 206 

***Bonferroni correction level of 0.05/61 = 8.2e-04 207 

 208 

We applied STAAR (variant-Set Test for Association using Annotation infoRmation) 209 

framework37,38 to identify the lncRNA rare variant (RV) sets that associated with quantitative 210 

lipid traits (LDL-C, HDL-C, TC and TG) using TOPMed WGS data. STAAR-O identified 83 211 

genome-wide significant associations (28 with LDL-C, 20 with TC, 19 with HDL-C, and 16 with 212 
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TG) (Table 1, Supplementary Table 2). Among the 83 genome-wide significant associations, 213 

there are 54 unique lncRNAs. We observed that all the significant associations in the 214 

unconditional analysis were in the known lipid GWAS loci (defined as a ±500 kb window 215 

beyond a Global Lipids Genetics Consortium index variant)18. We performed a sensitivity 216 

analysis aggregating only exonic and splicing variants in lncRNA genes and observed consistent 217 

results to our primary analysis results (Supplementary Figure 1).  218 

 219 

Conditional analyses of trait-associated lncRNAs adjusting for known GWAS 220 

variants and nonsynonymous variants within the nearby lipid monogenic genes 221 

After conditioning on known lipid-associated variants in a ±500 kb window beyond a variant 222 

set18, 61 out of 83 associations (73%) remained significant (20 with LDL-C, 14 with TC, 15 with 223 

HDL-C, and 12 with TG) at the Bonferroni corrected level of 0.05/83 = 6.0 
 10-4, indicating 224 

that the associations between the lncRNA genes and lipid levels are distinct from the known 225 

GWAS variants. The most significant association for LDL-C and TC was the lncRNA 226 

NONHSAG026007.2 (chr19:44,892,420-44,903,056) near the APOE-APOC1 region. 227 

NONHSAG026007.2 remained significantly associated with LDL-C (P value = 2.44 
 10-15) and 228 

TC (P value =2.17 
 10-27) after adjusting for nearby known lipid-associated variants (Figure 2). 229 

The most significant associations for HDL-C and TG were NONHSAG063125.1 230 

(chr11:116,790,241-116,805,983) and NONHSAG09700.3 (chr11: 116,773,068-116,779,841), 231 

respectively, both near APOA5-APOC3-APOA1 region. NONHSAG063125.1 remained similarly 232 

associated after conditioning on known lipid GWAS variants, while NONHSAG09700.3 became 233 

even more significant (Figure 2). We then conditioned the GWAS-distinct associations on the 234 

rare nonsynonymous variants within the closest protein coding gene and nearby lipid monogenic 235 
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genes and observed that most (94.9%) of the lncRNA associations with lipid levels remained 236 

significant (Table 1; Supplementary Figure 2). Additionally, when conditioned on the rare 237 

synonymous variants or rare pLoF variants within the closest protein coding gene and nearby lipid 238 

monogenic genes, the number of associations remained as same as those GWAS-distinct 239 

associations (Table 1; Supplementary Figure 3).  240 

 241 

Replication of significant lncRNA-blood lipid trait associations 242 

Replication of 61 lncRNAs associated with blood lipid levels was evaluated in 139,849 UK 243 

Biobank individuals with WGS and blood lipid levels (Supplementary Table 3). We replicated 244 

34 out of 61 (56%) lncRNA associations with blood lipid levels at a Bonferroni-corrected 245 

threshold of 0.05/61 = 8.2e-04 (Supplementary Table 2). The most significant associations in 246 

the UK Biobank replication were NONHSAG025996.2 (chr19: 44,694,720-44,696,054) near 247 

APOE-APOC1 region for LDL-C, NONHSAG109604.1 near APOE-APOC1 region for TC, 248 

NONHSAG009700.3 near APOA5-APOC3-APOA1 region for both HDL-C and TG 249 

(Supplementary Table 2), which were consistent with the results from TOPMed.  250 

 251 

Figure 2.  Significantly associated lncRNAs with four blood lipid traits (STAAR-O P value 252 

