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The propagation of holes, solitons, and rarefaction waves along the axis of a magnetized pure 
electron plasma column is described. The time dependence of the radially averaged density 
perturbation produced by the nonlinear waves is measured at several locations along the plasma 
column for a wide ,range of plasma parameters. The rarefaction waves are studied by measuring the 
free expansion of the plasma into a vacuum. A new hydrodynamic theory is described that 
quantitatively predicts the free expansion measurements. The rarefaction is initially characterized by 
a self-similar plasma flow, resulting in a perturbed density and velocity without a characteristic 
length scale. The electron solitons show a small increase in propagation speed with increasing 
amplitude and exhibit electron bursts, The holes show a decrease in propagation speed with 
increasing amplitude. Collisions between holes and solitons show that these objects pass through 
each other undisturbed, except for a small offset. 0 I995 American Institute of Physics. 

1. iNTRODUCTlON 

Large-amplitude (nonlinear) electron plasma wave dis- 
turbances of a magnetized plasma column represent a type of 
plasma behavior that is rich in interesting physics phenom- 
ena. Three of these phenomena, which have been studied in 
detail in neutral plasmas, are (1) electron plasma solitons,‘-3 
(2) electron holes,3-6 and (3) electron plasma shock waves.7 
Here, we experimentally investigate holes, solitons, and rar- 
efaction waves in a pure electron plasma. The large- 
amplitude electron rarefaction wave has received consider- 
able theoretical attention in neutral plasmas,8-” but little 
experimental study in either neutral or non-neutral plasmas. 
This rarefaction wave is produced by the free expansion of 
an electron plasma column along the axial magnetic field. 
We present a detailed description of the free expansion and 
add to this a description of a new hydrodynamic theory that 
quantitatively predicts the measurements. In contrast, the 
soliton and hole study is mainly phenomenological, in that 
we only describe the character of these nonlinear objects. 

The rarefqction wave consists of a wave front propagat- 
ing into an undisturbed plasma. Behind the front, the plasma 
density smoothly decreases while the plasma flow speed in- 
creases. A physical picture of the nonlinear effects that lead 
to a rarefaction wave can be made by considering the hydro- 
dynamic properties of the plasma. The local wave phase 
speed in the plasma mostly depends on the local electron 
density and flow speed. Two adjacent parts of the rarefaction 
wave propagate at slightly different speeds as a result of the 
smooth decrease in the plasma density associated with the 
wave; the higher-density part propagates slightly faster than 
the lower-density part. Because the rarefaction wave propa- 
gates from low to high density, the lower-density part of the 
wave cannot keep up with the higher-density faster moving 
part, so the wave spreads out. The opposite situation, in 
which a wave propagates from high to low density, would 
lead to a shock wave. This description of the nonlinear evo- 
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lution of the plasma density is analogous to the description 
of the spreading or steepening of pressure waves in a com- 
pressible fluid.” 

We observe that the rarefaction front propagates into the 
plasma at the phase velocity of the longest electron-plasma 

waves, VeP. After the front has passed, the electron density 
asymptotes to a “plateau” value of 0.55 times the original 
density. When the front reflects from the far end of the ap- 
paratus, the electron density decreases toward zero. 

A hydrodynamic model incorporating the full radial pro- 
file of the rarefaction front is developed. This model predicts 
a self-similar rarefaction front, in quantitative agreement 
with the measurements. 

Wave steepening and dispersion are important in de- 
scribing a soliton in a bounded cylindrical plasma. The soli- 
ton is a localized positive density perturbation that retains its 
shape as it propagates. It travels with a speed greater than the 
local plasma wave phase speed, and can be described by 
considering only the hydrodynamic properties of the plasma, 
Short-wavelength plasma modes are predominantly present 
in the soliton as a result of its narrow spatial extent. Disper- 
sion of these short-wavelength modes, resulting from the cy- 
lindrical plasma geometry, tends to cause a spreading of the 
narrow density perturbation. This tendency to spread is bal- 
anced by the nonlinear effect of wave steepening. What re- 
sults is a steady-state object that retains its shape. 

We observe positive density solitary perturbations to 
propagate for up to ten axial transits of the apparatus, at a 
speed slightly above Vep. Large-amplitude solitons seem to 
be accompanied by an electron burst that propagates up to 
1.8 times the electron-plasma wave phase velocity. 

A full description of an electron hole must rake into ac- 
count the kinetic properties of the plasma. A hydrodynamic 
description alone predicts the evolution of the hole into a 
wavetrain, but this is not what is observed in the experiments 
described here and elsewhere. The hole persists for 50-100 
transits of the apparatus, and consists of a localized negative 
density perturbation containing a group of electrons trapped 
in the relatively positive potential of the hole. These trapped 
electrons can be described as a hollow vortex in phase space, 
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FIG. 1. Cut-away view showing the conducting ring structure of the experimental apparatus, as well as the circuits used to initiate plasma free expansion and 
measure image charge signals on the confinement rings. 

Plasma wave dispersion does not play an important role. in 
the evolution of the electron hole. The holes are observed to 
propagate at less than Vep. Finally, we observe that solitons 
and holes are robust, in that they pass through each other, 
retaining their identity. 

The outline of the remainder of this paper is as follows. 
In Sec. II we describe the experimental apparatus and the 
processes of initiating the plasma free expansion and excit- 
ing solitons and electron holes. The measurements of the free 
expansion are presented in Sec. III. In Sec. IV we discuss 
two analytical models for free expansion. In Sec. V we de- 
scribe the measurements of the electron holes and solitons, 
and discuss several comparisons between neutral plasma and 
pure electron plasma holes and solitons. The conclusions are 
presented in Sec. ‘VI. 

II. EXPERIMENTA& APPARATUS AND PROCEDURES 

Figure 1 shows a schematic of the experimental appara- 
tus used in this study.‘ The pure electron plasma column, is 
contained radially by a uniform axial magnetic field B and 
axially by electrostatic potentials Vc applied to segments of 
a conducting cylinder surrounding the plasma. The properties 
of a pure electron plasma confined in this type of device have 
been extensively investigated.r3 The conducting cylinder di- 
ameter is 2R,=6.1; cm. The plasma radial density profile is 
typically bell shaped with a full width half-maximum 
(FWHM) of about 3 cm. Confinement potentials of -50 to 
-150 V are applied to rings Gl and S2, and the resulting 
plasma column is about 101 cm long.14 The experiments 
were conducted with the following plasma parameters: axial 
magnetic field 280 GG Be630 G; central plasma density 
3X10” cm-3<no<8X106 cms3, space charge potential on 
axis of +s,-- 12 V for no=7X lo6 cmU3 (estimated from the 
measured radial density profile); parallel electron tempera- 
ture 1 eV<KT,,G 18 eV, electron i collision frequency 6 
s~~‘~v,,~7XlO~. s-t; plasma rotation frequency 0.7X lo5 
s-%v,~4x105 s-1; electron bounce frequency v,--4X105 
s-l (at 1.6 eV); and background neutral pressure of 

76X10-” Torr. While the axial confining potentials and 
magnetic field are applied, background transport of the 

plasma causes no to decrease to one-half of its~initial value, in 

about 0.2 s. 

