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Rarefied gas flow in concentric annular tube: Estimation
of the Poiseuille number and the exact hydraulic diameter
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Abstract

The fully developed flow of rarefied gases through circular ducts of concentric annular cross sections is solved via kinetic
theory. The flow is due to an externally imposed pressure gradient in the longitudinal direction and it is simulated by the BGK
kinetic equation, subject to Maxwell diffuse-specular boundary conditions. The approximate principal of the hydraulic diameter is
investigated for first time in the field of rarefied gas dynamics. For the specific flow pattern, in addition to the flow rates, results
are reported for the Poiseuille number and the exact hydraulic diameter. The corresponding parameters include the whole range
of the Knudsen number and various values of the accommodation coefficient and the ratio of the inner over the outer radius. The
accuracy of the results is validated in several ways, including the recovery of the analytical solutions at the hydrodynamic and free
molecular limits.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

During the last decade, research in rarefied gas dynamics has attracted a lot of attention. This refreshed interest is
due to applications in the emerging field of nano- and micro-fluidics, as well as to the more traditional fields of vacuum
technology under low, medium and high vacuum conditions and high altitude aerodynamics. In addition, nowadays,
due to the availability of high speed parallel computers and due to the significant advancement in computational kinetic
theory made during the last years it is possible by implementing kinetic type algorithms to solve in a computationally
efficient manner multidimensional problems in complex geometries.

A very common and basic rarefied flow is the fully developed flow through long channels of various cross sections.
When the flow is slightly rarefied (not far from local equilibrium) as is the case in the so-called slip regime, it may
be simulated by the Navier–Stokes equations subject to first and second order slip boundary conditions [1,2]. In
this case, analytical solutions are plausible for channels of various cross sections including circular, annular circular,
orthogonal and equilateral triangular shapes [3–8]. For channels with other cross sections, when an analytical solution
is not possible, numerical solutions may be obtained with small computational effort [9]. It is noted that in several of
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the cited papers [6–9] the implemented slip boundary conditions are not properly defined. A complete and rigorous
definition of the slip boundary conditions and the associated coefficients may be found in [2,10]. In any case, it is
evident that such an approach, based on the Navier–Stokes equations, is valid only in the slip regime and collapses
as the Knudsen number is increased and we depart far enough from local equilibrium, where the Newton–Fourier
constitutive laws do not hold any more.

Flows far from local equilibrium (moderate or highly rarefied) can be simulated by using kinetic theory [11,12].
In particular, it has been pointed out that fully developed (linear) non-equilibrium gas flows can be handled in a very
efficient manner by implementing linearized kinetic models, which over the years have been well developed in the field
of rarefied gas dynamics [3,10]. The main advantage of the kinetic approach is that the solution is valid in the whole
range of the Knudsen number from the free molecular, through the transition and slip regimes all the way up to the
hydrodynamic limit. Therefore, non-equilibrium transport phenomena, which appear as we depart from the continuum
limit, can be investigated in a thorough and systematic manner following a unified methodology without resorting to
the implementation of hybrid schemes. Fully developed flows of single gases through ducts of various cross sections
due to pressure and temperature gradients have been solved very accurately by applying suitable kinetic models for
isothermal and non-isothermal flows respectively [13,14,16,4,15,5,17,18]. This work has been extended to binary gas
mixtures by solving two coupled linearized Boltzmann equations [19–22]. The results are accurate in the whole range
of the Knudsen number and they are obtained with modest computational effort, which in any case is considerably
less than the one required with the DSMC method. All these efforts, clearly indicate, that kinetic solutions are capable
of solving not only idealized one-dimensional flows, such as the classical one-dimensional Poiseuille, Couette and
thermal creep flows, but also two and possibly three-dimensional flows, which commonly appear in technological
applications.

An issue of practical interest in internal flows is the concept of the hydraulic diameter, which has been extensively
used in classical hydrodynamics [23]. It is well known that this valuable principal is not exact and the introduced error
depends on the cross section of the non-circular channel. At the continuum limit the discrepancy of the approximate
compared to the exact hydraulic diameter has been studied in detail [23–25]. No such effort, has been reported so far
in the field of internal rarefied gas flows.

In this context, the present work is devoted to the kinetic solution of the flow of a rarefied gas through circular
ducts of concentric annular cross sections. The flow is due to a pressure gradient imposed in the longitudinal direction.
This flow configuration has been solved by using the integro-moment method in an early work [26], where results are
provided only for the flow rates with purely diffuse reflection. Here, the Maxwell diffuse-specular boundary conditions
are implemented and results are provided for three values of the accommodation coefficient. More important, the
Poiseuille number defined as the product of the Darcy friction factor times the Reynolds number is estimated for
this particular flow configuration in the whole range of gas rarefaction. Even more, a study on the concept of the
hydraulic diameter in rarefied gas dynamics is performed. In particular, the approximation, which is introduced by the
implementation of the hydraulic diameter for non-circular pipes is investigated in the whole range of gas rarefaction.
An expression for the estimation of the exact hydraulic diameter, which can be applied to any cross section, is derived
and based on this formula, results for the exact hydraulic diameter for the concentric annulus flow are provided.

