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AbstrAct:
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by 
genetic alterations in upstream signaling molecules such as receptor tyrosine kinases 
(RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are 
also activated/inactivated by mutations. These pathways have profound effects on 
proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways 
can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating 
cells (CICs) and premature aging. This review will evaluate more recently described 
potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant 
cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/
MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation 
of normal and malignant cell growth. Inhibitors targeting these pathways have many 
potential uses from suppression of cancer, proliferative diseases as well as aging.
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IntroductIon

The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/
mTOR signaling cascades have been extensively studied 
over the past few decades. In this time there have been 
breakthroughs in the discovery of pathway components, 
the mechanisms by which they relay their signals and 
how mutations of these components can lead to aberrant 
signaling and uncontrolled proliferative diseases. 
Research has also lead to the development of inhibitors 
that specifically target critical elements of these pathways 
in anticipation of ameliorating patient survival. This 
review will discuss some of the current inhibitors, their 
targets and how they are being used to treat cancer and 
other proliferative diseases including aging.

Signaling through the Ras/Raf/MEK/ERK and 
Ras/PI3K/PTEN/Akt/mTOR pathways are carefully 

orchestrated events generally starting from the cell 
surface and leading to controlled gene expression within 
the nucleus. Regulation of these pathways is mediated by 
a series of kinases, phosphatases and various exchange 
proteins. Mutations occur in many of these pathway 
elements leading to uncontrolled regulation and aberrant 
signaling. An overview of the effects of mutations and 
the activation of these signaling pathways is presented in 
Figure 1. Deregulated signaling can lead to unrestrained 
cellular growth and proliferation ultimately resulting 
in tumor formation or abnormal cellular growth and 
premature aging. As such, a great deal of research has 
been aimed to target these mutated proteins to prevent 
abnormal signaling [1-5].

Figure 1: dysregulated Expression of upstream receptors and Kinases can result in Activation of the ras/raf/MEK/
ErK and ras/PI3K/PtEn/Akt/mtor Pathway. Sometimes dysregulated expression of growth factor receptors occurs by increased 
expression, genetic translocations or genomic amplifications which can lead to activation of the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/
mTOR pathways. Alternatively chromosomal translocations can occur in non-receptor kinases and other genes which result in activation of 
these pathways. Genes in the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways that have activating mutations detected in human 
cancer and proliferative diseases are indicated in blue ovals. Genes overexpressed in certain cancers are indicated in purple ovals. Tumor 
suppressor genes mutated in human cancer are indicated in red rectangles. Other key genes are indicated in green ovals. Genes inactivated 
by the Ras/PI3K/PTEN/Akt/mTOR pathway are indicated in orange ovals. Green arrows indicate activating events in pathways. Blocked red 
arrows indicating inactivating events in pathway. 
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MutAtIons or AltErEd ExPrEssIon 
oF thEsE PAthwAys cAn lEAd to 
sEnsItIvIty to thErAPy. 

Some cancer cells carrying BRAF mutations are 
highly sensitive to MEK inhibitors, while cells lacking 
these BRAF mutations or containing RAS or epidermal 
growth factor receptor (EGFR) mutations are resistant [5, 
6]. Increased Akt activity may actually render cells and 
patients sensitive to Akt as well as downstream mTOR 
inhibitors. The formation of the rapamycin-sensitive 
mTORC1 complex (consisting of mTOR, regulatory–
associated protein of mTOR [Raptor], DEPTOR and 
mLST8) in certain cancer cells that overexpress activated 
Akt may be altered in comparison to cells that do not 
overexpress Akt. In cells that express activated Akt, Akt 
may phosphorylate TSC-2 resulting in its inactivation. 
The mTORC1 complex is formed and downstream p70S6K 
and 4E-BP1 are phosphorylated, allowing the dissociation 
of eIF-4E, ribosome biogenesis and protein synthesis. In 

contrast, in the absence of Akt activation, this complex 
should not be formed. Rapamycin targets this complex; 
hence the cells that express elevated levels of activated 
Akt cells may be more sensitive to rapamycin than the 
cancer cells that do not express high levels of activated 
Akt. In the cells that do not express elevated levels 
of activated Akt, this complex should be transiently 
assembled after growth factor treatment. In contrast, the 
assembly of the rapamycin-insensitive mTORC2 complex 
(consisting of rapamycin insensitive companion of mTOR 
[Rictor], mTOR, DEPTOR, mLST8) should be lower in 
the cells that express elevated levels activated Akt than 
in those cells that do not as there is equilibrium between 
the mTORC1 and mTORC2 complexes. The significance 
of these complex biochemical signaling events is that 
cancer cells that overexpress activated Akt or lack 
PTEN expression have an Achilles heel with regards to 
therapeutic intervention as they are highly sensitive to 
rapamycin treatment. An overview of the interactions 
between the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/