.L The plasma typically undergoes a three-stage cycle con- 
sisting of injection, hold, and dump. .During injection, a 
negative axial confining potential is applied to S2, and Gl is 
grounded, allowing electrons from the hot tungsten filament 
to fill the confinement region. The hold stage begins when a 
negative potential is applied to Gl, trapping the electrons in 
the confinement region for the duration of the hold cycle. 
The dump cycle is initiated when S2 is grounded. The elec- 

tron column then expands out of the confinement region, and 
is collected by the dump plate located several centimeters 
beyond G4. This plate is biased at a constant.+90 V in order 

to reduce the effect of secondary electron emission. The typi- 
cal cycle-to-cycle variation in plasma parameters is about 
0.1%. A small circular metal cup with radius & in., which is 
continuously movable in the radial direction, is used to col- 
Iect a sample of the escaping charge when the plasma is 
dumped. The approximate plasma density as a function of 
radius is obtained by dividing this collected charge by the 

product of the cup area and the estimated plasma column 
length. 

The plasma temperature at the beginning of the hold 
cycle is typically 1 eV+O.l eV. This temperature is deter- 
mined by measuring the initial rate at which charge escapes 
when the confinement potential is switched to a series of 
intermediate values between ground and the initial confine- 
ment potential.i5 This measurement provides sufficient data 
to determine the parallel energy distribution function, from 
which the temperature can be obtained. Compressional heat- 
ing of the plasma is sometimes used to increase the tempera- 
ture up to a maximum of 18 eV. This is done by applying a 
10 kHz square wave voltage, which oscillates between 
ground and -40 V, to either ring Ll or L4. The signal is 
applied for up to 40 ms to obtain the desired final tempera- 
ture. Plasma heating above 10 eV generally- increases the 
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plasma density slightly (due to ionization of the background 
neutrals), and produces only minor radial profile changes. 

Changes in the radially averaged plasma density at a 
particular axial location are detected by monitoring the in- 
duced image charge on a confinement ring at the correspond- 
ing axial position, as shown by the circuit connected to R2 in 
Fig. 1. The ring is connected to the input of a low noise, 30 
db inverting amplifier with a 5 MHz bandwidth. The total 
amplifier input capacitance is about 3.3X IO-*’ F, and the 
input is connected to ground through a 20 M0 resistor. Elec- 
tron plasma injection causes a voltage of - 10 to -20 mV to 
appear on the amplifier input. This voltage exponentially de- 
cays to 0 with a RC time constant of about 6 ms. An image 
charge, Qo, remains on the ring during the hold cycle, with 
Q, equal and opposite to the total charge contained in a 
length of plasma equal to the length of the ring. 

The free expansion is initiated by grounding the confine- 
ment ring S2 using the circuit shown in Fig. 1. A mechanical 
relay gives a switching time of approximately 25 ns; bounc- 
ing of this switch is unimportant because the plasma is com- 
pIetely dumped before this can occur. As the plasma expands 
out of the confinement region, positive image charge begins 
to leave the detector ring (R2) giving a positive voltage at the 
amplifier input. This voltage is proportional to Q< t) - Q. for 
times short compared to the 6 ms RC decay time. The quan- 
tity Q(t) represents the total charge at time t contained in a 
length of plasma equal to the ring length. The amplified and 
inverted output is then digitized, normalized to IQ01 and off- 
set by unity, giving a signal equal to Q(r)/Qo. 

The charge Q,=,(r) that escapes at r=O is measured 
with a centered collector located between 64 and the dump 
plate. The collected charge is measured with the same type of 
inverting amplifier as used for the R2 signals, and is normal- 
ized to the total charge collected on center QrZo. 

Excitation of electron holes and solitons is accomplished 
by applying vohage steps or pulses to R3. The pulses have 
variable amplitude (- 100 Vc V,G 100 V) and variable width 
(20 n&e10 ms), with rise times of about 20 ns. If the 
voltage step is negative, a soliton develops, provided that the 
magnitude of the step is large enough. An electron hole re- 
sults if the voltage step is large and positive. These holes and 
solitons are studied in a plasma confined between rings G2 
and G3. 

111. FREE EXPANSION MEASUREMENTS 

Figure 2 shows the image charge signals measured on 
rings Rl, R2, and G3, and the confinement voltage applied to 
ring S2 as a function of time for a typical plasma free ex- 
pansion. When the confinement voltage on S2 is grounded, 
the signal on R2 remains unchanged for a short time, then 
drops quickly and approaches a plateau level with a value 
nearly equal to 5. The short delay before the R2 signal begins 
to drop corresponds to the time for the rarefaction front to 
propagate from the position of ring S2 to ring R2. There is a 
longer delay of about 720 ns before the signal on ring Rl 
begins to drop. The propagation speed of the front is calcu- 
lated to be c =96.5 cm/720 ns= 1.3X 10” cm/s. The G3 signal 
is initially zero, but begins to rise approximately 50 ns after 
S2 is grounded, approaching the same plateau value ap- 
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FIG. 2. (a) Measured signals on Rl, R2, and G3 as a function of time for a 
typical plasma free expansion compared with the predictions of the hydro- 
dynamic model. (b) The measured confinement voltage applied to ring S2. 

proached by R2. The signal on G3 is measured the same way 
as the other ring signals; however, the normalized (digitized) 
amplifier output is not offset by unity. 

Separate measurements of the front propagation speed 
between R3 and R2 and between R2 and RI for various 
choices of confinement rings indicate that the front propa- 
gates at a uniform speed throughout the plasma column. By 
the time the front has reached the far end of the column at 
G2, the density decrease in the rarefaction disturbance ex- 
tends smoothly from G2 to G4. This is in contrast to the 
much more localized density variation of an electron hole or 
soliton with a measured scale length of five to six times the 
plasma diameter. The signals on R2 and 63 remain close to 
the plateau value until the rarefaction front returns from re- 
flection off of the confined end of the plasma column. At this 
time, both the R2 and G3 signals drop below the plateau 
value, with R2 dropping slightly earlier than G3. The three 
signals from Rl, R2, and G3 then merge as they asymptoti- 
cally approach zero. The Rl signal at the confined end of the 
column does not exhibit a plateau value but drops smoothly 
to zero. 