2. Flow configuration

Consider the non-equilibrium flow of a gas through a long tube of length L with constant concentric circular
annular cross section connecting two vessels maintained at pressures P1 and P2, with P1 > P2. The annular cross
section is defined by two concentric cycles of radius R1 and R2, with R1 � r ′ � R2. The perimeter and the area of the
cross section are defined by Γ ′ = 2π(R1 + R2) and A′ = π(R2

2 − R2
1) respectively, while the hydraulic diameter of

the annulus, defined by

Dh = 4A′

Γ ′ = 2(R2 − R1), (1)

is taken as the characteristic macroscopic length of the problem. The flow is considered as fully developed in the lon-
gitudinal direction z′ (Dh � L) and end effects in that direction are neglected. Therefore, the only nonzero component
of the macroscopic velocity is the one in the z′ direction and it is denoted by u′(r ′). Another macroscopic distribution
of practical interest is the shear stress τ ′(r ′).
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The main flow parameter is the Knudsen number. However, for purposes related to the more comprehensive pre-
sentation of the results, the so-called rarefaction parameter, defined as

δ = DhP

μ0v0
=

√
π

2

1

Kn
(2)

is used. Here, in addition to the hydraulic diameter Dh, which is the characteristic macroscopic length, P = (P1 +
P2)/2 is a reference pressure, μ0 is the gas viscosity at reference temperature T0 and v0 = √

2RT0 is the characteristic
molecular velocity, with R = k/m denoting the gas constant (k is the Boltzmann constant and m the molecular mass).
As it is seen the rarefaction parameter is defined in terms of measurable quantities and it is proportional to the inverse
Knudsen number.

It is convenient to introduce the non-dimensional spatial variables r = r ′/Dh and z = z′/Dh. Then, r1 � r � r2,
where r1 = R1/Dh and r2 = R2/Dh. In addition, we define the dimensionless cross section A = A′/D2

h and perimeter
Γ = Γ ′/Dh, while A/Γ = 1/4. The macroscopic distributions of the velocity u′(r ′) and the shear stress τ ′(r ′), are
non-dimensionalized as u = u′/(v0XP ) and τ = τ ′/(2PXP ) respectively, where

XP = Dh

P

dP

dz′ = 1

P

dP

dz
(3)

is the dimensionless local pressure gradient causing the flow.

3. Kinetic equations, boundary conditions and solution

We implement the linearized BGK equation, which has been shown to provide reliable results in the case of
isothermal flows, subject to Maxwell diffuse-specular boundary conditions. The combination of diffuse and specular
reflection at the wall pertains to the surface characterization and thus to a more consistent and reliable comparison
with experimental results.

Since a kinetic approach is followed, the main unknown is the distribution function, which, in general, for steady-
state problems is a function of six independent variables. Here, since the flow is fully developed and axisymmetric
the number of variables is reduced down to three and the main unknown is the so-called reduced distribution function
φ = φ(r, ζ, θ), where r is the spatial variable, while 0 � ζ < ∞ and 0 � θ � 2π are the magnitude and the polar angle
respectively, of the two-component dimensionless molecular velocity vector c = (ζ, θ).

The flow may be simulated by the linearized reduced BGK kinetic equation given by

ζ

[
cos θ

∂φ

∂r
− sin θ

r

∂φ

∂θ

]
+ δφ = δu − 1

2
, (4)

with r1 � r � r2, while the macroscopic velocity at the right-hand side is

u(r) = 1

π

2π∫
0

∞∫
0

φζe−ζ 2
dζ dθ. (5)

At the inner and outer boundaries the gas–surface interaction is modeled as

φ(+) = (1 − α)φ(−), c · n > 0. (6)

The superscripts (+) and (−) denote distributions leaving from and arriving to the boundaries respectively, while n is
the unit vector normal to the boundaries and pointing towards the flow. The coefficient 0 � α � 1 is the momentum
accommodation coefficient and corresponds to the percentage of diffuse reflection of the gas at the wall. In addition,
the shear stress is computed by

τ(r) = 1

π

2π∫
0

∞∫
0

φζ 2 cos θ e−ζ 2
dζ dθ. (7)

The linear integro-differential problem defined by Eqs. (4) and (5), with the boundary condition (6) is discretized
and then it is solved in an iterative manner. The discretization is performed in the molecular velocity and physical
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spaces. Since the solution methodology has been repeatedly described and applied in previous work [15,4,21] solving
flows through channels of circular and rectangular cross sections, here, for completeness, we present briefly only the
main issues.

In the molecular velocity space the discretization is performed by the discrete velocity method [21], where the
continuum spectrum (ζ, θ) is replaced by a suitable set of discrete velocities (ζm, θn), defined by 0 � ζm < ∞ and
0 � θn � 2π , with m = 1,2, . . . ,M and n = 1,2, . . . ,N . We choose ζm to be the roots of the Legendre polynomials
of order M , while θn = n�θ , with �θ = 2π/N . The resulting set is consisting of M × N discrete velocities. In
the physical space the distance r1 � r � r2 is divided in equal intervals and the discretization at each interval i =
1,2, . . . , I is performed by the diamond-difference scheme. This is a second order central finite difference scheme,
which has been extensively used in solving elliptic type linear integro-differential equations [27,21].

Applying the above discretization to Eq. (4) we deduce its discretized version[
ζm cos(θn)

2�r
− ζm sin(θn)

(ri+1 + ri)�θ
+ δ

4

]
φ

(k+1/2)

i+1,m,n+1 +
[
ζm cos(θn)

2�r
+ ζm sin(θn)

(ri+1 + ri)�θ
+ δ

4

]
φ

(k+1/2)

i+1,m,n

+
[
−ζm cos(θn)

2�r
− ζm sin(θn)

(ri+1 + ri)�θ
+ δ

4

]
φ

(k+1/2)

i,m,n+1 +
[
−ζm cos(θn)

2�r
+ ζm sin(θn)

(ri+1 + ri)�θ
+ δ

4

]
φ

(k+1/2)
i,m,n

= δ
u

(k)
i+1 + u

(k)
i

2
− 1

2
, (8)

where φ(ri, ζm, θn) = φi,m,n, while the macroscopic velocity at each node of the physical grid, appearing at the right-
hand side of these equations is estimated by the double summation

u
(k+1)
i = 1

π

∑
m

∑
n

wmwnφ
(k+1/2)
i,m,n . (9)

The Gauss–Legendre quadrature is used in the ζ variable and the trapezoidal rule in the θ variable, while wm and wn

are the corresponding weighting factors. The shear stress τ(r), defined by Eq. (7), is estimated by applying the same
quadrature.