< 4.5e-07). The lncRNA genes are ordered by chromosome, followed by genomic positions. 253 

Dots in red and blue represent the -log10(STAAR-O P value) of the STAAR unconditional and 254 

conditional analysis adjusting for known lipid-associated GWAS variants, respectively. The 255 

black dashed line is the Bonferroni correction level of 0.05/83 = 6.0e-04. Arrows indicate at least 256 

104 fold change of STAAR-O P values comparing the unconditional analysis and conditional 257 

analysis adjusting for known lipid-associated GWAS variants.  258 
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lncRNA gene expression analysis in FHS RNA-seq data 262 

We overlapped the significant lipid-associated lncRNA genes with the lncRNA genes available 263 

in the Framingham Heart Study (FHS) RNA-seq data generated by TOPMed43. Since the gene-264 

level expression data in FHS is annotated by GENCODE v30, we limited the lncRNA genes to 265 

those presented in GENCODE. Among the 54 unique lncRNA genes that are significantly 266 

associated with either one of the lipid traits using TOPMed WGS data, 10 lncRNA genes are 267 

annotated by GENCODE, and 8 out of 10 can be found in the FHS data. We performed 268 

association analyses of expression levels of those 8 significant lipid-associated lncRNA genes 269 

with blood lipid levels (LDL-C, TC, HDL-C, TG) (Supplementary Text, Supplementary 270 

Table 4). In total, we tested 12 associations of lncRNA gene expression with blood lipid level 271 

(Supplementary Table 4). The small proportion of overlapping was partially due to lncRNA 272 

genes’ generally lower expression. The lowly expressed genes were filtered out when processing 273 

the gene expression data.  274 

 275 

Four associations achieved Bonferroni-adjusted significance, including the gene expression level 276 

of ENSG00000267282.1 (chr19:44,881,088-44,890,922) associated with LDL-C, TC, and TG, 277 

and the gene expression level of ENSG00000266936.1 (chr19:11,010,917-11,016,011) 278 

associated with TC. ENSG00000267282.1 is an antisense of NECTIN2 (also known as PVRL2) 279 

(Figure 3). The nectin cell adhesion molecule 2 (NECTIN2) protein is a cell adhesion molecule 280 

involved in lipid metabolism44. Additionally, ENSG00000267282.1 was one of the lncRNA 281 

associations that we replicated in the independent UK Biobank (Supplementary Table 2). We 282 

also queried whether the RVs in this lipid-associated lncRNA led to an alteration of the 283 

corresponding lncRNA levels in the blood. However, due to the small number of overlapping 284 
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individuals between FHS RNA-seq data and TOPMed WGS data (N = 512), the number of RVs 285 

tested in ENSG00000267282.1 for the association of its gene expression level was only 59. 286 

Compared with the original analysis using all 66,329 individuals for the association with lipid 287 

levels, the number of RVs tested in ENSG00000267282.1 is 1417. As a result, the association of 288 

the RVs in the ENSG00000267282.1 with ENSG00000267282.1 gene expression levels in blood 289 

was not significant (STAAR-O P value = 0.68). 290 

 291 

Figure 3. lncRNAs in the APOE region associated with LDL-C. Upper panel shows the -292 

log10(STAAR-O P value) of the STAAR unconditional analysis, STAAR conditional analysis 293 

adjusting on known lipid GWAS variants, and STAAR conditional analysis adjusting for rare 294 

non-synonymous variants within the closest protein-coding gene and nearby lipid monogenic 295 

genes. The bottom panel is the nearby protein coding genes with the genomic coordinates. The 296 

vertical dashed line is the position of the known GWAS variants that were conditioned on. The 297 

black horizontal dashed line is the Bonferroni correction level of 0.05/111,550 = 4.5e-07, and the 298 

gray horizontal dashed line is the Bonferroni correction level of 0.05/83 = 6.0e-04.  299 
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Discussion 301 