Figure 3 shows the normalized escaped charge QrZo(t> 
on the cylinder axis as a function of time. Following a short 
initial delay, there is a linear charge increase that continues 
until the rarefaction front has reflected from the confined 
plasma end and traveled back to the front of the plasma 
column. The escaping charge then no longer increases lin- 
early but asymptotically approaches the total charge initially 
contained along the axis of the plasma column. 

The rarefaction front propagates through the undisturbed 
plasma at the electron plasma wave phase speed Vep . Figure 
4 shows the measured speed of the rarefaction front as a 
function of central plasma density no for a low and high 
plasma temperature. Also shown in the figure is the calcu- 
lated speed of small-amplitude long-wavelength electron 
plasma waves in the same column determined using the mea- 
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PIG. 3. (a) Measured collected charge at r?O for plasma free expansion 
compared with the predictions of the hydrodynamic model and the nonin- 
teracting neutral gas model for a temperature of 1 eV. (b) The measured 
confinement voltage applied to ring S2. ~_ 

sured electron density radial profile.t6*t7 The discrepancy be- 
tween the measured and calculated speeds at high tempera- 
ture and density is most likely due to. the 10% typical 
uncertainty in the measured electron temperature; the data 
lies between the curves calculated for 13.5 and 16.5 eV. One 
result of the increase in speed of the rarefaction front with 
higher electron temperature and’density is that the character- 
istic signal features on rings R2 and Rl (such as the initial 
signal drop and the fall away from the plateau value) occur 
earlier in time for higher density or temperature plasma. 

The plateau density n,is measured to be about one-half 
of the initial ‘density for a wide range of plasma parameters. 
Figure 5 shows the ratio n,ln, as a function of plasma den- 
sity for four different magnetic fields. The quantity nP is the 
value of the R2 signal in the plateau region, and n0 is the 
maximum. value of the R2 signal. The ratio n,lna is 0.55 
20.02 over the entire range of’experimental densities and 
magnetic fields. The hydrodynamic model described iir se;. ., I, .- 
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FIG. 4. Propagation speed of the rarefaction front as a function of central 
plasma density for 1 and 15 eV. The dotted lines show the calculated speed 
of small-amplitude long-wavelength plasma waves. 
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IV predicts a value of nJr+, that is 0.53 and is independent 
of the plasma density, magnetic field, and temperature. 

Summarizing the measurements of the plasma free ex- 
pansion, we find that when .the confining potential is 
grounded, a rarefaction disturbance begins to propagate into 
the plasma~column, The front of this disturbance propagates 
at the phase speed of long-wavelength electron plasma 
waves. The plasma density behind the front decreases over a 
long distance to a plateau value with a radially averaged 
density that is -one-half of the initial radially averaged den- 
sity. The front reflects from the confined end of the plasma 
column, causing the density to continue decreasing, eventu- 
ally emptying the confinement region of plasma. As the 
plasma density or temperature is increased, the observations 
change in a way that is consistent with the increasing propa- 
gation speed of the disturbance. The plasma mostly empties 
from the confinement region in the time it takes a long- 
wavelength electron plasma wave to traverse the length of 
the plasma column several times. 

.: 2.. 

IV. AN’&YTICAL MPp;ELS OF PLASMA FREE 
EXPANSION .,,1 . .._ : 

In the- free expansion, the electrons escape from the con- 
finement region as a result of (1) electrostatic “pressure’~ and 
(2) ballistic free streaming. .The comparative importance of 
these,two effects depends on the ratio &,/a, where X, is the 
plasma Debye length and ‘a ‘is the plasma radius. Electro- 
static effects dominate for hda<l, and kinetic effects domi- 
.nate when X,la & 1. .r _ 

.-In this section we describe two models’for the plasma 
free expansion. The first is a noninteracting neutral gas 
model that ,would be applicable in the limit of no electro- 
static effects (i.e., aahigh-temperature plasma):* This model 
predicts results that do not agree well with .the measurements 
at either the low- or high-temperature range, but show a ten- 
dency toward better agreement .at a higher temperature 
(~Ts15 eV at na- 1 X lo7 cmm3 and a- 1.5 cm). This model 
is simple to derive and is useful for predicting the impor- 
tance of ballistic free streaming. Electrostatic ~pressure must 
be included in the dynamics for the en&re experimental range 
of electron temperatures (1 eV <~T<15 J eV), since 
Xda CO.7. A new hydrodynamic theory of nonlinear plasma 
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wave evolution in a bounded cylinder quantitatively predicts 
the measurements at these low to moderate plasma tempera- 
tures. 

The initial and boundary conditions for both models are 
the same. The plasma column is confined between z=O and 
z = - L. The plasma density is assumed to be uniform along 
each field line, and to fall abruptly to zero at either end of the 
plasma column. The plasma is assumed to have zero initial 
fluid velocity. At time t =0 the confinement voltage at z =0 is 
instantaneously removed and the plasma begins to freely ex- 
pand. An initially constant radial temperature profile is as- 
sumed in both models. 

A. Noninteracting neutral gas model 

This model, which only approximates the measurements 
for a hot plasma &/a%= I) treats the electrons as a neutral 
noninteracting gas. The electrostatic collective effects are 
completely neglected, and the plasma expansion is assumed 
to result only from electron thermal motion. We assume that 
the plasma initially has a Maxwellian distribution of veloci- 
ties with a temperature T, and that the electrons are specu- 
larly reflected from the confined plasma end (z = - L). These 
assumptions lead to a plasma density and average velocity in 
the confinement region (- LG zGO), given by 

ntr,z,t)=~~~(r)[erf(a~)+ erf (a2)], 

v(r,z,r)= yj==*t ev[-~Tl- exp[-&I>, * > 
(2) 

Ly (z +l”i 
” tv’ t 

2L.+z 
agz,rl= fv. 

t 
(4) 

Here, nO( I) is the initial density profile, vf = x/%% is the 
electron thermal speed, and erf(x) is the standard error 
function.18 These results are similar to those given in Ref. 19. 

Comparison between the measured image charge Q(t)/ 
Q(0) and that predicted by the noninteracting neutral gas 
model for a plasma with an initially constant radial tempera- 
ture of 1 eV+-0.15 eV shows poor agreement. [The linear 
charge density contained within a confinement cylinder is 
a(z,t)~:S2ardrn(r,z,t), and the image charge measured 
on a cylinder at z is proportional to this quantity.] Agreement 
between measurement and theory is improved at high plasma 
temperatures (T= 15 22 eV), although there is still substan- 
tial discrepency. The disagreement in both cases results be- 
cause the plasma escapes from the confinement region faster 
than the noninteracting neutral gas model predicts. This is an 
indication that the electrostatic effects play a role that is at 
least comparable to the kinetic effects in removing electrons 
from the confinement region, even for a plasma temperature 
of 15 eV. 