Figure 2: rationale for targeting both the ras/raf/MEK/ErK and ras/PI3K/PtEn/Akt/mtor Pathways for 
suppressing cancer Growth. A: The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways are both activated by upstream 
receptor ligation and frequently co-regulate many downstream targets in parallel. Thus for effective elimination of many cancers or prevention 
of aging, it may be necessary to target both signaling pathways. Activation of these pathways could also result in increased transcription of 
many genes that promote cellular growth and malignant transformation. B. Inhibition of mTOR can result in the induction of autophagy, which 
is a very important mechanism of cell death, especially in solid tumors. C. As described previously, both the Ras/Raf/MEK/ERK and Ras/PI3K/
PTEN/Akt/mTOR pathways regulate the activity of apoptotic proteins by post-translational mechanisms. Targeting this pathway may also 
contribute to the induction of apoptosis. Signaling molecules promoting phosphorylation events are indicated in green. Stimulatory signaling 
events are indicted in green lines with a green arrow before the target of the phophorylation. Small molecule inhibitors are indicated in red. 
Inhibitory phosphorylation events are indicated in red lines with a block on the end before the target of the inhibition. Inhibitory signaling or 
proapoptotic molecules or inactivated molecules are indicated in yellow. A growth factor and a growth factor receptor are indicated in purple. 
Active transcription factors are indicated in purple diamonds. Inactivated transcription factors are indicated in yellow diamonds.
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mTOR pathways and the effects of these pathways on 
growth, autophagy and apoptosis is presented in Figure 2. 

ovErvIEw oF PAthwAy InhIbItors

Effective inhibitors specific for many of the key 
components of the Ras/Raf/MEK/ERK and Ras/PI3K/
PTEN/mTOR pathways have been developed [7-35]. 
In many cases, these inhibitors have been examined in 
clinical trials. Furthermore, inhibitors that target the 
mutant but not the wild type (WT) alleles of various 
genes (e.g., BRAF and PIK3CA) either have been or are 
being characterized. Thus specific inhibitors have been 
made and some are currently in the clinic. Targeting 
some components of these pathways has proven clinically 
effective and in some of the diseases have a very large 
market with few effective treatments [(e.g., Sorafenib and 
hepatocellular carcinoma (HCC)] [7]. 

rAF/MEK InhIbItors

Raf inhibitors have been developed and some are 
being used for therapy while others are being evaluated 
in clinical trials (See Table 1). Some inhibitors (i.e, 
Sorafenib, Bayer) were initially thought to specifically 
inhibit Raf but have been subsequently shown to have 
multiple targets (e.g., VEGF-R, Flt-3, PDGF-R). However, 
that does not preclude their usefulness in cancer therapy. 
Sorafenib is approved for the treatment of certain cancers 
(e.g., renal cell carcinoma (RCC) and patients with 
unresectable HCC and is currently being further evaluated 
in the Sorafenib Hepatocellular carcinoma Assessment 
Randomized Protocol (SHARP) trial, which demonstrated 
that the drug was effective in prolonging median survival 
and time-to-progression in patients with advanced HCC. 
Sorafenib is generally well tolerated in HCC patients with 
a manageable adverse events profile [7]. MEK inhibitors 
have also been examined for treating HCC in mouse 
models [8,9] but they do not appear to be as effective 
as Sorafenib, most likely due to the broad specificity of 
Sorafenib, which inhibits other targets besides Raf. 

PLX-4720 (Plexxikon/Roche) (R7204) is a mutant 
B-Raf specific inhibitor that has been used for preclinical 
studies [10]. PLX-4032 is a B-Raf inhibitor that is being 
evaluated in clinical trials. PLX-4720 was designed using 
a unique screening platform developed by Plexxikon that 
involved the use of structural and medicinal chemistry 
techniques [10]. This more selective screening approach 
has resulted in a series of B-Raf inhibitors based on the 
structural implications of BRAF mutation and which 
discriminate between the mutant and WT protein. PLX-
4720 is orally available and is highly selective for the 
mutant B-Raf protein. PLX-4720 is effective against 
melanomas, as well as colorectal tumors and other 
cancers, with the BRAFV600E mutation. BRAFV600E has been 
associated with more aggressive tumors and lower rates 

