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Rarefaction-singular shock dynamics for conserved volume
gravity driven particle-laden thin film

L. Wang,a) A. Mavromoustaki, A. L. Bertozzi, G. Urdaneta, and K. Huang
Department of Mathematics, University of California Los Angeles, 520 Portola Plaza,
Los Angeles, California 90095, USA

(Received 15 February 2014; accepted 13 January 2015; published online 9 March 2015)

We employ a recently proposed model [Murisic et al., “Dynamics of particle settling

and resuspension in viscous liquids,” J. Fluid. Mech. 717, 203–231 (2013)] to study

a finite-volume, particle-laden thin film flowing under gravity on an incline. For

negatively buoyant particles with concentration above a critical value and buoyant

particles, the particles accumulate at the front of the flow forming a particle-rich

ridge, whose similarity solution is of the rarefaction-singular shock type. We inves-

tigate the structure in detail and find that the particle/fluid front advances linearly

to the leading order with time to the one-third power as predicted by the Huppert

solution [H. E. Huppert, “Flow and instability of a viscous current down a slope,”

Nature 300, 427–419 (1982)] for clear fluid (i.e., in the absence of particles). We also

explore a deviation from this law when the particle concentration is high. Several

experiments are carried out with both buoyant and negatively buoyant particles

whose results qualitatively agree with the theoretics. C 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4913851]

I. INTRODUCTION

Similarity solutions have been shown to describe the evolution of thin-film equations for

viscous free surface flow, which find widespread application in fluid dynamics problems. One of the

earlier examples of similarity solutions in thin films is given by Huppert1 for the flow of a constant

volume of viscous fluid down a constant slope. A more complicated example takes the form of

a rarefaction-undercompressive shock for the case of thermally driven films opposed by gravity.2

Recently, there has been a lot of interest in understanding particle-laden, thin-film flows. Mixtures

of particles in viscous liquid, despite their wide range of industrial and geophysical applications,3,4

have received far less attention than homogeneous flows1,5 and granular flows.6,7 Recent work on

fluid particle mixtures has resulted in the derivation of a quantitatively accurate dynamic mathe-

matical model for such flows.8 This model takes the form of a 2 × 2 system of conservation laws.

However, analysis of that model is needed to develop general predictive theories for such flows.

One class of problems that is not well-studied are similarity solutions for constant volume thin

film slurries. This paper develops such a theory and compares directly with laboratory experiments.

Prior theoretical work on this model focused on the Riemann problem9,10—which arises from a

constant flux assumption rather than constant volume, coupled to a jump discontinuity such as that

which arises in the case of the initial mixture released from a gate. This paper complements that

literature by examining the constant volume problem—which is more relevant to typical experi-

mental scenarios and which necessarily builds on the theory of the Riemann problem. (We use this

nomenclature because of its simplicity at describing the relevant model problem.)

We briefly review some of the historical work on this problem and how it relates to this paper.

For gravitational transport of particles on an inclined surface within a thin film of viscous oil,

a)Author to whom correspondence should be addressed. Electronic mail: liwang@math.ucla.edu
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the authors in Refs. 11 and 12 first derived a lubrication model considering the effects of gravity,

capillarity, and hindered settling. Last year, a major breakthrough was made in Ref. 8 by adding

shear-induced migration effects for particles in the model, successfully capturing the three distinct

regimes observed in experiments. The three regimes are referred to as “settled,” where the particles

settle to the substrate with clear fluid flowing over them; “ridged,” where the particles accumulate

at the front of the flow; and “well-mixed,” which is a transient, intermediate regime (see Refs. 8

and 13 for more details). For slurries with neutrally buoyant particles, only the “ridged” regime is

observed experimentally. More recently, experiments were carried out14 to investigate the bidisperse

slurries composed of negatively buoyant particles, with one species being heavier than the other.

There, the authors concluded that, in the “settled” regime, there exists stratification of particles by

densities, due to the dominant gravitational effects. With the variation of experimental parameters

(such as inclination angle and particle volume concentration), our goal is to study the macroscopic

flow features. Among them, the front position is of paramount importance as it yields insight

into the behavior of the various flow patterns. In Ref. 15, extensive experiments were carried out

with qualitative trends suggesting that, although the presence of particles affects the geometry of

the propagating front significantly, the measured average position versus time shows self-similar

behavior as observed by Huppert.1 The paper16 develops a similarity solution theory for the earlier

model in Refs. 11 and 12; however, the solutions developed do not agree with experiments because

the critical physics of shear-induced migration is neglected from the earlier models. This paper fills

this gap in the literature, developing the appropriate similarity solution theory for the newer class of

conservation laws resulting in quantitatively different solutions that better match experimental data.

In addition, very recent experiments have been conducted for neutrally buoyant particles17 over a

wide range of system parameters such as the particle concentration and the incline of the slope. The

authors address the role of the particle migration on the shape of the velocity profile as well as the

good performance of the lubrication theory in predicting the front position.