B. Hydrodynamic model 

Equation (8) indicates that the plasma entropy per par- 
ticle ( Pln3) remains constant (hornentropic flow) along each 
field line for all times. This allows us to write the last term in 
Eq. (6) as -(3LVm)( l/Z)&?/&, where the local tempera- 
ture is given in terms of the local density as T= To(iilno)2. 

Equations (9)~(11) are substituted into Eqs. (5)-(g) and 
then Eq. (8) is used in Eq. (6) to give the three equations. 

We have developed a new theory based on the hydrody- aii _ du c%i 
namic characteristics of the plasma that contains the physics at= -n TV 2 

of electrostatic and kinetic pressure. As the plasma expands, 
it is assumed to remain describable by equilibrium thermo- 
dynamics and continuum conservation laws. Previously, 
Manheimer presented a simple hydrodynamic model for the 
nonlinear steepening of an electron plasma wave in a 
bounded cyhndrical cold plasma.20 He expanded the nonlin- 
ear solution in terms of solutions of the linearized equations 
and neglected coupling between separate radial and azi- 
muthal modes. Here, we describe a hydrodynamic model that 
determines the exact radial evolution during free expansion 
of a bounded cylindrical warm plasma. Finite temperature is 
included by a scalar pressure term in the momentum conser- 
vation equation and an adiabatic equation of state. 

The plasma dynamics are described by the following set 
of four hydrodynamic equations: 

dn 
Yg=-&w, 

d&J e 84 

dt=- dz 

v CL+---L&!!, 

m dz 

V:q5=V2$=4rren, (7) 

03) 

Here, 4 is the plasma potential, v is the local axial fluid 
velocity, and P is the local pressure; m is the electron mass, 
and -e is the electron charge. The magnetic field confines 
particle motion to be axial, so the ratio of specific heats is 
y=3. We assume cylindrical symmetry in the theory, since 
wall sector measurements indicate no detectable azimuthal 
asymmetries. 

The density, potential, and pressure are written as 

~(f+*z,t)=K~)[no+ Sn(r,z,t>l~~~r)n(r,z,t), (9) 

rbff-,z,fl= #o(r) + &er,z,t), (10) 

Here, t(r) gives the equilibrium radial density dependence 
with Srz( r,z,O) =O; no, PO, and &, are the equilibrium den- 
sity, pressure, and space charge potential on axis; and Sn, 
S4, and 6P are the perturbed density, potential, and pressure. 
The perturbed quantities are not constrained to be small. 
However, the axial variation of the rarefaction density distur- 
bance in a length of one plasma radius is assumed to be 
small. This allows V24 in the Poisson equation (7) to be 
replaced with V: 4. This approximation greatly simplifies the 
solution of the system (5)-(8). 

(12) 
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dV 6% ea4 3tcTldri 
dt=-U-.+ ---- --, 

dz m dz m naz 

1 -d d+ 
-- r dr r -g=4nen, 

(13) 

(14) 

where K is the Boltzmann constant. Equations (12) and (13) 
describe the plasma dynamics along individual magnetic 
field lines (at constant r) and Eq. (14) radially couples the 
dynamics along each field line.~ 

The initial and boundary conditions assumed in this 
model lead to .a solution that possesses no scale length for 
times earlier than the time it takes the rarefaction front to 
reach z= -L. As a result, the solution to Eqs. (12)-(14) is 
self-similar m nature,“’ with z and t appearing only as the 
ratio z/t. The self-similar solution to Bqs. (12)-(14) is ob- 
tained as follows. The ratio z/t is written as {=zlt and the 
partial derivatives with respect to space and time are written 

as 

a 1 d a 1 d ‘.- 
-=-- md -=-- 
dz tdl at tQ’ 

(15) 

The continuity equation now becomes 

,dii ii 

z-v= 5-v’ (16) 

and the momentum equation (13) is written using Eq. (16) as 

o 

. 
(17) 

Equation (17) relates the local gradient of the potential (d& 
dl) to the local gradient of the density (diildc) along a field 
line. The radial dependence of d&d5 and drildl are deter- 
mined by the Poisson equation. Equation (17) is solved for 
diildc, which is then used in the 5 derivative of the Poisson 
equation to give 

1 d d d&b 

;drrdr dl l-1 

$Eir) 
+ (~-v)“-(3KT~lm)(iln0)z (18) 

where ?$,= 47uie2/m. Equation (18) is an eigenvalue equa- 
tion for d&dl, where 5 is the eigenvalue and d$ldc is the 
eigenfunction. Here d&d5 is zero at the conducting wall, 
r=Rw, and regular at r=O. 

The solution to Eq. (18) gives a single function for the 
plasma potential (d +/do in terms of r and 5; all the other 
macroscopic plasma parameters can be derived from 4 and 
Eqs. (16) and (17). E quation (18) has the same form as the 
eigenvalue equation obtained by solving the fluid equations 
for the potential of an azimuthally symmetric, linear electro- 
static plasma wave in a cylindrical plasma with equilibrium 
density fir(r) and flow velocity v . The self-similar nature of 
the solution indicates that each part of the rarefaction distur- 
bance propagates into (or out of) the plasma with a velocity 
given by [ (this is the local phase velocity of the rarefaction 
wave). 

There is an infinite family of eigenfunction solutions to 
Eq. (181, each characterized by the number of radial nodes in 
the eigenfunction. There are two eigenvalue-eigenfunction 
pairs for a given number of nodes in the radial eigenfunction. 
The two eigenvalues correspond to plasma waves propagat- 
ing either along the -i or +i direction. If the plasma flow 
velocity is very large, both waves may propagate in the same 
direction; however, one will have a larger phase velocity than 
the other. Since the rarefaction wave is measured to initially 
propagate in the -G direction (in the geometry described 
here) the correct choice for the eigenvalue l is given by the 
lesser of the two eigenvalues obtained by solving Eq. (18). 