of patient survival [10].  The IC50 value for PLX-4720 
is approximately 3-fold lower in in vitro kinase assays 
with mutant versus WT B-Raf proteins and demonstrates 
an approximately 60-fold lower IC50 value in vivo when 
cell lines with mutant and WT BRAF genes are compared 
[10]. The IC50 value for PLX-4720 was compared with 
Sorafenib in a panel of melanomas, colon carcinomas 
and NSCLC. The BRAF gene status was known in all 
of these cell lines. The IC50 value for PXL-4720 was 
approximately 100-fold lower (range: 17.5 to 280 nM) 
than Sorafenib in melanomas and colon carcinomas that 
had the BRAFV600E mutation; however, the IC50 value for 
PLX-4720 was approximately the same as Sorafenib in 
colon carcinomas and NSCLC without BRAF mutations, 
but with RAS mutations [10]. PLX-4720 arrests mutant 
but not WT B-Raf melanoma cells at the G0/G1 cell-cycle 
stage and initiates apoptosis in these cells. The additional 
B-Raf inhibitor (PLX-4032) developed by Plexxicon 
shows promising effects [11].

nEEd For GEnEtIc scrEEnInG 
bEForE trEAtMEnt wIth rAF 
KInAsE InhIbItors. 

It has recently become apparent that it will be critical 
to determine the genetic status at both B-Raf and Ras 
before treatment with B-Raf selective inhibitors [12]. Class 
I B-Raf inhibitors (active conformation inhibitors) such as 
(PLX4720 and 885-A, a close analog of SB590885) will 
inhibit B-Raf mutants, however these ATP-competitive 
B-Raf inhibitors will not inhibit WT B-Raf or mutant Ras. 
In fact, these B-Raf inhibitors can activate Raf-1 in these 
cells in the presence of active Ras. 885-A could induce 
B-Raf binding to Raf-1. PLX-4720 can, to a lesser extent, 
induce B-Raf binding to Raf-1 when the ERK-mediated 
negative feedback loop on B-Raf was inhibited with a 
MEK inhibitor. These binding events were determined 
to require the present of activated Ras (WT or mutant), 
which may be necessary for the translocation from 
the cytoplasm to the membrane and assembly into the 
signaling complex. This has therapeutic implications, as in 
patients with mutant RAS, if they are treated with certain 
B-Raf inhibitors, B-Raf can bind and activate Raf-1 and 
promote the oncogenic pathway. In fact, even kinase-dead 
BRAF mutations, which are observed in human cancer, 
the mutant B-Raf proteins can dimerize with Raf-1, 
when stimulated by the mutant Ras protein and activate 
the Raf/MEK/ERK cascade. Clearly for B-Raf-selective 
inhibitors to be therapeutically useful, prior screening of 
patients for RAS mutations will be mandatory, as well as 
perhaps additional screening during treatment. Otherwise 
resistance may develop and lead to further stimulation of 
the Raf/MEK/ERK cascade.
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Table 1: Inhibitors of Raf/MEK and PI3K/PDK/Akt/mTOR – part 1 

Inhibitor target(s) cancer Examined clinical 
trials company ref.

Ras Inhibitors

tipifarnib 
(Zarnestra™, 
r115777)

Ras, farnesyl-
transferase, Rheb

AML, lymphoma, 
breast, glioma, 
melanoma

Phase I, II, III Johnson & Johnson 121, 122,
www.clinicaltrials.gov

Raf Inhibitors

bAy 43-9006
(nexavar®, 
sorafenib tosylate)

Raf, VEGFR2, 
VEGFR3, PDGF-R, 
c-Kit, c-Fms, Flt-3

renal cell carcinoma, 
HCC, melanoma, 
leukemias

Phase I, II, III Bayer 7, 31, 33, 58, 59, 61, 71, 73, 
79, 158, 
www.clinicaltrials.gov

AAl-881 Raf thyroid, glioma Preclinical Novartis 96, 97

lbt-613 Raf glioma, thyroid Preclinical Novartis 96, 157

rAF265 B-Raf, Raf-1 (c-
Raf), A-Raf, B-
RafV600E, VEGFR-2

melanoma Phase I Novartis data on file. Novartis Pharma 
AG, Basel, Switzerland 
(Internet)

xl281 B-Raf, c-Raf, B-
RafV600E

colorectal, papillary 
thyroid, ovarian, 
prostate, carcinoid 
tumors, melanoma

Phase I Exelixis/Bristol 
Myers Squibb

98

sb-590885 Raf, B-RafV600E melanoma Preclinical GlaxoSmithKline 99, 155

Plx-4720 Raf, B-RafV600E melanoma Preclinical Plexxikon/Roche 10

Plx-4032 Raf, B-RafV600E melanoma, thyroid, 
ovarian, solid tumors

Phase I Plexxikon/Roche 11, www.clinicaltrials.gov

l-779,450 Raf leukemia Preclinical Merck 13, 106

Gw5074 Raf-1 (c-Raf) melanoma, 
glioblastoma

Preclinical GlaxoSmithKline 105, 156

sb-699393 Raf Preclinical GlaxoSmithKline 106

MEK inhibitors

cI-1040 (Pd-
184352)