In this study, we conducted genome-wide rare-variant associations of 165K lncRNAs in     302 

ancestrally diverse TOPMed participants (N = 66,329) with measured blood lipid levels. Using 303 

rare-variant association tests, we observed 83 rare lncRNAs significantly associated with blood 304 

lipid levels, and of these, 61 (73%) were conditionally distinct from common regulatory 305 

variation and rare protein coding variation at the same loci. Notably, most of these association 306 

signals were replicated in an independent WGS dataset, UK Biobank. We also highlighted one 307 

trait-associated lncRNA, ENSG00000267282.1(chr19:44,881,088-44,890,922), whose gene 308 

expression level was also shown to be associated with lipid levels using RNA-seq data from the 309 

FHS. Together, this systematic assessment of rare lncRNA variants suggests an additional 310 

genomic element in known lipid gene regions that is distinct from the known lipid genes.  311 

 312 

Genetic variation for blood lipids levels has been observed across the allelic spectrum with 313 

common, rare coding, and rare non-coding variants being associated with blood lipids levels36. 314 

Blood lipids have been associated with non-coding regulatory variants and coding variation in 315 

genes, and now also associated with lncRNAs. We show that all the trait-associated lncRNAs are 316 

in genomic regions previously associated with blood lipid traits, leading to the plausibility of 317 

these results. About 75% of the associations are conditionally distinct from common regulatory 318 

variation and rare protein coding variation at the same loci previously identified through GWAS 319 

and whole exome sequencing studies. This indicates that the regulatory variants through 320 

lncRNAs additionally contribute to the variation of blood lipid levels.  321 

 322 

 323 
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Despite numerous reports indicating the potential regulatory role of long non-coding RNAs 324 

(lncRNAs), only a small proportion of them have substantial evidence to support such 325 

claims25,26,45. The fraction of lncRNAs that are functional remains unknown. Through a 326 

comprehensive study of over 165,000 lncRNAs, we found that the majority of lncRNAs are not 327 

associated with a lipid trait, which aligns with the argument made previously that only a few 328 

human lncRNAs contribute centrally to human physiology45. However, there are still some 329 

lncRNAs that harbor variants that predispose individuals to phenotypic differences in blood lipid 330 

levels. Our results suggest that investigators should first prioritize individual lncRNAs near the 331 

known trait-associated loci for analysis, which is more likely to yield robust experimental 332 

observations.  333 

 334 

We further investigated one lncRNA, liver-expressed liver X receptor-induced sequence (LeXis), 335 

which is a mediator of the complex effects of liver X receptor (LXR) signaling on hepatic lipid 336 

metabolism to maintain hepatic sterol content and serum cholesterol levels46,47. A potential 337 

orthologue of LeXis in humans, TCONS_00016452 (chr9:104,990,086-104,991,780), is found in 338 

a region adjacent to the human ABCA1 gene. It didn’t stand out as a significant signal for any 339 

lipid trait in our study, which might suggest that it was not a functional orthologue of LeXis. 340 

However, the rapid evolutionary turnover of lncRNAs still hinders the functional identification 341 

between species45,47.  342 

 343 

Several limitations of our study should be noted. First, our RNA-seq analyses were restricted to 344 

GENCODE annotation. The small proportion of overlapping RNA-seq data and WGS data limits 345 

the ability to test rare lncRNA variants with their gene expression. Second, we did not correct for 346 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.28.23291966doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.28.23291966
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

the number of tested lipid traits however, there is a moderate to high correlation among the blood 347 

lipid levels and therefore this would lead to over correction. Third, to assess a causal role of the 348 

rare lncRNA variants, we need to further show that they are correlated with lncRNA expression 349 

but not correlated with altered expression or function of other genes nearby.  350 

 351 

In summary, our results from a large ancestrally diverse participants add further evidence that 352 

lncRNA is an additional genomic element in known lipid gene regions that is distinct from the 353 

known genes. We comprehensively evaluated 165K lncRNAs for their association with variation 354 

in lipid traits and replicated most of the signals in an independent UKB WGS cohort.  355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 
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Methods 370 