The rarefaction front is identified as the boundary sepa- 
rating the unperturbed plasma from the perturbed plasma. 
Experimentally, this front is measured to propagate at the 
fastest azimuthally symmetric electron plasma wave phase 
speed.” In order to match this observation, the solution to 
Eq. (18) with no radial nodes is used to construct the self- 
similar solution. It is helpful to note that the dispersion rela- 
tion for the long-wavelength electron plasma modes is 
acoustic-like so that the frequency w is proportional to the 
wave number k. This means that the phase speed and the 
group speed are equal for these modes. It is interesting that at 
l=O, the self-similar nature of the solution indicates that the 
local wave phase velocity (equal to 6) is also zero. For 510, 
the phase velocity is positive and for b=O- the phase veloc- 
ity is negative. This means that during self-similar plasma 
flow, a small-amplitude plasma disturbance excited on top of 
the rarefaction wave in the region 5>0 cannot propagate past 
[=O into the region where l<O. We have tested this experi- 
mentally and will discuss it in Sec. IV C. This condition 
remains true only during self-similar plasma flow, which 
lasts -until the reflected front returns to the position [=O. 

The self-similar solution described by Eqs. (17) and (18) 
cannot be determined analytically, so we evaluate it numeri- 
cally. This is done by integrating the continuity equation (16) 
and the momentum equation (17) together with the Poisson 
equation (18), to determine the solution as a function of r at 
successive values of 5. The continuity equation can be inte- 
grated analytically to give i/no= co/(v -f), where co-is the 
rarefaction front speed. Using this relation between fi and v, 
Eqs. (17) and (18) are rewritten as 

dii ii e d4 -- 
z= ~,(iilno)2-((conolG)Z m dl ’ 

(19)’ 

$5(r) d4 
(conol~)2-tit(tilno)Z Zf -=O’ [ 1 

(20) 

The solution to Eq. (20) at a particular 5 gives the radial 
dependence of d&d{, but does not determine its overall 
amplitude. The initial condition that the rarefaction front is 
located at [=-co fixes this amplitude to be 

d4 
= “f(r). 

dl 5=-co co 
i20 

Here, f(r) is the radial eigenfunction from the solution of 
Eq. (20), normalized so that f( r = 0) = 1. This initial, condi- 
tion for d&d5 can now be used in the integration of Eqs. 
(19) and (20) to give n and 4 as a function of 5 and r. 
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The general numerical procedure for integrating Eqs. 
(19) and (20) is as follows. The solution region is divided 
into 51 radial points from --aSrc~~ and 81 points from 
-c,Ct=S 1.6~~. The value of 1.6~~ is chosen as the maxi- 
mum value of 5 in the solution region since the behavior of 
the plasma in the region beyond this point (l> 1. 6co) has no 
effect on the solution where i<O and at times for which a 
comparison is made with the experimental results. Equation 
(20) is solved to obtain d+ldl for a given Pt. Equation (19) 
is integrated along a small step in 5 using the current value 

for d&d& to obtain a new value for fi. This new value of ti 
is used in Eq. (20) to determine the new value of d&d5 and 
the step-by-step numerical solution process continues. The 
actual solution procedure uses a 12th-order predictor- 
corrector integration scheme. The solution gives ~7, u, and ~,5 
as functions of t. The actual solution for fi, u, and 4 as a 
function of z and f can then be determined from these three 
functions and the relation l=zlt. 

At times before the rarefaction front reaches z = - L, the 
large-amplitude plasma perturbation consists of simple 
waves; that is, only the waves satisfying Eq. (18) with the 
lesser phase velocity are present in the plasma. The boundary 
condition at z = -L is that the plasma flow velocity is kept at 
zero. This causes a reflection to occur when the rarefaction 
front reaches this point. The reflected front propagates back 
through the perturbed plasma at a velocity 

dz 

z=c+. 

Here, c+ is the local plasma wave phase velocity, which is 
now the greater of the two possible phase velocities of waves 
satisfying Eq. (18). The value of c + is determined from the 
density and velocity given by the self-similar solution that is 
still valid at the reflected front. 

The plasma perturbation now evolving between z= -L 
and the reflected front consists of compound waves; that is, 
both waves that satisfy Eq. (18) are present. The evolution of 
the density and velocity in this region is no longer self- 
similar, so the solution cannot be obtained from Eqs. (19) 
and (20). However, the solution can be determined using the 
method of characteristics.‘2.23 This method is frequently used 
to solve large-amplitude hydrodynamic wave problems. The 
partial differential equations [Eqs. (12)-( 14)] are converted 
to ordinary differential equations along characteristics. Thus, 

d?i ii dv dz 
-+ 
dt c,-vdt=” 

along -=c+, 
dt (23) 

dii ii dv 

dr+c--v dt 
--=O, along $=c- _ (24) 

Here, 5 is the local density (no+ Sn), u is the macroscopic 
flow velocity, and c+ is the plasma wave phase velocity with 
respect to fixed coordinates. It is straightforward to numeri- 
cally integrate Eqs. (23) and (24), starting from the self- 
similar solution obtained from Eqs. (19) and (20) at t=Llc,, 
to obtain the evolution of n and u in the plasma column for 
long times. 

The entire plasma free expansion problem can, in prin- 
ciple, be solved using only the method of characteristics, 

since the self-similar part of the solution discussed above is a 
special case of the method of characteristics. However, a 
numerical solution is required for both the self-similar and 
method of characteristics solutions, and this is where the 
self-similar method has an advantage over the method of 
characteristics. At time t =0 the plasma density has an inn- 
nite gradient at z=O. The method of characteristics has an 
intrinsic scale length associated with the spacing between 
grid points in the axial direction, and therefore can never 
accurately resolve the instantaneous drop in the density at 
z =O. This resolution limit leads to a discrepancy between the 
plasma evolution predicted by the method of characteristics 
and the self-similar method. The difference is on the order of 
10% in the density prediction, depending on the initial den- 
sity gradient at z =0 resulting from the choice of grid spacing 
in the numerical solution. The advantage of the self-simiIar 
solution is that it exactly predicts the evolution of the plasma 
parameters from the initial abrupt drop in the plasma density. 
In addition, the theory provides useful physical insight into 
the self-similar nature of the plasma free expansion for early 
times. 