In the current paper, we focus on the recent model in Ref. 8, which draws inspiration from

the work of Refs. 13 and 18. The model contains an equilibrium system in the wall normal direc-

tion accounting for the particle settling and shear induced resuspension, and a dynamics system

(2 × 2 system of conservation law) describing the flow along the substrate. These two systems are

separated based on the disparities in the length and time scales (lubrication scaling) and linked

via the flux functions in the conservation laws. Here, the particles and liquid are assumed to be

noncolloidal and incompressible, respectively, and the higher order effects such as surface tension

and normal component of gravity are committed. While the settled regime is carefully exam-

ined and compared with experimental data in Ref. 8, the ridged regime has much less analytical

studies, especially for the conserved volume initial data, which exhibits a self-similar solution of

rarefaction-singular shock type that has never been explored before. Unlike16 in which the theory

relies on the “well-mixed” assumption, we treat the full 2 × 2 system of conservation laws. We first

reduce the complexity of the rarefactions by making the assumption that in the long time limit, the

concentration in the rarefaction can be approximated by its value at ξ = x
t
= 0 to the leading order,

and recover the linear relationship between the leading shock position with time and the one-third

power (see (29)). We then derive a general connection between time and the moving contact line

(see (32) and Figs. 5 and 9), which shows a slight deviation from the one-third power law. As a

byproduct, we show that the singular mass corresponding to the particle-rich ridge converges to a

constant with an upper bound. We also carry out some experiments to verify our theory, which, as

opposed to8 that focuses on the “settled” regime, gives a first comparison of experimental data with

theoretical prediction for the “ridged” case (see Figs. 12 and 13).

The rest of the paper is organized as follows. We give a mathematical formulation of the

model used in this paper in Sec. II. In Sec. III, we study in detail the rarefaction-singular shock

structure for the two cases: (i) for negatively buoyant particles with concentration higher than the

critical value and (ii) for buoyant particles. Since the latter case lacks analysis, we summarize the

properties of its equilibrium model as well as the formation of the singular shock. In Sec. IV,

we discuss comparisons between experimental and theoretical results for suspensions composed of

polydimethylsiloxa (PDMS) oil and small, noncolloidal particles. Concluding remarks are given in

Sec. V.
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II. MATHEMATICAL FORMULATION

We use a theoretical model, derived in detail in Ref. 8, to describe the spatio-temporal evolution

of a slurry mixture composed of silicon oil and noncolloidal particles. This section reviews the

model derived in Ref. 8. The oil is assumed to be incompressible and of density ρpar and viscosity

µliq, while the particles have a density of ρpar. From now on, we use the subscripts liq and par to

denote the liquid and particle, respectively. A schematic of the apparatus used in the experiments is

shown in Fig. 1, where x is the axial flow direction, z is the direction normal to the inclined surface,

and α denotes the plane angle of inclination.

The equations governing the fluid dynamics are given by the three-dimensional continuity and

Stokes equations for an incompressible fluid,

∇ · u = 0, (1)

∇p − ∇ ·
�
µ(φ)

�
∇u + ∇uT

��
= ρ(φ)g, (2)

where ρ(φ) = [ρparφ + ρliq(1 − φ)] and φ is the particle volume fraction. u = (u, v,w), and u, v , and

w represent the axial, transverse, and normal components of the slurry mixture velocity, respec-

tively. We note that the width of the plane is considered to be infinitely wide, and hence, any

transverse effects are assumed to be negligible; this results in v = 0. Under the specific choice of

particle and liquid parameters detailed in Sec. IV, we assume the suspension is locally Newtonian,

where the effective viscosity only depends on the particle volume fraction,19

µ(φ) = µliq

(

1 −
φ

φmax

)−2

. (3)

It is noted that the viscous forces in this setting are dominant compared to inertial forces; hence, any

contributions due to inertia are ignored. For the particle volume fraction, we use a transient, particle

transport equation which models the flow of particles due to advection and flux gradients,

φt + u · ∇φ + ∇ · J = 0, (4)

with

J = Jgrav + Jcoll + Jvisc, (5)

α

FIG. 1. Schematic plot of the geometry of the setup.
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where J represents the total flux of particles comprised of flux due to gravity, Jgrav, shear-induced

migration as a result of particle collisions, Jcoll, and viscosity gradients, Jvisc. The various contribu-

tions of the flux gradients are given mathematically as follows:

Jgrav =
d2φ(ρpar − ρliq)

18µliq

f s(φ)g,

Jcoll = −
Kcd2

4
(φ∇γ̇ + φγ̇∇φ) , (6)

Jvisc = −
Kvd

2

4µ
φ2γ̇ µφ∇φ.

In Eq. (6), d denotes the particle diameter, γ̇ = ∂u
∂z

is the shear rate, f s(φ) = 1 − φ describes hin-

dered particle settling due to gravity, while Kc and Kv are empirical constants associated with

the shear-induced migration arising from changes in the particle volume fraction and the effec-

tive suspension viscosity; these are taken as Kc = 0.41 and Kv = 0.62.13,20 Equations (1)–(4) are

solved subject to boundary conditions applied at the wall, located at z = 0 and at the free surface,

z = h(t, x). These correspond to the no-slip and no-penetration boundary condition at the wall

and the tangential and normal stress balances at the free surface. Further, the kinematic boundary

condition is employed to describe the motion of the fluid at the free surface,

D

Dt


z − h(t, x, y)


= 0, (7)

where D/Dt represents the material derivative. For the particle fluxes, we impose no-flux boundary

conditions at the wall and free surface for the particles,

J · n = 0, (8)

where n is the outward normal unit vector. To proceed, we render the above-mentioned equations

dimensionless by employing the scalings below, following the work of Murisic et al.:8

[x] =
H

ϵ
, [z] = H, [φ] = 1, [µ] = µliq, [u] =

H2ρliqg sin α

µliq

, [t] =
[x]

[u]
, [p] =

µliq[u]

ϵH
, (9)

where H is the typical height of the free surface and ϵ is a small lubrication parameter given by

the ratio of H to a typical length scale for the length of the plane, say L, i.e., ϵ ≡ H/L. In our

experiments, H = 1 mm and L = 90 cm.