Discovery and replication cohorts 371 

Discovery cohorts. The discovery cohort included 66,329 participants in the NHLBI Trans-372 

Omics for Precision Medicine (TOPMed) from 21 cohort studies with Freeze 8 whole genome 373 

sequencing (WGS) and blood lipid levels available: Old Order Amish (Amish; n�=�1083), 374 

Atherosclerosis Risk in Communities study (ARIC; n�=�8016), Mt Sinai BioMe Biobank 375 

(BioMe; n�=�9848), Coronary Artery Risk Development in Young Adults (CARDIA; 376 

n�=�3,056), Cleveland Family Study (CFS; n�=�579), Cardiovascular Health Study (CHS; 377 

n�=�3,456), Diabetes Heart Study (DHS; n�=�365), Framingham Heart Study (FHS; 378 

n�=�3992), Genetic Studies of Atherosclerosis Risk (GeneSTAR; n�=�1757), Genetic 379 

Epidemiology Network of Arteriopathy (GENOA; n�=�1046), Genetic Epidemiology Network 380 

of Salt Sensitivity (GenSalt; n�=�1772), Genetics of Lipid-Lowering Drugs and Diet Network 381 

(GOLDN; n�=�926), Hispanic Community Health Study - Study of Latinos (HCHS-SOL; 382 

n�=�7714), Hypertension Genetic Epidemiology Network and Genetic Epidemiology Network 383 

of Arteriopathy (HyperGEN; n�=�1853), Jackson Heart Study (JHS; n�=�2847), Multi-Ethnic 384 

Study of Atherosclerosis (MESA; n�=�5290), Massachusetts General Hospital Atrial 385 

Fibrillation Study (MGH_AF; n�=�683), San Antonio Family Study (SAFS; n�=�619), 386 

Samoan Adiposity Study (Samoan; n�=�1182), Taiwan Study of Hypertension using Rare 387 

Variants (THRV; n�=�1982) and Women’s Health Initiative (WHI; n�=�8263). The 388 

discovery cohorts consisted of 29,502 (44.5%) White, 16,983 (25.6%) Black, 13,943 (21.0%) 389 

Hispanic, 4719 (7.1%) Asian, and 1182 (1.8%) Samoan. More information for study descriptions 390 

can be found in Supplementary Table 1.  391 
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Replication cohorts. We sought to replicate the findings using the UK Biobank WGS data for 392 

139,849 genomes with blood lipid traits40. The UK Biobank is a large, population-based 393 

prospective cohort of half a million United Kingdom residents aged 40–69 years. The replication 394 

cohorts consisted of 116, 335 White, and 23,335 others (Supplementary Table 3). 395 

Ethical regulations. Participants from each of the studies contributing to the NHLBI TOPMed 396 

consortium provided informed consent, and all studies were approved by IRBs in each of the 397 

participating institutions. 398 

 399 

TOPMed WGS Freeze 8 data 400 

Phenotype data. We included four conventionally measured blood lipids in this study: low-401 

density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), high-density 402 

lipoprotein cholesterol (HDL-C). Detailed phenotype calculation and harmonization were 403 

described elsewhere36. Briefly, LDL-C was either directly measured or calculated by the 404 

Friedewald equation when triglycerides were <400�mg/dL. We adjusted the total cholesterol by 405 

dividing by 0.8 and LDL-C by dividing by 0.7 when statins were present10,35. For triglycerides, 406 

we additionally performed the natural log transformation for analysis, since triglycerides were 407 

skewed. We then fitted a linear regression model for each phenotype to get the residuals after 408 

adjusting for age, age2, sex, race/ethnicity, study and the first 11 ancestral PCs (as recommended 409 

by the TOPMed DCC). For Amish participants, we additionally adjusted for APOB 410 

p.Arg3527Gln in LDL-C and TC, and adjusted for APOC3 p.Arg19Ter in HDL-C and TG48–50. 411 