As it has been pointed out, the whole problem is solved in an iterative manner, indicated by the superscript (k),
between the kinetic equations and the integral expressions for the macroscopic quantities. It is important to note that
at each iteration (k) the system of algebraic equations (8) is solved by a marching scheme and no matrix inversion is
required. For each discrete velocity (ζm, θn) the distribution functions at each node are computed explicitly marching
through the physical domain. The macroscopic quantity, at each physical node is computed by numerical integration
using Eq. (9). The iterative procedure is ended when the imposed termination criteria on the convergence of ui is
satisfied. Following the above procedure, supplemented by a reasonable dense grid and an adequate large set of
discrete velocities we are able to obtain grid independent results with modest computational effort.

4. Overall macroscopic quantities of practical interest

The kinetic solution described in the previous section yields the dimensionless macroscopic distributions of ve-
locity and shear stress given by Eqs. (5) and (7) respectively. This solution depends on three parameters, namely the
rarefaction parameter δ, the ratio R1/R2 and the accommodation coefficient α. Based on these results, which are
valid from the free molecular, through the transition and slip regimes up to the hydrodynamic limit, several overall
macroscopic quantities of practical interest may be deduced.

The mass flow rate through the concentric annulus is

Ṁ =
∫∫
A′

ρu′ dA′, (10)

where the area of the cross section A′ and the macroscopic velocity u′ have been defined earlier, while ρ is the local
mass density. The double integral at the right-hand side of Eq. (10) is non-dimensionalized and by using the equation
of state P = ρRT0 = 1

2ρv2
0 we find

Ṁ = G
A′PXP = G

A′Dh dp

′ , (11)

v0 v0 dz
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where G is the non-dimensional flow rate defined by

G = 4

r2
2 − r2

1

r2∫
r1

u(r)r dr. (12)

In a similar manner it is readily deduced that the dimensionless mean velocity is estimated by

ū = u′
v0XP

= 2

r2
2 − r2

1

r2∫
r1

u(r)r dr. (13)

It is seen that G = 2ū and both quantities are obtained directly from the dimensionless kinetic solution.
In the case of a specific application the detailed geometry of the concentric annular tube (R1,R2,L) is given.

In addition, the upstream and downstream pressures P1 and P2 respectively as well as the reference temperature T0
are provided. Also the type of the gas and its characteristic molecular velocity v0 are known. Then, the rarefaction
parameter δ is estimated by Eq. (2) and the corresponding value of G is found by solving the kinetic equation. Finally,
the mass flow rate can be estimated by the expression

Ṁ = G
A′Dh

v0

P2 − P1

L
. (14)

Eq. (14), is valid when the pressure drop is small.
Since the flow is fully developed and there is no net momentum flux in the z′ direction, the net pressure and the

wall shear stress are equated to yield the mean wall shear stress [23]

τ ′
w = A′

Γ ′
dP ′

dz′ . (15)

By non-dimensionalizing Eq. (15) it is easily deduced that the dimensionless mean wall shear stress

τw = τ ′
w

2PXP

= A

2Γ
= 1

8
. (16)

This result, since it is obtained by applying basic principals, is always valid independently of the rarefaction parameter
δ, the ratio R1/R2 and the accommodation coefficient α and therefore it is used as a benchmark to test the accuracy
of the kinetic calculations. This is achieved by computing the dimensionless mean wall shear stress from the kinetic
solution according to

τw = 1

r1 + r2

[
r1τ(r1) + r2τ(r2)

]
, (17)

where the quantities τ(r1) and τ(r2) are the shear stresses, given by Eq. (7) at the boundaries r1 and r2 respectively,
and comparing the result of Eq. (17) with that of Eq. (16).

Another important quantity in the investigation of internal fully developed flows is the Poiseuille number Po, which
is commonly defined as the product of the Darcy friction factor [23]

f = 8τ ′
w

ρu′2 (18)

times the Reynolds number

Re = ρu′Dh

μ
, (19)

of the flow. Based on the implemented non-dimensionalization it is readily reduced that

Po = f × Re = 2δ

ū
. (20)

It is seen that once the kinetic solution is obtained the Poiseuille number of the flow is easily estimated in the whole
range of rarefaction.



614 G. Breyiannis et al. / European Journal of Mechanics B/Fluids 27 (2008) 609–622
Before we conclude this section it is noted that when the pressure difference between the upstream and downstream
pressures is large, then the analysis for finding the mass flow rate Ṁ (Eq. (14)) is slightly modified. In particular, it
is supplemented by a well known procedure, which is based on the mass conservation principal. In this case the mass
flow rate is estimated by [3,15]

Ṁ = G∗ A′Dh

v0

P2 − P1

L
, (21)

where now G∗ is an average non-dimensional flow rate defined by

G∗ = 1

δ2 − δ1

δ2∫
δ1

G(δ)dδ, (22)

while δ1 and δ2 correspond to pressures P1 and P2 respectively. In the case of small pressure drops we have G∗ = G.