To derive the reduced model,8 we employ a separation of time scales. More specifically, we

consider the fast dynamics of the concentration φ(t, x, z) profile in z-direction and a slow suspension

flow down the incline since H ≪ L. The fast process allows an averaged measure of φ(t, x, z) and

velocity u(t, x, z) along the normal direction and results in stationary particle fluxes in z. In the

slower process, the total suspension thickness h(t, x) and total number of particles n(t, x) are driven

by conservation laws. To apply this separation, we define the ratio between particle diameter d (d ∼
0.25 mm, see Table I) and H as η = d/H which may range within 0 ≤ η ≤ 1; however, to satisfy

the assumptions made in the model, we demand that η does not approach the two extrema. As η

approaches zero, the mixture becomes colloidal and additional fluxes are required to describe the

physics. The other limit is considered impractical since, as η approaches 1, the particle diameter ap-

proaches the height of the thickness of the slurry. Therefore, to ensure that the quantity η is defined

within physical limits that satisfy the theoretical model, we introduce the following distinguished

limit, ϵ ≪ η2 ≪ 1 that results in the following scaling:

η2 = ϵ β, 0 < β < 1, (10)

which is implemented in the dimensionless version of particle transport equation (4).

Upon introducing scalings (9) and limit (10) in the relevant equation and defining τ = z
h(t,x)

(thus 0 ≤ τ ≤ 1), the resulting equilibrium dynamics in z-direction are given by the solution of the
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TABLE I. Experimental parameters used.

Particles d (mm) ρp (kg/m3)

Glass, negatively buoyant 0.25-0.50 2500

Glass, buoyant 0.25-0.55 640

Fluid ν (m2/s) ρl (kg/m3)

PDMS oil 10−3 970

following ordinary differential equation (ODE) system:



(

1 + C1

φ

φmax − φ

)

σφ′ + C2 − (C2 + 1)φ − ρsφ
2 = 0, (11a)

σ′ = −(1 + ρsφ), (11b)

σ(τ = 1) = 0, (11c)

σ(τ = 0) = 1 + ρsφ0(t, x). (11d)

Here, φ and σ depend on (t, x; τ), and the derivatives are with respect to τ. σ(t, x; τ) is the shear

stress that relates to velocity u via

u′(t, x; τ) =
σ(t, x; τ)

µ (φ(t, x; τ))
, u(x, t; 0) = 0, (12)

where the derivative is again with respect to τ. φmax is the maximum packing fraction, and ρs =
ρpar−ρliq

ρliq
, C1 =

2(Kv−Kc)

Kv
, C2 =

2ρs cotα

9Kc
are three constants.21 The solution of (11) is parametrized by a

z−averaged particle volume fraction φ0(t, x),

φ0(t, x) =

 1

0

φ(t, x; τ)dτ ∈ [0, φmax]. (13)

Then the slow dynamics in x−direction obeys following system of conservation laws for h(t, x) and

integrated volume fraction of particles n(t, x) = h(t, x)φ0(t, x):

ht +
�
h3 f (φ0)

�
x
= 0, nt +

�
h3g (φ0)

�
x
= 0, (14)

whose fluxes are obtained through

f (φ0) =

 1

0

u(t, x; τ)dτ, g (φ0) =

 1

0

φ(t, x; τ)u(t, x; τ)dτ. (15)

This model applies to both buoyant and negatively buoyant particles with different parameters.

For negatively buoyant particles, equilibrium system (11) has an unstable critical value φcrit for the

particle volume fraction, which leads to three different regimes observed in the experiments: settled

(φ0 < φcrit), mixed (φ0 = φcrit), and ridged (φ0 > φcrit). Here, φcrit depends on the inclination angle

in the sense that smaller angle α leads to smaller φcrit. The three regimes are shown in Fig. 2 for

negatively buoyant particles. For buoyant particles, only the ridged regime appears and we will

discuss it in detail in Sec. III B.