In the limit of a high-temperature plasma, such that elec- 
trostatic effects are negligible in comparison to thermal ef- 
fects, Eqs. (12) and (13) can be solved exactly for the rar- 
efaction disturbance at all times and places. In this case, the 
fluid equations describe a perfect gas with y=3. As a result, 
Eq. (17) becomes (6-v)2=3~Tblm(iilno}2, and Eq. (16) is 
integrated analytically to give u = cu(l - n/ran) where 
c(J=3KTolm. The exact self-similar solution for 
- 1 Cz/( tc,) S 1 is given as 

ii 1 
-=- 
no 2 i 1 

1-s t 
0 

u 1 2 -=- I+-.-.-, 
co 2 i 1 fC0 

(261 

The solution for zl(tco)<- 1 is Iz=no and u=O; for 
z/( tco) > 1 the solution is fi =0 and u =O. Once the rarefac- 
tion front reaches z= -L and reflects, the reflected front 
propagates back through the already disturbed plasma at ex- 
actly the speed 3 Ho/m. This constant return speed only 
occurs for the case when y=3. Any other value of y leads to 
a nonsteady speed for the reflected front. The solution for the 
gas density and flow velocity in the region between z = - t 
and the reflected front is 

ii L 
-=- 
n0 cot 

(27) 

V z+L -=- 
co cot - (28) 

C. Comparisons between the model and the data 

The radially averaged density predicted by the new hy- 
drodynamic model is compared with the measurements in 
Fig. 2. Agreement between the hydrodynamic theory and the 
data for this low temperature is good. The fluid model 
closely predicts (1) the time at which the signals on Rl, R2, 
and G3 begin to change; (2) the approach of the signals on 
R2 and G3 toward a plateau; (3) the duration of this plateau 
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before the reflected front returns to the location of R2 and 
G3; and (4) the long time behavior of the, signals on Rl, R2, 
and G3. Wee also find good agreement between the predicted 
and measured charge escape rate at r=O, as is shown in Fig. 
3. Agreement between the fluid model and the measurement 
at moderate plasma temperature (T,= 15 eV) is good. This 
case is not shown here but is shown in Ref. 24. The hydra: 
dynamic model describes the free expansion well in the 
warm as well as the cold plasma regimes. 

We compared our hydrodynamic theory to the Man- 
heimer model, which we modified to include finite tempera- 
ture. Substantial discrepancy between the two models arises 
early in the free expansion, when the average density has 
dropped to just 80% of the average initial density. This indi- 
cates that only during very early times is the free expansion 
adequately described by a model that keeps only the lowest- 
order linear radial eigenmode. That is, higher-order radial 
modes, included in the new hydrodynamic model, become 
important early in the free expansion. 

The plateau value at the location .of ring R2 just prior to 
the arrival of the reflected front is calculated numerically 
from the fluid model to be 0.53 over the entire range of 
experimental densities, as shown in Fig. 5. This value is in 
good agreement with the measured value of n,lno , which is 
about 0.55 for all experimental densities. 

We made a number of measurements to determine the 
sensitivity of our results to the assumptions in the theory. For 
example, we have varied the end shape of the plasma column 
by varying the confinement potential ,from -30 to - 180 V, 
and found only a few percent variation. in the measured sig- 
nals. In addition, we have varied the voltage switching time 
on the confining ring from about 10 to 100 ns, and-found that 
the measured signals experienced only a shift in time. We 
also examined the results when the mechanical relay 
switched the confining ring voltage to a voltage near ground 
(rather than at ground) ranging from -5 V to .$5 V (the 
collector plate remains biased at +90-V). No change in the 
resulting curves is observed for positive voltages, but the 
curves begin to change slightly for negative voltages less 
than about -2 TV’. Finally, using plasma wave heating we 
have produced a slightly non-Maxwellian initial distribution 
function and found that this caused only a few percent 
change in the measured signals. 

In addition to these measurements, we have experimen- 
tally checked. a result of the self-similar solution that was 
mentioned earlier. This is that small-amplitude waves excited 
during plasma free expansion in the region z>O cannot 
propagate into the region z<O for times during which the 
self-similar sohrtion is valid at z-0. Using an experimental 
arrangement with S2 and Gl as confinement electrodes, S2 is 
grounded to start the free’expansion. As plasma flows out of 
the confinement region and through rings R3 and G3 to the 
charge collecting plate, we have applied varying amplitude 
positive voltage pulses to rings R3 and G3 (where z>O) in 
order to excite low-amplitude plasma waves in the rapidly 
flowing plasma. During plasma free expansion-we have .ob- 
served no measurable response on inner rings LA, R2, and L3 
(where z ~0). 

Summarizing.the analytical models for plasma free ex- 

pansion, we find that the noninteracting neutral gas model 
predictions never quite agree with the experimental measure- 
ments, even in a warm plasma where (&,/a = 1), although the 
agreement improves with increasing temperature..This model 
retains only kinetic effects, which are expected to dominate 
electrostatic effects in the high-temperature cases only. The 
hydrodynamic model *agrees well with the measurements 
over the entire experimental range of density and tempera- 
ture. Comparison with the predictions of a modified Man- 
heimer model indicates that ‘the plasma evolution is domi- ..~ 
nated by the lowest-order radial eigenfunction only for very 
early times and that the higher-order radial eigenfunctions 
quickly become, important in the evolution. The hydrody- 
namic model predicts a plateau density value at R2 that 
agrees well with the experimentally measured plateau den- 
sity. _~ 

V. ELECTRON HOLE AND SOLITON MEASUREI\?ENTS 

Both positive density perturbation solitons and negative 
holes can propagate in.these plasmas, Most of the character- 
istics of electron solitons and holes ‘observed in neutral 
plasmas’-6 are also seen in the pure electron plasma. For 
example, the soliton velocity tends to increase with increas- 
ing soliton amplitude. The sobtons.-tend to damp more 
quickly, than the electron holes, and two solitons pass 
through each other while preserving their identity. In addi- 
tion, the electron hole is remarkably stable,:persisting for 
50-100 bounce $riods in the plasma column. A -moderate 
amplitude hole tends to slough off a smaller hole as it propa- 
gates. Also, two electron holes pass through each other while 
preserving their identity, and a hole seems to ‘exhibit the ._._s 
presence of trapped electrons. 

,i 

The excitation of holes or solitons in the electron plasma 
is carried out by applying a voltage ‘step or pulse to a ring 
adjacent to one of the confinement rings. In the simplest 
case, the voltage on the ring is switched to a higher (or 
lower) voltage in about 25 ns and kept there. This rapid 
change produces either a positive density herturbation (a 
soliton) if the voltage is switched more negative or a nega- 
tive density perturbation (a hole) if the voltage is switched 
less negative. The soliton or hole’that is created then propa- 
gates back and forth in the plasma column and can be’studied 
as it evolves in time by measuring the image charge signals 
on the rings along the plasma column. 

The propagation of solitons is shown in Fig. 6. Here, a 
step voltage is applied to ring R3, and the resulting plasma 
response is measured on ring Rl as a function of time for a 
plasma contained between rings G2 and G3. The negative 
voltage step on R3 produces a positive density perturbation, 
which propagates repeatedly from end to end in the plasma. 
The signal on Rl, which is detected the same way as the 
rarefaction signals, consists of successive peaks separated by 
the time it takes the density pulse to propagate from ring G2 
to G3 and back to G2. 