5. Estimation of the exact hydraulic diameter in the whole range of gas rarefaction

The concept of the hydraulic diameter is well known and widely applied in the field of continuum fluid dynam-
ics [23]. It has been shown, based on basic principals, that the friction factor of a non-circular duct is approximately
equal to the friction factor of a circular tube having diameter Dh = 4A′/Γ ′. Of course, this is only an approximation
since the mean velocity of the non-circular duct will not be, in general, equal to the corresponding quantity of the
circular tube with diameter Dh. Following a specific procedure [23,24] the exact hydraulic diameter Dexact

h for which

the above argument is true may be specified. It is noted that the physical meaning of the quantities Dexact
h (used in

[23] and in the present work) and the so-called “laminar equivalent diameter” in [24] is identical. The procedure is
straightforward and it is based on the estimation of the solution in the non-circular channel. At the hydrodynamic
limit (δ → ∞), the departure between the exact and the approximate hydraulic diameters have been reported for
several fully developed flows through ducts of various cross sections using the corresponding well known analytical
solutions [23].

Now, we extend this procedure of the estimation of the exact hydraulic diameter in the field of internal rarefied gas
flows. We define by Potube the Poiseuille number of a rarefied gas flow through a circular tube, while Po may be the
Poiseuille number corresponding to any cross section, including the annulus one investigated in the present work. The
Poiseuille numbers are estimated by Eq. (20), provided that the corresponding dimensionless mean velocity has been
computed. To find the exact hydraulic diameter we write

f = 8τ ′
w

ρu′2 = Potube

ReDexact
h

, (23)

where

ReDexact
h

= ρu′Dexact
h

μ
(24)

and then solving Eq. (23) for the exact hydraulic diameter we obtain

Dexact
h = μu′

8τ ′
w

Potube. (25)

Eq. (25) is non-dimensionalized and the definitions of δ and Po, given by Eqs. (2) and (20) respectively, are imple-
mented to deduce that

Dexact
h

Dh

=
√

Potube

Po
. (26)

This result is quite simple, general and valid in the whole range of δ for ducts of any cross section. Using Eq. (26)
it is possible to study the error which is introduced when the hydraulic diameter concept is used to approximate flows
through non-circular ducts. This issue, is more valuable in the case of rarefied (non-equilibrium) flows compared to
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the case of continuum (equilibrium) flows, since in the former one the required computational effort and complexity
to obtain reliable results is significantly increased and therefore it is more tractable to use the hydraulic diameter
concept in technological applications. In the present work the dependency of the hydraulic diameter approximation
on the rarefaction parameter δ is investigated for flow through a concentric annulus and results for the exact hydraulic
diameter are given in Section 7.

6. Slip regime and hydrodynamic limit

When the flow is close to local equilibrium or otherwise in the slip regime it can be simulated by the hydrodynamic
equations subject to slip boundary conditions. For the particular problem under consideration the hydrodynamic equa-
tions are reduced to the Poisson equation

1

r

d

dr

[
r
du

dr

]
= −δ, with r1 � r � r2, (27)

to be solved for the dimensionless velocity distribution u(r), subject to the boundary conditions

u(r1) = σP

δ

du

dr

∣∣∣∣
r=r1

and u(r2) = −σP

δ

du

dr

∣∣∣∣
r=r2

, (28)

where σP is the viscous slip coefficient (VSC) and it is obtained via kinetic theory by solving the so called Kramers
problem. It has been found that using the BGK equation, with α = 1 (purely diffuse scattering), we obtain σP = 1.016
[28], while the dependency on the accommodation coefficient can be encountered by using the expression [29,3]

σP (α) = 2 − α

α

[
σP (1) − 0.1211(1 − α)

]
. (29)

The corresponding results of σP , based on the Boltzmann equation or other kinetic model equations, are very close to
the ones obtained by the BGK model [30,31].

Solving Eq. (27), with the boundary conditions given by Eq. (28) yields for the velocity profile

u(r) = δ

4

[
r2

2 − r2 − (r1 + r2)

2

ln(r/r2)

ln(r1/r2)

]

+ σP

[
ln(r1/r)[−r1

3 + r1r2
2 + 2r1r2

2 ln(r1/r2)] + [−r1
2r2 + r2

3 + 2r1
2r2 ln(r1/r2)] ln(r2/r)

4r1r2[ln(r1/r2)]2

]
, (30)

where r1 = R1/Dh and r2 = R2/Dh. Then, integrating the velocity profile (30) according to Eq. (12) the dimensionless
flow rate is found to be

G = Gh + Gs

= δ

4

[
r1

2 + r2
2 + 1

2

r1 + r2

ln(r1/r2)

]
+ σP

[
1

2
+ 2r1r2 + r1 + r2

ln(r1/r2)
+ (r1 + r2)

2

8r1r2[ln(r1/r2)]2

]
. (31)

At the right-hand side of Eqs. (30) and (31), the first terms correspond to the hydrodynamic solution, which as it
is seen is proportional to δ and the second ones to the slip correction. Eqs. (30) and (31) take this specific form by
keeping terms up to zero order in terms of δ and neglecting terms of order 1/δ. In principal, this solution is valid only
in the slip regime (δ > 10) but due to its simplicity it may be used, to some extend, in the transition regime to provide
rough estimates for practical applications.

7. Results and discussion

Results for the dimensionless flow rate G, the Poiseuille number Po and the exact hydraulic diameter Dexact
h are

provided for the flow of a rarefied gas through a concentric annulus in the whole range of the rarefaction parameter δ,
for three values of the accommodation coefficient α and with the ratio of the inner over the outer radius taking several
values between zero and one (0 � R1/R2 < 1).