III. SIMILARITY THEORY

A. Negatively buoyant particles

In this section, we consider the flow of a mixture of oil and negatively buoyant particles

described mathematically by Eqs. (11)–(14) with conserved volume initial data

h(0, x) =


hI , for 0 ≤ x ≤ x I

0, elsewhere
, φ0(0, x) = φI , n(0, x) = φIh(0, x), (16)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.97.27.21 On: Wed, 15 Apr 2015 05:23:36



033301-6 Wang et al. Phys. Fluids 27, 033301 (2015)

FIG. 2. Flow regime patterns emerging from a fixed volume of silicon oil laden with negatively buoyant beads. Here, the

particle volume fraction is fixed at 0.40, while the plane angle of inclination is varied from 15◦ (left) to 30◦ (middle) to 45◦

(right) corresponding to the “settled,” “ well-mixed,” and “ridged” regime, respectively. In the “settled” regime, clear fluid

(shown in yellow) flows over the particle-rich fluid while in the “ridged” regime, the particles accumulate at the front forming

a particle-rich ridge. The middle panel shows an intermediate regime where the particles remain well mixed in the fluid. The

experiments were run in the Applied Mathematics Laboratory at University California, Los Angeles (UCLA).

as displayed in Fig. 3, panel (a). This can be viewed as a combination of two Riemann initial

conditions, and in what follows, we named the left jump as 1-Riemann data and right jump as

2-Riemann data. Here, we focus on the high concentration case, i.e., φI > φcrit. Then Fig. 3 shows

the typical solution of h, n, and φ0 at time t = 4.5 akin to those observed in experiments, the

so-called rarefaction-singular shock.

The shock dynamics have been carefully studied in Refs. 9–11, while the analysis for rarefac-

tion is only briefly referred to in Ref. 9. Here, we begin our discussion with the rarefaction theory.

The Jacobian of hyperbolic system (14) is given by

J = h2 *,
3 f − φ0 f ′ f ′

3g − φ0g
′ g′

+- ≔ h2 J̃, (17)

where the derivatives are with respect to φ0. Denote the self-similar variable ξ = x
t
, then for a given

state (hI ,nI), the sets of the states (hr ,nr) that can be connected to (hI ,nI) by a rarefaction curve lie

on the integral curve, which is defined as d
dξ

(

hr(ξ)
nr(ξ)

)

=
r̃i(φr )

∇(h2
r λ̃i(φr ))·r̃i(φr )

, i = 1, 2, where ∇ = (∂h, ∂n),

λ̃i and r̃i are the eigenvalues and corresponding eigenvectors for J̃. A typical plot of the integral

curve for a given right state (hR,nR) = (1,0.5) is displayed in Fig. 4, where the dashed curve refers

to the 1-wave and solid curve refers to the 2-wave.

In general, for a 2 × 2 system of conservation law with Riemann initial data, one would expect

two waves to connect the left and right states. However, the analysis in Ref. 10 has already shown

the existence of only one singular shock for the 2-Riemann data. While Figs. 3(c) and 4 suggest

that the 1-Riemann data only result in a 2-rarefaction. Henceforth, the solution for system (11)–(14)

with initial data (16) only contains two waves, one for each Riemann data, namely, a 2-rarefaction

following a singular shock.

More precisely, the rarefaction wave (hr(ξ),nr(ξ)) takes the form,

d

dξ
*,
hr(ξ)

nr(ξ)
+- =

r̃2(φr)

∇
�
h2
r λ̃2(φr)

�
· r̃2(φr)

=
r̃2(φr(ξ))

hr(ξ)

(

2λ̃2(φr) − φr
dλ̃2(φr )

dφr
,
dλ̃2(φr )

dφr

)

· r̃2(φr(ξ))

, (18)
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ba

c

FIG. 3. (a) Initial profile for h representing a finite volume setup. Here, xI = 0.25, hI = 1. (b) Numerical solution for h and

n at t = 4.5. (c) Numerical solution for φ0 at t = 4.5. The plane angle of inclination was chosen as α = 30◦ and the initial

total volume fraction was set to φI =φ0(0, x)= 0.5.

with the right boundary condition

hr

(

xs

t

)

= hliq, nr

(

xs

t

)

= npar, (19)

where xs(t) denotes the singular shock position; λ̃2 and r̃2 represent the larger eigenvalue and

corresponding eigenvector to matrix J̃, and ∇ takes (∂h, ∂n) as before.

FIG. 4. Rarefaction integral curve for a given right state (hR, φR)= (1,0.5) (shown by a circle marker). The dashed curve

refers to the 1-wave and the solid curve refers to the 2-wave.
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We claim that the solution to (18)–(19) satisfies hr(0) = 0, nr(0) = 0. This is obtained by

noticing that the rarefaction wave satisfies the relation ξ = h2
r(ξ)λ̃2(φr(ξ)), with h2

r(ξ)λ̃2(φr(ξ)) be-

ing the eigenvalue of system (14). Thus, hr(ξ = 0) = 0 because λ̃2(φr(ξ)) is nonzero. Moreover, if

nr(0) , 0, we have φr(0) =
nr (0)

hr (0)
= ∞, which is physically unrealistic.

Next, since hr(ξ)φr(ξ) = nr(ξ), taking derivative with respect to ξ leads to φ′r(ξ)hr(ξ) +

φr(ξ)h
′
r(ξ) = n′r(ξ), and φr(0) can be computed via

φr(0) =
n′r(0)

h′r(0)
=

r̃
(2)

2
(φr(0))

r̃
(1)
r (φr(0))

=
λ̃2(φr(0)) − (3 f (φr(0)) − φr(0) f ′(φr(0)))

df

dφr
(φr(0))

, (20)

where we have used the fact that hr(0) = 0 and thus, n′r(0) = h′r(0)φr(0). Here, the derivatives for

hr and nr are with respect to ξ. r̃
(1)

2
and r̃

(2)

2
denote the one and two component for r̃2, respectively.