MEK1, MKK5 colorectal, NSCLC, 
pancreatic, kidney, 
melanoma, breast

Phase I, II
(discontinued)

Pfizer 13,17,25,27,29,74,77, 126, 
www.clinicaltrials.gov

Pd0325901 MEK1/2 breast, colon, NSCLC, 
melanoma

Phase I, II
(discontinued)

Pfizer 5,13,28,29,34,35,39,
74,191,
www.clinicaltrials.gov

xl518 MEK Phase I Exelixis 145, Exelixis (internet), 
www.clinicaltrials.gov

selumetinib 
(AZd6244, 
Arry-142886)

MEK melanoma, HCC, 
pancreatic, colon, lung, 
breast

Phase I, II Astra Zeneca/Array 
BioPharma

3, 8, 13, 21, 23, 24, 61, 62,
78, 84, ww.clinicaltrials.gov

rdEA119 (bAy 
869766)

MAP2K1 
(MAPK/ERK 
kinase 1)

advanced tumors Phase I, II Ardea/Bayer 15, www.clinicaltrials.gov

Pd098059 MEK1/2 advanced hematological 
and advanced solid 
cancers

Preclinical Parke-Davis/Pfizer 14, 81, 102, 191, 215, 251,
256
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Table 1: Inhibitors of Raf/MEK and PI3K/PDK/Akt/mTOR – part 2 

Inhibitor target(s) cancer Examined clinical 
trials company ref.

u0126 MEK1/2 advanced hematological 
and advanced solid 
cancers

Preclinical DuPont Pharmaceuticals 14, 81, 83, 104, 215, 256, 267

sl-327 MEK1/2 not evaluated for use in 
cancer treatment

Preclinical DuPont Pharmaceuticals 159

PI3K/Akt/mTOR inhibitors

ucn-01 PDK-1, Chk1, 
PKC isoforms

leukemia, lymphoma, 
ovarian, peritoneal cavity, 
fallopian tube

Phase I, II Kyowa Hakko Kogyo Co., 
Ltd./Keryx 
Biopharmaceuticals

108, www.clinicaltrials.gov

(nvP)-
bAG956

PDK, p110 
PI3Ks (except 
for β isoforms)

leukemia, melanoma Preclinical Novartis 111, 112, 153

celecoxib 
(celebrex®)

PDK-1, COX-2 lung, prostate, H&N, Phase I, II Pfizer 36,162, 163, 
www.clinicaltrials.gov

osu-03012 PDK-1 prostate, glioma, 
leukemia, HCC, breast

Preclinical Arno Therapeutics/ The 
Ohio State University

131-133

bx-795 PDK-1, ERK8, 
TBK1, IKK-ε

breast, prostate, colon, 
melanoma, pancreatic, 
cervical

Preclinical Berlex/Bayer 124-126

bx-912 PDK-1 breast, prostate, colon, 
melanoma, pancreatic, 
cervical

Preclinical Berlex/Bayer 124-126

bx-320 PDK-1 breast, prostate, colon, 
melanoma, pancreatic, 
cervical

Preclinical Berlex/Bayer 124-126

Ar-12 PDK-1, PI3K, 
Akt

breast, colon, lung, 
prostate, lymphoma

Phase I Arno Therapeutics Arno Therapeutics (internet), 
www.clinicaltrials.gov

KP372-1 PDK-1, Akt, 
Flt3

AML, thyroid, 
glioblastoma

Preclinical Kinetek Pharmaceuticals 47, 140, 141

ly294002 PI3K, other 
related kinases

advanced hematological 
and advanced solid 
cancers

Preclinical Lilly 107, 126, 139, 215, 251, 256,
267

Pwt-458 PI3K NSCLC, glioblastoma, 
renal

Preclinical Wyeth/Pfizer 136, 137

Px-866 PI3K glioma, breast, colon, 
prostate, NSCLC, 
pancreatic advance solid 
tumors

Phase I Oncothyreon Inc. 134, 135, 
www.clinicaltrials.gov

cAl-101 PI3K (p110δ) leukemias, lymphomas, 
myeloma

Phase I Calistoga Pharmaceuticals Calistoga Pharmaceuticals 
(Internet), 
www.clinicaltrials.gov

xl-147 PI3Ks NSCLC, solid tumors Phase I Exelixis/Sanofi-Aventis 142, Exelixis (internet),  
www.clinicaltrials.gov