The residuals were inverse rank normalized and rescaled by the standard deviation of the original 412 

phenotype within each group36.  413 
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Genotype data. Whole genome sequencing data were accessed from the TOPMed Freeze 8 414 

release. DNA samples were sequenced at the >30× target coverage at seven centers (Broad 415 

Institute of MIT and Harvard, Northwest Genomics Center, New York Genome Center, Illumina 416 

Genomic Services, PSOMAGEN [formerly Macrogen], Baylor College of Medicine Human 417 

Genome Sequencing Center, and McDonnell Genome Institute [MGI] at Washington 418 

University)34.  The reads were aligned to human genome build GRCh38 using the BWA-MEM 419 

algorithm. The genotype calling was performed using the TOPMed variant calling pipeline 420 

(https://github.com/statgen/topmed_variant_calling). The resulting BCF files were converted to 421 

SeqArray GDS format and annotated were annotated internally by curating data from multiple 422 

database sources using Functional Annotation of Variant–Online Resource (FAVOR 423 

(http://favor.genohub.org)37,39. The resulting annotated GDS (aGDS) files were used in this 424 

study. We computed the genetic relationship matrix (GRM) using R package PC-relate and 425 

subtracted GRM of those samples with lipid phenotypes using R package GENESIS.  426 

 427 

Human reference genome annotations for long non-coding RNA genes 428 

Multiple lncRNA annotations are available. We obtained four long non-coding RNAs 429 

(lncRNAs)annotation resources with different qualities and sizes and merged them to improve 430 

comprehensiveness. They included GENCODE 29,30, FANTOM5 CAT31, NONCODE32 and 431 

lncRNAKB33.  432 

GENCODE. GENCODE is the default human reference genome annotation for both Ensembl 433 

and UCSC genome browsers. It is also widely adopted by many large-scale genomic consortiums 434 

including TOPMed. GENCODE gene sets cover lncRNAs, pseudogenes and small RNAs in 435 

addition to protein-coding genes. The lncRNA annotation in GENCODE is almost entirely 436 
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manual, which ensures the quality and consistency of the data. We downloaded the GENCODE 437 

v38 (December 2020) human release from 438 

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.v38.long_nonc439 

oding_RNAs.gtf.gz, and kept 17,944 lncRNAs genes with a stable identifier and the genomic 440 

location information.   441 

FANTOM CAT. The Functional Annotation of the Mammalian genome (FANTOM) CAGE-442 

associated transcriptome (CAT) meta-assembly combines both published sources and in-house 443 

short-read assemblies. It utilized CAGE tags, which mark transcription start sites (TSSs), to 444 

identify human lncRNA genes with high-confidence 5' ends. We acquired the FANTOM CAT 445 

(lv3 robust) lncRNAs assembly from 446 

https://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.l447 

v3_robust.only_lncRNA.gtf.gz. Since the FANTOM5 annotations were on genome version hg19 448 

(GRCh37), we lifted over to genome version hg38 (GRCh38) using the UCSC liftOver tool51.  449 

lncRNAKB. Long non-coding RNA Knowledgebase (lncRNAKB) is an integrated resource for 450 

exploring lncRNA biology in the context of tissue-specificity and disease association. A 451 

systematic integration of annotations using a cumulative stepwise intersection method from six 452 

independent databases resulted in 77,199 human lncRNA. We downloaded the lncRNAKB v7 453 

from http://lncrnakb.org.  454 

NONCODE. NONCODE database integrated annotations from both literature searches and 455 

other public databases. The latest version, NONCODE version 6, is the single largest collection 456 

of lncRNAs, describing 96,422 lncRNA genes in humans. Each lncRNA gene in the NONCODE 457 

database had been assigned a unique NONCODE ID. We download the whole NONCODE v6 458 
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human data from 459 

http://www.noncode.org/datadownload/NONCODEv6_hg38.lncAndGene.bed.gz.  460 

Integration across the lncRNA annotations. We kept only those lncRNA genes ranging in 461 

length from 200 nucleotides (nt) to 5 kilobases (kb). We limited the maximum length of a 462 

lncRNA gene to 5kb to control for the computational complexity52. Overlapping lncRNA genes 463 

between FANTOM and GENCODE using the Ensembl stable identifier were removed. We split 464 

each annotation file into individual files by chromosome with the start and end coordinates of the 465 

lncRNA genes. All duplicated lncRNAs between annotation files were removed by checking 466 

whether they have the same start and end coordinates. We then used the following intersection 467 

order based on experimental validation to merge the four lncRNA annotations: 1. GENCODE, 2. 468 