Therefore, λ̃2(φr(0)) = 3 f (φr(0)) and thus φr(0) = φcr it.

To solve (18), (19) is not an easy task. Inspired by the experiments that show x ∝ tα with α < 1,

we observe that, in the long time limit, ξ approaches 0. Thus, we can approximate φr(ξ) by φr(0) to

the leading order, and (18) becomes

dhr(ξ)

dξ
≃

1

hr(ξ)

r̃
(1)

2
(φr(0))�

2λ̃2(φr(0)) − φr(0)λ̃
′
2
(φr(0)), λ̃

′
2
(φr(0))

�
· r̃2(φr(0))

≔
1

hr(ξ)
A, (21)

dnr(ξ)

dξ
≃

1

nr(ξ)

r̃
(2)

2
(φr(0))φr(0)�

2λ̃2(φr(0)) − φr(0)λ̃
′
2
(φr(0)), λ̃

′
2
(φr(0))

�
· r̃2(φr(0))

≔
1

nr(ξ)
B. (22)

As a result, the rarefaction shapes like

hr(ξ) ≃
√

2A


ξ, nr(ξ) ≃
√

2B


ξ. (23)

As already studied in Ref. 10, in the presence of the singularity at the wave front, the mass of

the mixture and particles (h and n) accumulate in the singular region, and the accumulation rate

satisfies the generalized Rakine-Hugoniot condition.22 That is, if we define the singular mass as

Mh(t) =


|x−st |<δ

h(t, x)dx, Mn(t) =


|x−st |<δ

n(t, x)dx, (24)

with s denoting the shock speed, their growth rate satisfies

dMh

dt
= s(hR − hL) −


h3
R f

(

nR

hR

)

− h3
L f

(

nL

hL

)
,

dMn

dt
= s(nR − nL) −


h3
Rg

(

nR

hR

)

− h3
Lg

(

nL

hL

)
.

(25)

Now, using the conservation of mass, we have

t

 xs
t

0

√
2A



ξdξ + Mh(t) = hI x I , (26)

t

 xs
t

0

√
2B



ξdξ + φmaxMh(t) = φIhI x I . (27)

Here, we make use of the fact that the singular mass in n and h satisfy the relationship Mn(t) =

φmaxMh(t). As explained in Ref. 10, this can be realized either by the asymptote theory or the

experimental observations that the particles pile up very tightly in the ridge regime. Notice that

when φr(0) = φcrit, the 2-eigenvalue and 2-eigenvector are λ2 = 3 f (φcrit), r2 = (1 φcrit)
T . Therefore,

B = φ2
crit

A, and the following relations are satisfied:

Mh(t) =
(φI − φcrit)hI x I

φmax − φcrit

, xs = *,
(φmax − φI)hI x I

2
3

√
2A(φmax − φcrit)

+-
2
3

t
1
3 ≔ C0

st
1
3 . (28)
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ba

FIG. 5. Negatively buoyant particles. (a) Plots of shock wave front xs versus time1/3 for different concentrations φI =

0.5, 0.55. Grey solid lines: numerical simulation of (14). Black dash lines: slope calculated from (28). (b) Plots of Pc in

(32). The plane angle of inclination was chosen as α = 30◦, and the initial data for (a) and (b) are xI = 0.15, hI = 1.

Then from (21), one see that A = 1
6 f (φcrit)

, and f (φcrit) =
1
3
(1 + ρsφcrit)

(

1 − φcrit

φmax

)2
by solving (11)

and (12) with φ(τ) ≡ φcrit. Henceforth, further simplification of (28) leads to

xs =

(1 + ρsφcrit)

(

1 −
φI

φmax

)2 9h2
I
x2
I

4


1
3

t
1
3 . (29)

As written, Eq. (29) simply states that in the long time limit, the shock front advances proportional

to the time
1
3 , which is a reminiscent of Huppert’s formulae for the clear fluid.1

In fact, if we assume the suspension stay well-mixed for all time with concentration φI , then a

direct extension of Huppert’s formula implies

xs =

(1 + ρsφI)

(

1 −
φI

φmax

)2 9h2
I
x2
I

4


1
3

t
1
3 . (30)

Then a comparison of (29) and (30) suggests that the effects of particle settling and resuspension

slow down the advancing flow a little bit. Another observation is that the coefficient in (29) de-

creases as φI increases, which is consistent with the experimental results discussed by Ward et al.15

Fig. 5(a) plots the shock wave front versus time
1
3 , where the solid line is obtained by solving the

system of conservation laws (14) and the dashed line has a slope given by (29). We observe that

(29) is somewhat underestimated due to approximation (23) being only accurate to the leading

order.