ZstK474 PI3Ks NSCLC, melanoma, 
ovarian, prostate, 

Preclinical Zenyaku Kogyo Co.
Ltd

143, 144

Gdc-0941 PI3K (p110α), 
Flt3

lymphoma, NSCLC, 
breast, solid tumors

Phase I PIramed Pharma/Roche/
Genetech

146-148, 
www.clinicaltrials.gov

(nvP)-
bEZ235

PI3K, mTOR breast, glioma, melanoma, 
pancreatic

Phase I, II Novartis 54, 149, 150, 170,
www.clinicaltrials.gov

As-252424 PI3Ks (p110γ) Preclinical Merck Serona 154
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Table 1: Inhibitors of Raf/MEK and PI3K/PDK/Akt/mTOR – part 3 

Inhibitor target(s) cancer Examined clinical 
trials company ref.

tGx-221 PI3K (p110β) treatment for coronary 
heart disease, not
evaluated for use in cancer 
treatment

Preclinical Alexis/Enzo Life 
Sciences, Inc.

160, 161

xl-765 PI3K, mTOR glioma, NSCLC Phase I Exelixis/Sanofi-
Aventis

145, Exelixis (internet), 
www.clinicaltrials.gov

wortmannin PI3K, mTOR, 
DNA-PK, 
MAPK

advanced hematological 
and advanced solid 
cancers

Preclinical 126, 127, 138, 139

PI-103 p110 PI3Ks, 
mTORC1/2, 
DNA-PK

glioma, prostate, colon, 
NSCLC

Preclinical PIramed 
Pharma/Roche

44,126-130

Perifosine (Krx-
0401)

Akt, MEK 1/2, 
ERK 1/2, JNK

multiple myeloma, 
leukemias, NSCLC, 
advance solid tumors

Phase I, II Æterna Zentaris
Inc./Keryx 
Biopharmaceuticals

48, 109, 110, 172, 174, 175,
www.clinicaltrials.gov

triciribine (API-
2)

Akt 1, 2, 3 AML, advanced 
hematological cancer

Phase I VioQuest 
Pharmaceuticals

45, 55, 166,
www.clinicaltrials.gov

sr13668 Akt breast, prostate, ovarian Preclinical SRI International 123, SRI International (internet)

Ar-67 (db-67) Akt advanced solid tumors Phase I, II Arno Therapeutics Arno Therapeutics (internet)

Ar-42 Akt Preclinical Arno Therapeutics Arno Therapeutics (internet)

GsK690693 Akt1, 2, 3 leukemia, lymphoma Phase I GlaxoSmithKline 113, 114, www.clinicaltrials.gov

KP372-1 Akt, PDK-1, 
Flt3

leukemia, thyroid, H&N, 
glioma

Preclinical QLT Inc. 47, 140

vQd-002 (API-2) Akt NSCLC, leukemias, 
lymphomas, prostate

Phase I, II VioQuest
Pharmaceuticals

45, 165

A-443654 Akt hematological and solid 
cancers

Preclinical Abbott Laboratories 46, 164

MK-2206 Akt solid tumors Phase I Merck Merck (internet), 
www.clinicaltrials.gov

rapamycin 
(sirolimus)

mTORC1 advanced hematological, 
advanced solid tumors, 
HIV, AIDS related 
malignancies

Phase I, II Wyeth/Pfizer 2, 50, 51, 53, 63-69, 71, 73, 74,
86-88, 151, 152, 173-185, 191,
212, 215, 216, 255,
www.clinicaltrials.gov

ccI-779
(torisel®, 
temsirolimus)

mTORC1 leukemia, lymphoma, 
NSCLC, prostate,
colorectal, renal

Phase I, II Wyeth/Pfizer 2, 50, 53, 70, 115-118, 
www.clinicaltrials.gov

rAd001 
(Afinitor®, 
Everolimus)

mTORC1, 
mTORC2

cervical, renal, HCC, 
leukemia, lymphoma

Phase I, II Novartis 2, 50, 52, 53, 93, 115-118, 157,
www.clinicaltrials.gov

AP-23573
(ridaforolimus, 
deforolimus)

mTORC1 advanced hematological 
cancer, prostate, 
endometrial

Phase I, II Ariad/Merck 2, 50, 53, 74, 119, 120, 
www.clinicaltrials.gov

Active Site mTOR Inhibitors

AZd-8055 mTORC1/
mTORC2

advanced solid tumors, 
lymphomas, HCC

Phase I, II AstraZenica 171, 172, 174-176,
www.clinicaltrials.gov

osI-027 mTORC1/
mTORC2

advanced solid tumors, 
lymphomas

Phase I OSI Pharmaceuticals 171, 172, 174-176,
www.clinicaltrials.gov

InK-128 mTORC1/
mTORC2

advanced cancers, 
multiple myeloma, 
Waldenstrom 
macroglobulinemia

Phase I Intellikine 172, 174-176,
www.clinicaltrials.gov

PP-242 mTORC1/
mTORC2

Phase I UCSF 171, 172, 174-176

AML = acute myeloid leukemia, HCC = hepatocellular carcinoma, NSCLC = non-small cell lung carcinoma, H&N = head and neck cancer
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MEK InhIbItors