Depending upon the values of δ, R1/R2 and α the number of nodes I , M and N in the phase space has been
progressively increased to ensure grid independent results up to several significant figures. In general, in rarefied
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Table 1
Dimensionless flow rate G in terms of δ and R1/R2 with α = 1

δ R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.000 0.7522 0.7711 0.7919 0.8148 0.8402 0.8695 0.9043 0.9480 1.008 1.109
0.001 0.7508 0.7695 0.7903 0.8129 0.8382 0.8673 0.9018 0.9451 1.005 1.104
0.01 0.7436 0.7617 0.7818 0.8037 0.8281 0.8560 0.8891 0.9301 0.9861 1.078
0.1 0.7152 0.7309 0.7483 0.7670 0.7876 0.8107 0.8375 0.8698 0.9118 0.9748
0.3 0.6948 0.7083 0.7229 0.7385 0.7553 0.7738 0.7945 0.8185 0.8478 0.8867
0.5 0.6887 0.7000 0.7127 0.7263 0.7408 0.7564 0.7736 0.7928 0.8151 0.8422
0.7 0.6884 0.6986 0.7099 0.7219 0.7346 0.7453 0.7626 0.7784 0.7960 0.8158
0.8 0.6894 0.6989 0.7095 0.7208 0.7327 0.7454 0.7588 0.7732 0.7889 0.8061
0.9 0.6911 0.6999 0.7098 0.7205 0.7317 0.7434 0.7559 0.7691 0.7832 0.7981
1 0.6933 0.7007 0.7101 0.7202 0.7307 0.7417 0.7533 0.7654 0.7782 0.7912
1.2 0.6987 0.7053 0.7135 0.7223 0.7316 0.7411 0.7511 0.7613 0.7717 0.7817
1.4 0.7052 0.7104 0.7174 0.7252 0.7333 0.7416 0.7502 0.7588 0.7673 0.7752
1.6 0.7126 0.7163 0.7222 0.7289 0.7359 0.7432 0.7505 0.7578 0.7648 0.7710
1.8 0.7206 0.7228 0.7276 0.7333 0.7394 0.7456 0.7519 0.7580 0.7638 0.7686
2 0.7288 0.7291 0.7329 0.7377 0.7429 0.7483 0.7537 0.7588 0.7636 0.7675
3 0.7766 0.7690 0.7674 0.7677 0.7689 0.7705 0.7723 0.7740 0.7755 0.7765
5 0.8835 0.8553 0.8434 0.8365 0.8322 0.8293 0.8274 0.8261 0.8252 0.8247

10 1.174 1.082 1.047 1.027 1.015 1.007 1.002 0.9988 0.9967 0.9956
20 1.782 1.530 1.462 1.430 1.411 1.400 1.393 1.388 1.386 1.385
50 3.643 2.860 2.738 2.683 2.653 2.635 2.624 2.617 2.614 2.612

100 6.763 5.085 4.891 4.803 4.754 4.725 4.707 4.696 4.689 4.686

atmospheres (small δ) we need a large number of discrete velocities M × N , while the physical grid may be coarse.
From the other hand, in continuum atmospheres (large δ) the required number of discrete velocities may be reduced,
but a large number of nodes I in the physical grid is important to achieve good accuracy. Indicatively, the results
presented for δ = 1 and for all R1/R2 have been obtained with I = 500, M = 64 and N = 400, while a further
refinement of the grid does not change the results up to at least three significant figures. The number of iterations
required for convergence is increased as δ is increased. In particular, with a relative convergence criterion of 10−7,
the number of required iterations for δ = 1, 10 and 102 is 34, 208 and 5842 respectively. A detailed study on the
convergence issues of the numerical algorithm is presented in [17]. The computational time aspect of the calculations
can be regarded as modest ranging from a few seconds to a few hours as δ increases on a single core ×86 − 64 CPU.

In addition to grid refinement the validation of the results has been also confirmed in the following ways. For each
set of parameters, the dimensionless mean wall shear stress is computed by the kinetic algorithm and in all cases,
the analytical result for the same quantity, given by Eq. (16), is obtained. Also the results have been successfully
compared with the corresponding analytical ones at the free molecular and continuum limits. In particular, at large
values of δ, there is very good agreement between the kinetic results and the ones based on the analytical slip solution,
given by Eq. (31). Also, at δ = 0, there is excellent agreement with the corresponding analytical results based on the
closed form expression, given in [26]. Based on the above, the kinetic solution is considered accurate up to at least
three significant figures.

Tabulated results of the dimensionless flow rate G in terms of δ and R1/R2, with α = 1, 0.85 and 0.7, are given in
Tables 1, 2 and 3 respectively. These specific values of α represent a wide range of gases and surfaces since in most
experimentally observed cases 0.6 < α � 1 [32,33]. Results for the case of a tube (R1/R2 = 0) are also included for
completeness and comparison purposes. The discrepancy of these results (second column in Tables 2, 3 and 4) with
the ones published in [3] is due to the applied discretization, which here is based on the hydraulic diameter and not
on the radius of the tube as it is commonly done. However, the present discretization is crucial for the purposes of the
present work.

It is seen in Tables 1, 2 and 3 that, for each value of R1/R2 the dependency of G in terms of δ is qualitatively
similar to the one for the classical case of R1/R2 = 0. It may be interested to note that as the ratio R1/R2 is increased
the Knudsen minimum is observed at larger values of δ. The same trend on the Knudsen minimum is observed as α
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Table 2
Dimensionless flow rate G in terms of δ and R1/R2 with α = 0.85