As a matter of fact, we can have a more precise result without doing the approximation. Recall

that for given left and right states (hL, φL) and (hR, φL), the singular shock speed follows:10

s =

�
h2
L
+ h2

R
+ hLhR

�
(φmax f (φL) − g(φL))

φmax − φL

. (31)

Then in our case with hL = hr(ξ), φL = φr(ξ), and hR = 0, we have

dxs(t)

dt
=

h2
r (φmax f (φr) − g(φr))

φmax − φr

=
φmax f (φr) − g(φr)

(φmax − φr)λ̃2(φr)

xs

t
≔ Pc

xs

t
, (32)

where we have used the relation ξ = x
t
= h2

r(ξ)λ̃2(φr(ξ)). This implies xs(t) ∝ tPc, where Pc is given

in Fig. 5. Here, one observes that Pc is around 1
3

for φ0 > φcrit, which validates the approximation in

the leading order. Then, the conservation of mass

t

 xs
t

0

hr(ξ)dξ + Mh(t) = hI x I , t

 xs
t

0

nr(ξ)dξ + φmaxMh(t) = hI x IφI
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gives rise to hr(ξ) ∝ ξα and nr(ξ) ∝ ξα with α =
Pc

1−Pc
. Moreover, we obtain the form of the

singular mass, Mh(t) =
φI−φr

φmax−φr
hI with φr ∈ [φcrit, φI], which implies the following upper bound:

0 ≤ Mh(t) ≤ hI min



φI − φcrit

φmax − φcrit

, φI



. (33)

B. Buoyant particles

In this section, we consider suspensions with buoyant particles. The model remains the same

as in (11)–(14) but with the density for particles smaller than liquid, and thus ρs =
ρpar−ρl iq

ρl iq
< 0.

Then the two constants in (11) have signs C1 =
2(Kv−Kc)

Kv
> 0 and C2 =

2ρs cotα

9Kc
< 0. Notice that

contrary to the negatively buoyant case, we have for φ ∈ [0, φmax], ρsφ
2 + (C2 + 1)φ − C2 > 0 for

any angle α ∈ [0,90◦]; thus, there is no critical point and particles tend to the front to form the

particle-rich ridge. Figure 6 gives a typical plot of particle volume fraction φ, shear stress σ, and

suspension velocity u for α = 30◦. It is interesting to point out that the shape of velocity u is

blunting in contrast to the parabolic profile for homogeneous Newtonian fluids, which is in good

agreement with the experimental observation in Ref. 17. Figure 7 compares the fluxes f (φ0) and

g (φ0) for buoyant and negatively buoyant particles for α = 30◦. One noticeable difference lies in the

panel (c), where we plot
g (φ0)

φ0 f (φ0)
versus φ0. This ratio indicates the relative speed of particles and

bulk fluid. Namely, if it is greater than one, then fluid flows faster than particles and leads to ridged

regime; while if it is less than one, it results in a settled regime. Then as shown in panel (c) in Fig. 7,

ba

c

FIG. 6. Plots of solutions to (11) with buoyant particles for α = 30◦. The horizontal axis represents the τ variable. Different

curves refer to different data φ0. Panel (a): particle volume fraction φ. φ0 is decreasing from top to bottom, left to right. Panel

(b): shear stress σ, φ0 is decreasing top-down. Panel (c): suspension velocity u, φ0 is decreasing bottom-up.
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ba

c

FIG. 7. Fluxes f [panel (a)] and g [panel (b)] for buoyant and negatively buoyant cases. Plots of g /( f φ0) [panel (c)] for both

buoyant and negatively buoyant cases. The plane angle of inclination is set to α = 30◦.

such ratio in the buoyant case stays above one, and for the negatively buoyant case, it transits from

less than one to larger than one at the critical point, just as we expected.

1. Singular shock formation

Since the formation of the singular shock for buoyant particles is similar to the negatively

buoyant case with high particle concentration, the results in Ref. 10 can be applied here with a slight

change to fit the buoyant parameters. Here, it is customary to give a brief explanation of singular

shock, and a grasp of the following simple statements will suffice our purpose.

ba

FIG. 8. (a) The entropy-satisfying shocks connecting the left state (hL, φL)= (1,0.3) (black curves) and right state

(hR,φR)= (0.01,0.3) (grey dashed curves). (b) Replotted Hugoniot loci from panel (a) with vertical axis representing

φmax−φ0 and horizontal axis representing 1
h

. The plane angle of inclination is α = 30◦.
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ba

FIG. 9. Buoyant particles. (a) Plots of singular shock front xs versus time1/3 for different values of concentration:

φI = 0.3, 0.4. Grey solid lines: numerical simulation of (14); black dash lines: slope calculated from (28). (b) Plots of

Pc in (32) for the buoyant case. Again, α = 30◦, and the initial data for (a) and (b) are xI = 0.15, hI = 1.

Given a left state (denoted as (hL, φI)), first compute B and θ via equations (4.6) and (4.7) in

Ref. 10, then we can define a threshold for the thickness of the right state as h∗
R
= hL

1−cos θ
3
+
√

3 sin θ
3

1+2 cos θ
3

in the sense that for a given right state (hR, φI), if hR > h∗
R

classical double shock forms, whereas

hR ≤ h∗
R

induces a singular shock. This is because the Hugoniot loci (the collection of states that

can connect to the left and right states through a shock) for the left and right states are asymptoti-

cally parallel (which means they are parallel when h is sufficiently large) that fails to produce an

intersection as the intermediate state for double shock. Fig. 8 displays the Hugoniot loci for left

and right states (hL = 1, φI = 0.3) and (hR = 0.01, φI = 0.3), which clearly shows the asymptotic

parallelism of them. The singular shock speed still follows (31).