Specific inhibitors of MEK have been developed 
(e.g., PD98059 (Pfizer), U0126 (DuPont), PD184352 
[CI-1040] (Pfizer), PD0325901 (Pfizer), Selumetinib 
(a.k.a., ARRY-142886, AZD6244) (Astra-Zeneca), and 
RDEA119 (Ardea Biosciences) (See Table 1) [3, 8-9, 
13-30]. MEK inhibitors differ from most other kinase 
inhibitors as they do not compete with ATP binding 
(non-ATP competitive), which confers a high specificity 
[17]. Most MEK inhibitors are specific and do not inhibit 
many different protein kinases [18] although as will 
be discussed below, certain MEK inhibitors are more 
specific than others. The crystal structures of MEK1 and 
MEK2 have been solved as ternary complexes with ATP 
and PD184352, and have revealed that both MEK1 and 
MEK2 have unique inhibitor binding sites located on a 
hydrophobic pocket adjacent to, but not overlapping with, 
the ATP-binding site [19]. Furthermore, effective targeting 
of MEK1/MEK2 is highly specific, as ERK1/ERK2 are 
the only well-described downstream targets. A distinct 
advantage of inhibiting MEK is that it can be targeted 
without knowledge of the precise genetic mutation that 
results in its aberrant activation. This is not true with 
targeting Raf as certain Raf inhibitors will activate Raf and 
also certain B-Raf specific inhibitors will not be effective 
in the presence of Ras mutations as discussed above. 

An advantage of targeting MEK is that the Ras/
Raf/MEK/ERK pathway is a convergence point where a 
number of upstream signaling pathways can be blocked 
with the inhibition of MEK. For example, MEK inhibitors, 
such as Selumetinib, are also being investigated for the 
treatment of pancreatic cancers, breast cancers, and other 
cancers such as hematopoietic malignancies, including 
multiple myeloma [20-22]. 

Selumetinib inhibits MEK1 in vitro with an IC50 
value of 14.1 ± 0.79 nM [23, 24]; it is specific for MEK1 
as it did not appear to inhibit any of the approximately 
40 other kinases in the panel tested. Selumetinib is not 
competitive with ATP. Molecular modeling studies 
indicate that selumetinib binds to an allosteric binding 
site on MEK1/MEK2. The binding sites on MEK1/MEK2 
are relatively unique to these kinases and may explain 
the high specificity of MEK inhibitors. This binding 
may lock MEK1/2 in an inactivate conformation that 
enables binding of ATP and substrate, but prevents the 
molecular interactions required for catalysis and access 
to the ERK activation loop. In basic research studies, 
treatment with the MEK inhibitor results in the detection 
of activated MEK1/2 when the western blot is probed 
with an antibody that recognizes active MEK1/2, while 
downstream ERK1/2 will not appear activated with the 
activation specific ERK1/2 antibody [24]. Selumetinib 
inhibited downstream ERK1/ERK2 activation in in vitro 
cell line assays with stimulated and unstimulated cells, 
and also inhibited activation in tumor-transplant models. 

Selumetinib did not prevent the activation of the related 
ERK5 that occurs with some older MEK1 inhibitors, 
which are not being pursued in clinical trials. Inhibition 
of ERK1/2 suppresses their ability to phosphorylate and 
modulate the activity of Raf-1, B-Raf and MEK1 but not 
MEK2 as MEK2 lacks the ERK1/ERK2 phosphorylation 
site. In essence, by inhibiting ERK1/2 the negative loop 
of Raf-1, B-Raf and MEK phosphorylation is suppressed 
and hence there will be an accumulation of activated Raf-
1, B-Raf and MEK [24]. This biochemical feedback loop 
may provide a rationale for combining Raf and MEK 
inhibitors in certain therapeutic situations.