FANTOM5 CAT, 3. NONCODE and 4. lncRNAKB. Approximately 165k lncRNA genes were 469 

left for further analysis.  470 

 471 

LncRNA rare variant association test 472 

lncRNA rare variant sets.  We obtained the start and end genomic coordinates (human genome 473 

build GRCh38) of the lncRNA genomic regions from our previously curated lncRNA gene list. 474 

We then defined aggregation units by using all the rare variants (MAF <0.01) based on their 475 

genomic locations with respect to the start and end genomic coordinates of the lncRNA genes. 476 

We removed lncRNA rare variant sets that had less than two rare variants. For sensitivity 477 

analysis, we only aggregated exonic and splicing variants in lncRNA genes provided by 478 

GENCODE v29, for which is the default genome annotation employed by TOPMed 479 

consortium34.  480 
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STAAR unconditional analysis. We applied the STAAR (variant-set test for association using 481 

annotation information) framework to identify rare variants in the lncRNA variant sets that are 482 

associated with four quantitative lipid traits (LDL-C, HDL-C, TG and TC). STAAR is a scalable 483 

and powerful variant-set test that uses an omnibus multi-dimensional weighting scheme to 484 

incorporate both qualitative functional categories and multiple in silico variant annotation scores 485 

for genetic variants. STAAR accounts for population structure and relatedness and is scalable for 486 

analyzing large WGS studies of continuous and dichotomous traits by fitting linear and logistic 487 

mixed models37,38.  To perform the STAAR unconditional analysis, we first fitted a STAAR null 488 

model using fit_null_glmmkin() function to account for sample relatedness with phenotypic data, 489 

covariates and (sparse) genetic relatedness matrix as input. For each of the four lipid phenotypes, 490 

we adjusted for age, age2, sex, study and PC1-PC11. We calculated the P value for each lncRNA 491 

rare variant set using STAAR-O, an omnibus test in the STAAR framework that combines P 492 

values from multiple annotation-weighted burden tests, SKAT and ACAT-V using the ACAT 493 

method. A total of 13 aggregated variant functional annotations were incorporated in STAAR-O, 494 

including three integrative scores (CADD53, LINSIGHT54 and FATHMM-XF55) and 10 495 

annotation principal components (aPCs) (Supplementary Table 5)38. All analyses were 496 

performed using R packages STAAR (version 0.9.6) and STAARpipeline (version 0.9.6).  497 

STAAR conditional analysis adjusting for known GLGC GWAS variants. We performed 498 

conditional analysis to identify lncRNA rare variant association independent of known lipid-499 

associated variants. We obtained a list of 1,750 significant index variants (Supplementary 500 

Table 6) associated with one or more lipid levels from The Global Lipids Genetics Consortium 501 

(GLGC) latest lipid GWAS results18,19,56. The positions of SNV were lifted over to genome build 502 

38. We adjusted for known lipid variants in a ±500 kb window beyond a variant set.  503 
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STAAR rare variant association test adjusting for nearby protein coding genes. The 504 

unconditional analysis showed that most lncRNA genes associated with lipids are near known 505 

monogenic lipid genes. We sought to perform conditional analyses adjusting lncRNA rare 506 

variant sets for nearby protein coding genes.  The adjusted nearby protein coding genes can be 507 

divided into two categories: the closest protein coding genes and those nearby known lipid 508 

monogenic genes, including ANGPTL8, APOA1, APOA5, APOB, APOC1, APOC3, APOE, 509 

CETP, LDLR, LPA, LPL, PCSK7, PCSK9, PLA2G15, TM6SF219. Our primary analysis was to 510 

adjust for only rare nonsynonymous variants (MAF < 1%) within nearby protein coding genes. 511 