2. Rarefaction-singular shock solution

By analogy with the negatively buoyant case, we first approximate φr(ξ) by φr(0) near ξ = 0,

then we can compute φr(0) as in (20), and get φr(0) = 0 in this case. A similar approach in

(21)–(27) applies and yields the relationship between particle front position and time as in (28).

This relation is shown in Fig. 9(a), where the black line is obtained by solving the hyperbolic

conservation laws and the dashed line has the slope in (28). We can also derive the relations between

time and shock position similarly using (32) but with f and g for the buoyant case. A typical plot

of Pc is given in Fig. 9(b) for α = 30◦. It is again shown that Pc is in the neighborhood of 1
3
. As a

result, the singular mass has same estimate (33).

It is also worth comparing the particle front position versus time through Eq. (29) for negatively

buoyant and buoyant cases. The results are shown in Fig. 10, which qualitatively agree with the

experimental results in Refs. 15 and 17. We observe that the buoyant particles are slower than

the negatively buoyant ones. Moreover, the comparison with Huppert’s formula (30) (this formula

assumes the particles and fluid are “well-mixed”) implies that in the presence of particle setting

and resuspension, if the particles are negatively buoyant, the speed of the slurry mixture is slightly

decreased, while on the other hand, if the particles are buoyant, the speed of the slurry mixture is

increased.

IV. EXPERIMENTS

A. Procedure

In this section, we provide details of the experimental setup and procedure. A schematic of the

apparatus is shown in Fig. 1; it consists of an acrylic track of length 90 cm and width 14 cm with

an inclination angle, α, where the latter may be adjusted within 5◦ < α < 80◦. In the experiments

we carry out, we are interested in the flow patterns that emerge from gravity-driven slurry flows
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FIG. 10. Plots ofC0
s, obtained using Eq. (28) against

φ0
φmax

. For simplicity, we use xI = hI = 1 here. Grey solid curve: buoyant

case; black solid curve: negatively buoyant case. Grey dashed curve: Huppert formula (30) with buoyant parameters; black

dashed curve: Huppert formula with negatively buoyant parameters. Again, α = 30◦.

composed of PDMS oil and noncolloidal beads. Two types of beads are used: negatively buoyant

(approximately 2.5 times heavier than the fluid) and buoyant (approximately 0.6 times lighter than

the fluid). The two system parameters we are interested in varying are α and the initial particle

volume fraction, φI . Slurry mixtures of 100 ml total volume are prepared for different values of φI

and deposited in the reservoir with the release gate initially closed. The start of each run is marked

at the point when the gate is lifted. The slurry mixture subsequently flows down the track and the

motion is recorded using a digital camera until the front of the flow reaches the end of the track.

The runs are repeated 2-3 times to validate the experimental results; it is noted that the patterns

resulting from the same experiment were found to be very similar and a high degree of repeatability

was recorded. The experimental parameters used are summarized in Table I. Similar experiments

were carried out in Ref. 15, but the data there are not collected in a scale that can be compared with

theory. So we redo the experiments here.

In the case of negatively buoyant particles, we observe three distinct regimes, depending on

the particle volume fraction, as shown in the work of Murisic et al.8,13 As discussed in Sec. III,

the equilibrium model exhibits an unstable critical value for the particle volume fraction, denoted

by φcr it. While the slurry mixture starts off as “well-mixed,” within 0 < φ < φcr it, gravitational

settling dominates thus clear fluid flows over particles which settle fast to the substrate. Within

φcr it < φ < φmax, competition between gravitational settling and shear-induced migration leads to

the particles accumulating at the front of the flow forming a particle-rich ridge. As previously

discussed, the two regimes are termed “settled” and “ridged,” respectively. In this section, we are

interested in making comparisons between experimental and theoretical results focussing on the

“ridged” regime. The reader is referred to previous work8,13 for comparisons within the “settled”

regime.

B. Comparison between experimental results and theoretical predictions

In Fig. 11, we show a series of static images of the slurry mixtures flowing down the plane with

the angle of inclination fixed at α = 40◦. The pictures show a comparison between the evolution

of the flow patterns for the cases of buoyant particles (pink slurry flows) and negatively buoyant

particles (red slurry flows). Figure 11 depicts the flow patterns initially [panels (a), (b)], when the

slurries have travelled approximately half way down the plane [panels (c), (d)] and in their fully

developed patterns [panels (e), (f)]. The different times corresponding to each panel are included

in the figure caption. We observe that for both particle species, the flow patterns develop in the

“ridged” regime where the majority of particles accumulate at the front of the flow; hence, the

particle and fluid fronts coincide. We note that for the set of system parameters shown in Fig. 11, the
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FIG. 11. Static images for buoyant (pink) and negatively buoyant (red) slurries flowing down the plane inclined at α = 40◦.
The total particle concentration for both slurry mixtures is fixed at φI = 0.40. The images of the buoyant slurry mixtures are

captured at t = 13, 125, 625 s [shown in panels (a), (c), (e)] while the negatively buoyant slurry mixtures are captured at t =

4, 46, 237 s [shown in panels (b), (d), (f)].

slurry made of negatively buoyant particles traveled the same distance in approximately a third of

the time.