In colon, melanoma, pancreatic, liver and some 
breast cancers, selumetinib inhibited the growth of tumors 
in tumor xenograft studies performed in mice. The new 
MEK inhibitors are also at least 10 to 100-fold more 
effective than earlier MEK inhibitors and hence can be 
used at lower concentrations [8, 9, 20-24]. Selumetinib 
also inhibits the growth of human leukemia cells, but does 
not affect the growth of normal human cells. Selumetinib 
also suppressed the growth of pancreatic BxPC3 cells, 
which do not have a known mutation in this pathway, 
suggesting that this drug may also be useful for treating 
cancers that lack definable mutations. However, it is 
likely that BxPC3 cells have some type of upstream gene 
mutation/amplification or autocrine growth factor loop 
that results in activation of the Raf/MEK/ERK pathway.

Selumetinib induced G1/S cell-cycle arrest in colon 
and melanoma cancer cell lines and activated caspase-3 
and -7 in some cell lines (Malme3M and SKMEL2); 
however, caspase induction was not observed in other 
melanoma (SKMEL28) or colon cancer cell lines (HT29), 
demonstrating that further research needs to be performed 
with this inhibitor to determine if it normally induces 
apoptosis and whether the induction of apoptosis can be 
increased with other inhibitors or chemotherapeutic drugs. 

Selumetinib suppressed the tumor growth of 
pancreatic cells, such as BxPC3, in immunocompromised 
mice more effectively than conventional chemotherapeutic 
drugs, such as gemcitabine, which is commonly used to 
treat pancreatic cancer; however, once treatment with 
selumetinib was discontinued, the tumors regrew [21]. 
Most likely MEK inhibitors do not induce apoptosis, but 
rather, they inhibit proliferation. That is, MEK inhibitors 
are cytostatic. 

An additional MEK inhibitor is PD-0325901 
(Pfizer) [27-30], which follows on from the earlier MEK 
inhibitors PD-98059 and PD-184352, both of which have 
been extensively examined in preclinical investigations 
to determine the role of MEK in various biochemical 
processes. PD-184352 was the first MEK inhibitor to 
enter clinical trials and it demonstrated inhibition of 
activated ERK and anti-tumor activity in patients [25,26]; 
however, subsequent multicenter, phase II studies with 
patients with diverse solid tumors did not demonstrate 
encouraging results [27]. This was probably due to low 
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oral bioavailability and high metabolism, which led to 
plasma drug levels that were inadequate to suppress tumor 
growth.

The newer PD-0325901 MEK inhibitor is an 
orally-active, potent, specific, non-ATP competitive 
inhibitor of MEK. PD-0325901 demonstrated improved 
pharmacological and pharmaceutical properties compared 
with PD-184352, including a greater potency for inhibition 
of MEK, and higher bioavailability and increased metabolic 
stability. PD-0325901 has a Ki value of 1 nM against 
MEK1 and MEK2 in in vitro kinase assays. PD-0325901 
inhibits the growth of cell lines that proliferate in response 
to elevated signaling of the Raf/MEK/ERK pathways [27]. 
Clinical trials with PD-0325901 have documented some 
successes and some adverse side effects [27-29]. Pfizer 
has suspended it evaluation in clinical trials. This may 
have resulted in part from the design of the clinical trials 
as MEK inhibitors may not be appropriate to treat all types 
of cancer. MEK inhibitors may be appropriate to treat only 
those cancers that proliferate in response to activation of 
the Raf/MEK/ERK pathway [30-32]. Furthermore, it may 
also be important to include a chemotherapeutic drug or 
radiation treatment to induce death of the cancer cell. 

Raf is also a key therapeutic target [31-34], which lies 
upstream of MEK. Hence, targeting MEK is an approach 
to target tumors containing activated RAF genes. The 
BRAFV600E mutation is present in approximately 6 to 8% 
of human cancers (overall). Interestingly, approximately 
5% of lung cancers have mutations at BRAF which are not 
at V600E [35]. The effects of PD-0325901 were examined 
in conditional BRAFV600E tumor models where genetically 
modified mice express normal B-Raf prior to Cre-mediated 
recombination, after which they express B-RafV600E at 
physiological levels [35]. When B-RafV600E was induced, 
the mice developed lung tumors which could be inhibited 
by PD-0325901 (25 mg/kg/day for approximately two 
weeks, followed by 12.5 mg/kg/day for an additional 
two weeks). In contrast, mice treated with vehicle alone 
developed adenomas. This model indicates that in some 
cases for MEK inhibitors to yield successful outcomes, 
the therapy needs to include a cytotoxic drug, as the MEK 
inhibitors are cytostatic and often as soon as the MEK 
inhibitors are removed, the tumor may re-emerge. 