Increasing the amplitude of the density. pulse produces a 
small but significant increase in the propagation speed, as 
shown by the solid circles in Fig. 7. This effect can be seen 
in Fig..6, where peaks on the upper trace,occur slightly ear- 
lier in time compared to peaks in the lower trace. The upper 
trace corresponds to a density perturbation of about 10% and 
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FIG. 6. Resulting plasma density perturbation measured on Rl for (a) large- 
amplitude, (b) medium-amplitude, and (c) low-amplitude negative step volt- 

FIG. 8. Resulting plasma density perturbation measured on RI for (a) large- 

ages applied to R3. (d) Measured voltage pulse applied to ring R3. 
amplitude, (b) medium-amplitude, and (c) low-amplitude positive step volt- 
ages applied to R3. (d) Measured voltage pulse applied to ring R3. 

the lower trace is about 0.5%. The largest amplitude solitons 
we produced experimentally have about a 7% increase in 
speed over the fastest electron plasma wave. Note that a 
linear combination of plasma waves still would not propa- 
gate faster than the fastest electron plasma wave, so this 
perturbation is truly nonlinear. Application of a large nega- 
tive excitation voltage step to R3 does cause a slight short- 
ening of the plasma column length because it increases the 
confinement potential near G3. This fractional shortening is 
measured with low-amplitude plasma waves to be a maxi- 
mum of 2%, so the increase in propagation speed with in- 
creasing amplitude is not soleIy due to the density increase. 
Further increasing the excitation voltage distorts the end 
shape of the plasma and complicates the interpretation of the 
measurements. 

At high excitation voltages free-streaming electron 
bursts’ are observed. In Fig. 6(a), a s-10 V step pulse on 
R3 gives a leading edge on the density perturbation signal 
measured on Rl. The velocity of this leading edge is shown 

“*;1fJ,, , ,I 
0 0.05 0.1 0.15 

h/n 

FIG. 7. Propagation speed (normalized to the fastest electron plasma wave 
speed) of an electron burst, soliton and electron hole as a function of density 
perturbation amplitude. 

as a function of soliton perturbation density in Fig. 7. The 
speed at large excitation voltages (the density perturbation is 
not proportional to applied voltage in this regime) is approxi- 
mately proportional to the square root of the amplitude of the 
applied step voltage on R3 within experimental uncertainty. 
Measurement of the parallel electron distribution function of 
the plasma column after applying a large negative excitation 
voltage shows a smal1 increase in the number of electrons 
above the thermal energy. This further confirms the presence 
of the free-streaming electron burst. The spatial width of the 
density perturbation is typically about 16-20 cm (-50 X,) 
and seems to increase slightly with increasing amplitude. 

Applying a positive voltage step to G3 produces a nega- 
tive density perturbation referred to by previous authors as 
an electron hole.3-6 A very small voltage step produces a 
linear superposition of electron plasma waves that disperses 
and damps away over time. Increasing the voltage step above 
several volts produces a perturbation that disperses and 
damps much more slowly, and propagates at a speed that is 
less than the fastest electron plasma wave. 

Figure 8 shows successive negative pulses separated by 
the time required for the hole to propagate down the plasma 
column and back. Increasing the amplitude of the hole 
causes a decrease in the hole propagation speed, as shown by 
the open circles in Fig. 7. The positive voltage step on R3 
used to excite the hole causes a slight lengthening of the 
plasma column. The resulting fractional length increase is 
measured to be at most about 2%, which is not explicitly 
subtracted out of the calculation of the propagation speed. 

As the excitation voltage on ring R3 increases to above 
12 V, a density hole with a leading edge forms. This leading 
edge breaks off from the main hole, becomes a smaller hole, 
and propagates ahead of the main hole with a faster speed. 
The first and second traces shown in Fig. 8 demonstrate this 
process occurring. In some instances where the step pulse on 
R3 exceeds about 18 V (nut shown in the figure), smaller 
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FIG. 9. Long time behavior of (a) an electron plasma soliton and (b) an 
electron hole measured on Rl. The peak amplitude corresponds to a density 
perturbation of about 10%. (c) The measured voltage pulse on R3 that pro- 
duces the electron hole. 

holes are sloughed off both ahead and behind the main den- 
sity hole. Measurement of the parallel electron distribution 
function of the plasma column following the excitation of a 
moderate amplitude electron hole indicates a slight increase 
in the distribution in an energy range roughly corresponding 
to the propagation speed of the hole. This indicates the pres- 
ence of trapped electrons in the hole. 

Figure 9 shows the long-time behavior of the electron 
so&on [Fig. 9(a)] and hole [Fig. 9(b)]. Both objects tend to 
last for many bounce periods in the ‘plasma column. The 
soliton is substantially Landau damped in about ten periods; 
in contrast, the electron hole is very stable and is damped 
only after 50-100 periods. A physical explanation for this 
difference is based on the interaction between the electrons 
and the potential of the soliton or hole. The soliton presents 
a positive energy barrier to all passing electrons. Some elec- 
trons with velocities sufficiently near the soliton velocity 
such that they cannot overcome the positive energy barrier 
are refected in the forward or backward direction by the 
soliton, causing either an increase or decrease in the energy 
and momentum of the soliton. There are more electrons re- 
flected in the forward direction for a plasma in thermal equi- 
librium. This causes a decrease in the energy and momentum 
of the soliton.so that the overall effect is a damping of the 
soliton. In contrast, the hole presents a negative energy ,bar- 
rier to all passing electrons. As a result, the damping of the 
hole is not a result of electron reflections but a result of 
kinetic effects that are not yet well understood experimen- 
tally or theoretically. 

We studied interactions between holes and solitons by 
creating two separate soliton-hole pairs at either end of the 
plasma column and colliding them. Even though the soliton 
and hole from each initial pair evolve separately (i.e., the 
hole-soliton pair is not a single nonlinear object consisting 
of a hole and soliton that stay together for a long time), they 
preserve their identity even after many collisions with the 
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FIG. 10. Signal traces measured on ring Rl showing the result of repeated 
collisions between an electron hole and soliton with another electron hole or 
soliton. (a) Electron hole-soliton produced with only the first 50 ns pulse 
shown in (e). (b) Electron hole-soliton produced with only the second 50 ns 
pulse shown in (e); this is the same signal as in (a), but delayed 0.5 /B. (c) 
The algebraic sum of signals (a) and (b) ‘showing the expected signal for 
collisions with no interaction. (d) The aIgebraic sum in (c) compared with 
the actual signal produced with the two pulses in (e) showing a slight dif- 
ference occurring late in time. (e) Measured voltage applied, to ring R3. 

other hole and soliton. Measurements show that after about 
five or six collisions there appears a small displacement in 
the hole and soliton position from their position when no 
collisions take place. This result is similar to measurements 
of neutral plasma solitons, which also, show a displacement 
in the soliton’s position (along the direction of motion) after 
a collision with another soliton. 