In Figs. 12 and 13, we plot the theoretical prediction of the relationship between the fluid/particle

front (i.e., the singular shock front) and time1/3 and compare it to the experimental results for nega-

tively buoyant and buoyant beads, respectively. Figure 12 depicts the results using negatively buoyant

particles for an angle of inclination of 40◦ [panel (a)] and 50◦ [panel (b)] for φI = 0.50,0.55. We

observe that, after an initial transient time, wherein the mixture moves from the initial well-mixed

state to the “ridged” regime, the relation of the moving front with time1/3 shows good agreement

between the theoretical and experimental results. Figure 13 shows the relationship between the theo-

retical prediction and experimental results for buoyant particles. The experiments are carried out

for two angles of inclination: 30◦ [panel (a)] and 40◦ [panel (b)] at φI = 0.30,0.40. As previously

mentioned, in the case of buoyant particles, any φI within 0 < φI < φmax results in the development

of the “ridged” regime leading to the two fronts (liquid and particle) coinciding. We observe a longer

initial transient time compared to the negatively buoyant case. At late times, while the theoretical

prediction approaches the slope of the experimental results, we note that the agreement is not as good

as in the results shown in Fig. 12. A possible reason for this behavior is given by the experimental

images shown in Fig. 11: for the buoyant particles (pink slurry flows), we observe the presence of

significant wall boundary effects. The beads advance to the front and concentrate in the middle of the

ba

FIG. 12. Comparison of experimental results against the theoretical formula given by Eq. (29) on the relationship of the

location of the front, xs and time1/3. In panel (a), α is set at 40◦while in (b), α = 50◦. In both panels, the particle concentration

is varied from φI = 0.50 (experiment: circle markers, theory: dashed line) to φI = 0.55 (experiment: diamond markers,

theory: solid line). For all system parameters shown, the experimentally observed flow pattern was within the “ridged”

regime.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.97.27.21 On: Wed, 15 Apr 2015 05:23:36



033301-15 Wang et al. Phys. Fluids 27, 033301 (2015)

ba

FIG. 13. Comparison of experimental results against the theoretical formula given by Eq. (29) on the relationship of the

location of the front, xs and time1/3 for buoyant particles. The plane angle of inclination α is set at 30◦ [panel (a)] and 40◦

[panel (b)] and the particle concentration is varied from φI = 0.30 to φI = 0.40.

plane. Since the theoretical prediction is based on a one-dimensional model, a more uniform averaged

front is expected to compare more closely to theoretical predictions. It can be observed in Fig. 11 that

the averaged front of the flow in the case of negatively buoyant particles (red slurry flows) is more

uniform compared to the buoyant case.

This study was concerned with a 1D model incorporating the most dominant physical forces,

neglecting higher order effects such as hydrostatic and surface tension forces. A comparison of the

experimental results and the theoretical prediction on the speed of the front suggests that, while

the agreement is good, the inclusion of higher order effects can help improve the 1D mathematical

model and, in turn, theoretical predictions. Further, taking into account, transverse effects can help

explain why wall boundary effects are more prominent in the case of buoyant particles while a

linear stability analysis will address questions on the shape of the front and the fingering instability

observed at the contact line.

V. CONCLUDING REMARKS

This paper focuses on the “ridged” regime observed in the gravitational flow of a finite-volume,

particle-laden thin film down a rectangular plane. In the case of slurries composed of negatively

buoyant particles, this regime is observed experimentally at high particle concentrations and high

angles of inclinations while for buoyant particles, the “ridged” regime is the dominant flow pattern.

In this paper, we use a previously derived model8 based on the lubrication approximation and the

assumption that the particle distribution in the normal direction to the plane is in equilibrium.

We discuss our findings for slurries made up of both negatively buoyant particles (approxi-

mately 2.5 times heavier than the fluid) and buoyant particles (approximately 0.6 times lighter than

the fluid). In both cases, the solution is described by a rarefaction-singular shock. In the long time

scaling, we approximate the rarefaction wave at its leading order and find that the shock wave front

moves linearly with time to the one third power. This is reminiscent of Huppert’s result for clear

fluid.1 We also derive a general relationship between the moving wave front and time which reveals

some deviation forms the one third power law. This coincides with the experimental observations in

Ref. 15.

Next, we carry out experiments to investigate how the time-dependent relationship of the front

of the flow obtained theoretically, compares against physical results. For the heavy particles, we

choose particle concentrations that exceed the critical value to ensure the flow patterns are in the

“ridged” regime. It is noted that all slurry runs start off from a “well-mixed” state. We carry out

a series of experiments at two different angles: 40◦ and 50◦ (negatively buoyant) and 30◦ and 40◦

(buoyant) and two different particle concentrations, φI = 0.50 and φI = 0.55 (negatively buoyant)

and φI = 0.30 and φI = 0.40 (buoyant). We find that, after an initial transient period, the front of the

flow shows a linear relationship with time1/3 which approaches the slope of the formula obtained

theoretically. For the negatively buoyant particles, the good agreement between experiments and
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theory is consistent. For the buoyant particles, we observe a longer initial transient period and, while

we recover a linear relationship between xs and time1/3, the agreement is not as good as in the

negatively buoyant case due to significant wall boundary effects.
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