We did two sensitivity analyses, one adjusted for rare synonymous variants (MAF < 1%) within 512 

nearby protein coding genes, and another adjusted for rare predicted loss-of-function (pLoF) 513 

variants (MAF < 1%) within nearby protein coding genes. For each participant, we created three 514 

burden scores separately by combining the minor allele counts of nonsynonymous, synonymous, 515 

and pLoF variants with a MAF < 1% carried within the closest gene and the nearby lipid 516 

monogenic genes in a 250kb window. We re-fitted null models similar to the unconditional 517 

analysis and added all the burden scores of the closest gene and the nearby lipid monogenic 518 

genes (if any) as additional covariates for each lipid phenotype. We then repeated the STAAR 519 

procedures to calculate the STAAR-O P values after adjusting for rare nonsynonymous, rare 520 

synonymous, and rare pLoF variants.  521 

Effective number of independent tests. Although we removed redundant lncRNAs, the 522 

remaining lncRNAs can still have overlapping regions across different genome annotations. 523 

Therefore, we adopted a principal component analysis (PCA) based approach, the simpleM 524 

method to calculate the effective number of independent tests42. For each chromosome, suppose 525 

we had tested K lncRNA rare variant set (lncRNA1, lncRNA2, …, lncRNAK) for N individuals 526 
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(1, 2, …, N), we first found the minor allele counts of rare variants (MAF < 1%) carried by each 527 

individual within each lncRNA rare variant set that were tested by STAAR and constructed a 528 

� 
 � matrix. We then derived the pairwise lncRNA correlation matrix RKxK that reflected the 529 

correlation structure among the tests from the constructed � 
 � matrix. We calculated the 530 

eigenvalues, ��: �� �  �� � �  � ���, from the pairwise lncRNA correlation matrix RKxK. The 531 

effective number of tests (Meff) for each chromosome was estimated as 532 

���� � ������ �. �.
∑ ��
�

���

∑ ��
�

���

� �, where � was a pre-defined parameter which was set to 0.95. We 533 

added up the effective number of tests (Meff) by each chromosome assuming independence 534 

between chromosomes. The Bonferroni correction formula was then used to calculate the 535 

adjusted significance level as 0.05/ Meff as used for unconditional analysis.  536 

 537 

LncRNA gene expression analysis 538 

Framingham Heart Study (FHS) RNA-seq data.  We utilized FHS RNA sequencing data to 539 

perform the association analyses of lncRNA expression levels with blood lipid traits. This study 540 

included 1505 participants from the FHS Third Generation cohort41. Blood samples for RNA seq 541 

were collected from Third Generation participants who attended the second examination cycle 542 

(2008–2011). Protocols for participant examinations and collection of genetic materials were 543 

approved by the Institutional Review Board at Boston Medical Center. All participants provided 544 

written, informed consent for genetic studies. All research was performed in accordance with 545 

relevant guidelines/regulations. The technical details for the blood draw and RNA sequencing 546 

can be found elsewhere43. For the association analyses (Supplementary Text), we first 547 

processed the RNASeq Data with following steps: 1. Sample QC by removing misidentified 548 

samples and sentinel control samples.  2. TMM normalization for the gene-level count data. 3. 549 
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Filtering low expression transcripts. 4. Regressing the log2(TMM+1) on the technical covariates, 550 

and the resultant residuals were used to perform association analysis. We fitted a linear mixed 551 

effects model for the residuals of the TMM normalized log2 transformed counts data and the 552 

lipid phenotypes adjusting for predicted complete blood count (CBC), constructed surrogate 553 

variables (SVs), sex, age, and family structure as variance-covariance matrix.   554 

Genome build 555 

All genome coordinates are given in the NCBI GRCh38/UCSC hg38 version of the human 556 

genome. 557 
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