Propagation and collisions between electron solitons- and 
holes are shown in Figure 10. First, a single negative pulse 
lasting for 50 ns is applied to R3 to produce the R2 signal 
shown in Fig. 10(a). Shortly after t=O this trace shows a 
sharp positive density bump immediately followed by a 
sharp negative density bump (there. is an additional small 
positive bump after this). This positive and negative bump 
combination represents a soliton-hole pair. The soliton is 
produced by the negative step in the excitation pulse, and the 
hole is produced by .the positive step 50 ns later. The 
soliton-hole pair appear as a second positive and negative 
bump after one bounce off the plasma end and are smaller in 
amplitude than at the start. Following the trace further in 
time shows the positive bump arriving more and more early 
than the negative bump and both decreasing in amplitude. 
The hole and soliton behave independently as the soliton 
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(positive signal) is seen to move ahead of (separate from) the 
hole (negative signal) with increasing time. 

Collisions between holes and solitons are observed when 
two negative pulses are applied to Rl, as shown in Fig. 
IO(e). The delay of 500 ns between pulses is chosen so that 
the first pair has time to reach the opposite end of the column 
when the second pair is launched. Figure 10(b) is the signal 
of Fig. 10(a) shifted by 500 ns; this shows how the second 
soliton-hole pair would evolve alone. Figure 10(c) is the 
algebraic sum of the first two traces. This is the expected 
signal on Rl if the two soliton-hole pairs propagate com- 
pletely independently of each other. The signal received on 
R2 from an actual two-pulse experiment is shown as Fig. 
IO(d), overlaid with the summed signal. The overlaid traces 
agree very closely except at long times, where the peaks and 
valleys of the interaction trace occur slightly earlier in time 
than the peaks and valleys of the summed trace. This means 
that collisions between the holes and solitons lead to a slight 
forward displacement for both holes and solitons. Previous 
measurements of ion acoustic soliton collisions show that 
two colliding solitons both receive small displacements in 
the forward direction during a collision. We have experimen- 
tally demonstrated that a similar result holds for two collid- 
ing holes, solitons, or a colliding hole and soliton in the pure 
electron plasma. The 500 ns time separation between excita- 
tion pulses is such that repeated collisions between density 
perturbations with oppositely directed velocities occur near 
the middle of the plasma column. Finally, this result demon- 
strates that a soliton or hole can collide with another soliton 
or hole and preserve its identity in the pure electron plasma. 
Note that here, all collisions are between oppositely traveling 
disturbances. 

In spite of the many similarities between solitons and 
holes in neutral and pure electron plasmas, we have observed 
a number of differences. For example, the spatial width of 
the electron soliton seems to slightly increase for a greater 
soliton amplitude rather than decrease as is observed in neu- 
tral plasma solitons. In addition, the electron hole observed 
in this system does not exhibit a threshold for excitation as is 
observed in neutral plasmas; it can be excited with a poten- 
tial that ranges continuously down to zero. Similarly, the 
hole speed is typically close to the fastest electron plasma 
wave phase speed (two to three times the electron thermal 
speed), whereas the neutral plasma holes have a speed close 
to the electron thermal speed. Also, the speed of electron 
holes decreases with hole amplitude, whereas in neutral plas- 
mas, the hole speed tends to increase with increasing excita- 
tion potential. 

The cause of these differences has not been experimen- 
tally investigated in detail here. One possible cause for some 
of these differences may be that the holes and solitons stud- 
ied here are excited using a conducting ring with a short 
axial length (the axial length is only one-half of the ring 
diameter). This is in contrast to previous experiments on neu- 
tral plasmas, which make use of a grid or a long conducting 
cylinder for hole or soliton excitation. The excitation poten- 
tial from a short ring is very different than the potential cre- 
ated by a grid or a long cylinder, and this may affect the hole 
or soliton dynamics. 

Summarizing the electron hole and soliton observations 
we find that electron holes or solitons are produced by ap- 
plying a positive or negative step voltage to ring R2. The 
resulting density perturbations are 16-20 cm long and 
propagate with a speed that depends on the perturbation am- 
plitude. The soliton Landau damps in about 5-10 transits of 
the apparatus, whereas the electron hole propagates for 50- 
100 transits. At large amplitudes, the soliton is accompanied 
by a free-streaming electron burst. A large-amplitude hole 
tends to slough off a smaller hole, which then propagates 
ahead of the main hole. An electron soliton or hole preserves 
its identity in a collision with either another electron soliton 
or hole. 

Vi. CONCLUSIONS 

We have experimentally investigated the rarefaction 
wave produced by the free expansion of a magnetized pure 
electron plasma column along the axial magnetic field. The 
rarefaction front propagates into the undisturbed plasma col- 
umn at the phase speed of the long-wavelength electron 
plasma waves. The plasma flow behind the rarefaction front 
is self-similar in nature, so the plasma density and velocity 
profiles in this region have no characteristic length scale. 
This absence of length scale sets the free expansion apart 
from other large-amplitude plasma disturbances, which pos- 
sess definite length scales such as a soliton, electron hole, or 
a shock wave. The density behind the rarefaction front ap- 
proaches an intermediate plateau level, and remains near this 
level until the rarefaction front returns from reflection off of 
the confined end of the plasma column. The plasma density 
then decreases from the plateau value to zero as the remain- 
ing plasma empties from the confinement region. 

A noninteracting neutral gas model, which keeps only 
the kinetic effects in the free expansion, does not predict the 
measurements well, although the prediction is improved for a 
warm plasma. The new hydrodynamic model, which retains 
pressure and electrostatic effects, shows good agreement 
with both cold and warm plasma measurements. The Auid 
model successfully predicts the measured density plateau 
level and the shape of the rarefaction front. 

Electron solitons and holes in the pure electron plasma 
are similar to their counterparts in a neutral plasma. Both 
objects have density scale lengths of several plasma diam- 
eters; they exhibit an amplitude-dependent speed, and they 
persist for long times in the plasma, although the soliton 
damps more quickly than the electron hole. Collisions be- 
tween an electron hole or soliton and another hole or soliton 
show that each object preserves its identity in the collision 
but experiences a small forward position shift. Several dif- 
ferences between neutral solitons and holes and pure electron 
solitons and holes were described 
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