δ R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.000 1.018 1.043 1.071 1.102 1.136 1.176 1.223 1.282 1.363 1.499
0.001 1.015 1.039 1.067 1.098 1.132 1.171 1.217 1.276 1.355 1.488
0.01 0.9993 1.023 1.049 1.079 1.111 1.148 1.191 1.245 1.318 1.437
0.1 0.9406 0.9596 0.9813 1.005 1.030 1.058 1.091 1.130 1.179 1.252
0.3 0.8961 0.9118 0.9289 0.9470 0.9664 0.9876 1.011 1.038 1.069 1.110
0.5 0.8787 0.8909 0.9054 0.9207 0.9368 0.9540 0.9726 0.9931 1.016 1.043
0.7 0.8715 0.8824 0.8948 0.9079 0.9216 0.9360 0.9513 0.9677 0.9854 1.005
0.8 0.8700 0.8800 0.8915 0.9036 0.9164 0.9297 0.9437 0.9584 0.9741 0.9907
0.9 0.8695 0.8786 0.8893 0.9006 0.9124 0.9247 0.9375 0.9509 0.9649 0.9792
1 0.8699 0.8771 0.8871 0.8977 0.9088 0.9202 0.9320 0.9442 0.9567 0.9693
1.2 0.8724 0.8789 0.8873 0.8964 0.9059 0.9156 0.9256 0.9357 0.9458 0.9553
1.4 0.8767 0.8815 0.8886 0.8964 0.9046 0.9129 0.9214 0.9298 0.9380 0.9454
1.6 0.8824 0.8855 0.8913 0.8979 0.9048 0.9120 0.9191 0.9262 0.9328 0.9386
1.8 0.8890 0.8905 0.8950 0.9005 0.9064 0.9124 0.9184 0.9243 0.9297 0.9342
2 0.8964 0.8953 0.8986 0.9031 0.9081 0.9133 0.9184 0.9239 0.9278 0.9315
3 0.9408 0.9320 0.9295 0.9291 0.9298 0.9311 0.9325 0.9339 0.9351 0.9359
5 1.046 1.016 1.003 0.9954 0.9905 0.9872 0.9849 0.9834 0.9824 0.9818

10 1.337 1.245 1.208 1.188 1.175 1.166 1.161 1.157 1.155 1.154
20 1.946 1.699 1.629 1.594 1.574 1.562 1.555 1.550 1.547 1.546
50 3.809 3.040 2.910 2.852 2.820 2.801 2.789 2.782 2.778 2.776

100 6.930 5.271 5.067 4.975 4.923 4.893 4.874 4.862 4.855 4.852

Table 3
Dimensionless flow rate G in terms of δ and R1/R2 with α = 0.7

δ R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.000 1.397 1.430 1.469 1.511 1.559 1.613 1.677 1.758 1.869 2.055
0.001 1.391 1.423 1.461 1.504 1.550 1.603 1.666 1.746 1.854 2.034
0.01 1.362 1.392 1.428 1.467 1.510 1.559 1.617 1.689 1.785 1.939
0.1 1.255 1.278 1.305 1.334 1.366 1.401 1.441 1.488 1.546 1.629
0.3 1.176 1.194 1.214 1.236 1.258 1.283 1.309 1.339 1.373 1.415
0.5 1.144 1.156 1.173 1.190 1.208 1.227 1.247 1.269 1.293 1.320
0.7 1.127 1.139 1.153 1.167 1.181 1.197 1.213 1.230 1.247 1.266
0.8 1.123 1.133 1.145 1.159 1.172 1.186 1.200 1.216 1.231 1.247
0.9 1.120 1.129 1.140 1.152 1.164 1.177 1.190 1.204 1.217 1.231
1 1.118 1.124 1.134 1.146 1.157 1.169 1.181 1.193 1.206 1.217
1.2 1.117 1.123 1.131 1.141 1.150 1.160 1.170 1.180 1.189 1.198
1.4 1.118 1.122 1.129 1.137 1.145 1.153 1.162 1.170 1.177 1.184
1.6 1.122 1.124 1.130 1.136 1.143 1.149 1.156 1.163 1.169 1.175
1.8 1.127 1.127 1.131 1.137 1.142 1.148 1.153 1.159 1.168 1.168
2 1.133 1.129 1.132 1.136 1.141 1.146 1.151 1.155 1.160 1.163
3 1.173 1.163 1.159 1.158 1.158 1.159 1.160 1.161 1.163 1.163
5 1.277 1.244 1.230 1.221 1.216 1.212 1.209 1.208 1.206 1.206

10 1.567 1.474 1.437 1.415 1.401 1.392 1.386 1.382 1.380 1.379
20 2.178 1.936 1.863 1.826 1.805 1.792 1.783 1.778 1.776 1.775
50 4.042 3.290 3.152 3.090 3.055 3.035 3.022 3.015 3.010 3.009

100 7.163 5.529 5.313 5.215 5.161 5.128 5.108 5.096 5.089 5.086

is decreased. Also, as expected, when the accommodation coefficient is decreased the dimensionless flow rate is
increased.

Next, a comparison between the kinetic and slip solutions is performed. In Fig. 1, for the specific case of R1/R2 =
0.5, with α = 1.0 and 0.7, the slip results obtained by Eq. (31) and the corresponding kinetic ones (seventh column in
Tables 1 and 3) are plotted in terms of δ. It is seen that for δ > 10 the agreement between the two solutions is good.
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Table 4
The quantities Gh/δ and Gs/σP of Eq. (31) in terms R1/R2

R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gh/δ 0.0625 0.0447 0.0433 0.0426 0.0422 0.0420 0.0418 0.0417 0.0417 0.0417
Gs/σP 0.500 0.582 0.538 0.520 0.512 0.507 0.504 0.502 0.501 0.500

Fig. 1. Comparison of dimensionless flow rate G between the kinetic and slip (Eq. (31)) solutions in terms of δ for a concentric annulus with
R1/R2 = 0.5 and α = 1.0 and 0.7.

More precisely, by comparing the kinetic and the slip results for α = 1.0, it is found that the relative error in the slip
solution at δ = 2 and 10 is 19.9% and 7.1% respectively, at δ = 20 reduces to 3.2%, while at δ = 50 becomes only
0.8%. Also, as α is decreased the discrepancy of the slip solution is increased but not significantly. These results are
indicative for all the ratios of the inner over the outer radius R1/R2. We complete our discussion on the slip solution
by providing, in Table 4, results for Gh/δ and Gs/σP , which correspond to the quantities in the two brackets at the
right-hand side of Eq. (31) in terms of the ratio R1/R2. The results in Table 4 are helpful in order to distinguish
between the hydrodynamic solution and the slip correction.

Based on the mean dimensionless bulk velocity obtained by the kinetic solution, tabulated results for the Poiseuille
number of the concentric annular tube flow in terms of δ and R1/R2, with α = 1, 0.85 and 0.7, are given in Tables 5, 6
and 7 respectively. The following remarks can be made. For 10−3 � δ � 10−1 (free molecular regime), the Po number
is increased directly proportional to δ. Then, for 10−1 < δ < 10 (transition regime), the Po number keeps increasing
as δ is increased but in a slower pace. Finally, for δ � 10 (slip regime), as δ is increased, the Po number is increased
very slowly, reaching asymptotically the continuum results at the hydrodynamic limit (last raw in Tables 6, 7 and 8),
which have been obtained by Eq. (31) at δ → ∞. These remarks apply to all values of the ratios of the inner over
the outer radius and accommodation coefficients. Also, for the same δ, as R1/R2 is increased the Po number is also
increased, while as α is decreased the Po number is decreased.

Using Eq. (26) and the results in Tables 5, 6 and 7, the validity of the concept of the hydraulic diameter can be
checked by comparing the approximate with the exact hydraulic diameters Dh and Dexact

h respectively. In Fig. 2,
the relative percent error in the approximate hydraulic diameter in terms of R1/R2 and for various values of δ, with
α = 1.0, is plotted. It is seen that at each R1/R2 the maximum percent error is positive and occurs at the hydrodynamic
limit as δ → ∞. This specific plot (δ → ∞) is in excellent agreement with the corresponding one, presented in
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Table 5
The Poiseuille number Po in terms of δ and R1/R2 with α = 1

δ R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.001 0.533(−2) 0.519(−2) 0.506(−2) 0.492(−2) 0.477(−2) 0.461(−2) 0.443(−2) 0.423(−2) 0.398(−2) 0.362(−2)

0.01 0.540(−1) 0.524(−1) 0.511(−1) 0.497(−1) 0.483(−1) 0.467(−1) 0.449(−1) 0.430(−1) 0.405(−1) 0.371(−1)

0.1 0.559 0.547 0.535 0.522 0.508 0.493 0.477 0.460 0.439 0.410
0.3 1.73 1.70 1.66 1.63 1.59 1.55 1.51 1.47 1.42 1.35
0.5 2.90 2.90 2.81 2.76 2.70 2.65 2.58 2.52 2.45 2.38
1 5.77 5.71 5.63 5.56 5.47 5.39 5.31 5.23 5.14 5.06
1.5 8.46 8.42 8.35 8.26 8.17 8.09 8.00 7.92 7.83 7.76
2 11.0 11.0 10.9 10.8 10.8 10.7 10.6 10.5 10.5 10.4
3 15.5 15.6 15.6 15.6 15.6 15.6 15.5 15.5 15.5 15.5
5 22.6 23.4 23.7 23.9 24.0 24.1 24.2 24.2 24.2 24.2

10 34.1 37.0 38.2 39.0 39.4 39.7 39.9 40.0 40.1 40.2
20 44.9 52.3 54.7 55.9 56.7 57.1 57.4 57.6 57.7 57.8
50 54.9 69.9 73.1 74.5 75.4 75.9 76.2 76.4 76.5 76.6

100 59.1 78.7 81.9 83.3 84.1 84.7 85.0 85.2 85.3 85.4
200 61.5 83.8 86.9 88.4 89.2 89.7 90.1 90.3 90.4 90.5
500 63.0 87.1 90.1 91.6 92.4 93.0 93.3 93.5 93.6 93.7

1000 63.9 88.2 91.2 92.7 93.6 94.1 94.4 94.6 94.8 94.8
.
.
∞ 64.0 89.4 92.4 93.8 94.7 95.3 95.6 95.8 95.9 96.0

Table 6
The Poiseuille number Po in terms of δ and R1/R2 with α = 0.85

δ R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.001 0.394(−2) 0.385(−2) 0.375(−2) 0.364(−2) 0.353(−2) 0.341(−2) 0.328(−2) 0.313(−2) 0.295(−2) 0.269(−2)

0.01 0.400(−1) 0.391(−1) 0.381(−1) 0.370(−1) 0.360(−1) 0.348(−1) 0.335(−1) 0.321(−1) 0.303(−1) 0.278(−1)

0.1 0.425 0.417 0.408 0.398 0.388 0.378 0.367 0.354 0.339 0.319
0.3 1.34 1.32 1.29 1.27 1.24 1.22 1.19 1.16 1.12 1.08
0.5 2.28 2.25 2.21 2.17 2.13 2.10 2.06 2.01 1.97 1.92
1 4.60 4.56 4.51 4.45 4.40 4.35 4.29 4.24 4.18 4.13
1.5 6.83 6.80 6.75 6.70 6.64 6.58 6.53 6.47 6.42 6.38
2 8.93 8.94 8.90 8.86 8.81 8.76 8.72 8.67 8.62 8.58
3 12.8 12.9 12.9 12.9 12.9 12.9 12.9 12.8 12.8 12.8
5 19.1 19.7 19.9 20.1 20.2 20.3 20.3 20.3 20.4 20.4

10 29.9 32.1 33.1 33.7 34.0 34.3 34.5 34.6 34.6 34.7
20 41.1 47.1 49.1 50.2 50.8 51.2 51.4 51.6 51.7 51.7
50 52.5 65.8 68.7 70.1 70.9 71.4 71.7 71.9 72.0 72.0

100 57.7 75.9 78.9 80.4 81.3 81.7 82.1 82.3 82.4 82.4
200 60.7 82.2 85.2 86.7 87.6 88.1 88.4 88.6 88.7 88.8
500 62.3 86.3 89.4 90.8 91.7 92.2 92.6 92.8 92.9 93.0

1000 63.7 87.8 90.8 92.3 93.2 93.7 94.1 94.3 94.4 94.5
.
.
∞ 64.0 89.4 92.4 93.8 94.7 95.3 95.6 95.8 95.9 96.0

Figs. 3–9 of the classical textbook of White [23]. As the flow departs from local equilibrium and δ is decreased the
error is reduced up to δ � 3, where it is very close to zero. Then, as δ is further decreased the percent error becomes
negative and it is increased by taking larger negative values all the way down to the free molecular region (δ = 10−3).
It is also seen that at each δ the relative error (either positive or negative) is always increased as the ratio R1/R2
is increased. Both, the maximum positive and negative percent errors are observed at R1/R2 = 0.9 and for δ → ∞



620 G. Breyiannis et al. / European Journal of Mechanics B/Fluids 27 (2008) 609–622
Table 7
The Poiseuille number Po in terms of δ and R1/R2 with α = 0.7

δ R1/R2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.001 0.287(−2) 0.281(−2) 0.273(−2) 0.266(−2) 0.258(−2) 0.249(−2) 0.240(−2) 0.229(−2) 0.215(−2) 0.196(−2)

0.01 0.293(−1) 0.287(−1) 0.280(−1) 0.272(−1) 0.265(−1) 0.256(−1) 0.247(−1) 0.237(−1) 0.224(−1) 0.206(−1)

0.1 0.319 0.313 0.307 0.300 0.293 0.286 0.278 0.269 0.259 0.246
0.3 1.02 1.01 0.988 0.971 0.954 0.935 0.917 0.896 0.874 0.848
0.5 1.75 1.73 1.715 1.68 1.66 1.63 1.60 1.58 1.55 1.515
1 3.58 3.56 3.53 3.49 3.46 3.42 3.39 3.35 3.32 3.287
1.5 5.36 5.35 5.32 5.29 5.25 5.22 5.18 5.15 5.12 5.089
2 7.06 7.09 7.07 7.04 7.01 6.98 6.95 6.93 6.90 6.879
3 10.2 10.3 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3
5 15.7 16.1 16.3 16.4 16.4 16.5 16.5 16.6 16.6 16.6

10 25.5 27.1 27.8 28.3 28.6 28.7 28.9 28.9 29.0 29.0
20 36.7 41.3 42.9 43.8 44.3 44.6 44.9 45.0 45.0 45.1
50 49.5 60.8 63.5 64.7 65.5 65.9 66.2 66.3 66.4 66.5

100 55.8 72.3 75.3 76.7 77.5 78.0 78.3 78.5 78.6 78.6
200 59.7 79.9 83.0 84.5 85.3 85.8 86.2 86.4 86.8 86.5
500 62.3 85.3 88.4 89.9 90.7 91.2 91.6 91.8 91.9 92.0

1000 63.7 87.3 90.3 91.8 92.7 93.2 93.5 93.7 93.8 93.9
.
.
∞ 64.0 89.4 92.4 93.8 94.7 95.3 95.6 95.8 95.9 96.0

Fig. 2. Percent error in the approximate hydraulic diameter compared to the exact hydraulic diameter for concentric annular tubes, with a = 1 and
various δ.

and δ = 10−3 respectively, where the corresponding estimates are +22.5% and −17.5%. Finally, it is noted that for
small values of R1/R2 and δ � 5 the percent error varies between ±5%. Very similar behavior of the percent error
in terms of δ and R1/R2 has been found for the cases of α = 0.85 and 0.7. Although general conclusions cannot be
easily drawn, it may be stated that for the present flow configuration in all cases tested the error introduced by the
implementation of the approximate hydraulic radius is smaller in the rarefied than in the corresponding continuum
flow.
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8. Concluding remarks

The fully developed flow of rarefied gases in concentric annular tubes due to an imposed pressure gradient has been
investigated implementing a kinetic approach. The BGK kinetic equation, associated with Maxwell diffuse-specular
boundary conditions, has been solved by the discrete velocity method. Results are provided for the flow rates and the
Poiseuille number for various concentric annular cross sections in the whole range of the rarefaction parameter δ and
for three values of the accommodation coefficient. It has been found that in the free molecular regime (δ � 10−1) the
Poiseuille number is increased proportionally to δ, then in the transition regime (0.1 < δ < 10) it keeps increasing
but in a slower pace and finally in the slip regime (δ � 10) it is increased very slowly, reaching asymptotically the
continuum result at the hydrodynamic limit (δ → ∞). Also, an expression for the estimation of the exact hydraulic
diameter in the whole range of gas rarefaction is derived and then it is applied in the present flow configuration to yield
the percent error in the approximate hydraulic diameter compared to the exact one. A detailed quantitative description
of the error in terms of δ and the ratio of the inner over the outer radius is provided. In all cases tested the estimated
error is smaller in the rarefied than in the corresponding continuum flow. The validity and the accuracy of the kinetic
results have been verified in several ways including the recovery of the well known solutions at the hydrodynamic and
free molecular limits.

The proposed methodology for the estimation of the discrepancy between the exact and approximate hydraulic
diameters may be applied in a straightforward manner to channels of orthogonal, triangular and trapezoidal cross
sections, which are of some interest in several technological fields including nano- and micro-fluidics and vacuum
technology.
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