There are few current effective therapies for HCC 
[36-39]. Hence targeting signaling pathways activated 
in HCC has been considered an approach to target HCC. 
Human HCC tumors have higher expression and enhanced 
activity of MEK1/2 and ERK1/2 compared with adjacent 
non-neoplastic liver [37]. Over-expression of activated 
MEK1 in HCC HepG2 cells resulted in enhanced tumor 
growth in vivo [38]. On the other hand, preclinical studies 
have demonstrated the potential of MEK inhibition to 
suppress hepatoma cell proliferation and tumorigenicity 
[9]. Huynh et al. recently reported that treatment of human 
HCC xenografts with Selumetinib blocked ERK1/2 
activation, reduced in vivo tumor growth, and induced 

apoptosis [9]. Moreover, targeting MEK with PD-0325901 
had in vivo chemopreventive effects on HCC development 
in an animal model employing TGF-α-transgenic mice in 
which liver cancers were induced by diethylnitrosamine 
treatment [39]. Therefore, MEK represents a potential 
therapeutic target for HCC.

RDEA119 is a more recently described MEK 
inhibitor developed by Ardea Biosciences [16]. It is a 
highly selective MEK inhibitor that displays a >100-fold 
selectivity in kinase inhibition in a panel of 205 kinases. 
In contrast, in the same kinase specificity analysis, other 
recently developed MEK inhibitors (e.g., PD0325901) 
also inhibited the Src and RON kinases. 

There are at least two ERK molecules regulated by 
the Raf/MEK/ERK cascade, ERK1 and ERK2. Little is 
known about the differential in vivo targets of ERK1 and 
ERK2. The development of specific ERK1 and ERK2 
inhibitors is ongoing and may be useful in the treatment 
of certain diseases such as those leukemias where elevated 
ERK activation is associated with a poor prognosis (e.g., 
AML, ALL) [40, 41].

Some tumors are resistant to MEK inhibitors because 
they contain EGFR, KRAS, PI3KCA or PTEN mutations 
[6, 42, 43]. Some cells with EGFR or KRAS mutations are 
resistant to MEK inhibitors since they can also activate 
the Ras/PI3K/Akt/mTOR pathway. These studies, which 
were performed in vitro with cells lines and in vivo using 
xenografts, also demonstrated that PI3K activation and 
PTEN inactivation were not always equivalent in terms 
of inhibitor sensitivity. The authors suggested that a 
possible reason for this phenomenon could be that PTEN 
has other functions besides the regulation of Akt (e.g., 
protein phosphatase activity). Furthermore these studies 
demonstrated that the combination of MEK and PI3K 
pathway inhibitors could be an effective approach to treat 
certain cancers that had activation of both pathways.

Only certain types of breast cancer are sensitive to 
MEK inhibitors [43]. Breast cancers can be classified 
into three types: luminal breast cancers which are 
usually estrogen receptor positive and have a relatively 
good prognosis and response rate to hormonal based 
therapies, HER2-positive breast cancers which have a 
poor prognosis if untreated but are initially responsive to 
the HER2 targeting monoclonal antibody Herceptin, and 
basal-like breast cancers which have a poor prognosis 
and lack expression of HER2, estrogen and progesterone 
receptors (referred to as “triple-negative”). Many basal 
breast cancers express high levels of EGFR which results 
in activation of the Ras/Raf/MEK/ERK cascade. Hoeflich 
and colleagues [43] found that basal cell breast cancers 
expressed a Ras-like expression profile and tested their 
hypothesis that these breast cancers could be sensitive 
to MEK inhibitors, providing that they do not have 
PI3KCA mutations or PTEN deletions. In contrast many 
luminal and HER2-amplified tumors are resistant to MEK 
inhibitors. They also determined that PTEN loss was a 
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negative predictor factor for response to MEK inhibitors. 
Furthermore, treatment with MEK inhibitors often led 
to an increase in activated Akt expression, providing the 
rationale to examine the consequences of co-addition of 
MEK and PI3K inhibitors. The authors also determined 
that co-administration of MEK and PI3K inhibitors 
enhanced killing of the certain breast cancers. Thus the 
studies by Wee et al, and Hoeflich et al., have shown the 
concept that elevated PI3K/Akt/mTOR expression will 
confer resistance to MEK inhibitors. These studies further 
illustrate a central concept that we have been discussing 
in this review which is the critical role of genetics in 
determining the sensitivity to targeted therapy.

Other studies have also indicated that some 
tumors with EGFR mutations are resistant to MEK 
inhibitors. Mutations at the BRAF, KRAS, EGFR genes 
or the chromosomal fusion between anaplastic lymphoma 
kinase (ALK) and ROS tyrosine kinases are detected in 
approximately 50% of NSCLC. NSCLC cells with BRAF 
mutations where shown to be more sensitive to MEK 
inhibitors than NSCLC with mutations in EGFR, KRAS, or 
the chimeric fusion between ALK and ROS [6]. This was 
determined by screening a large panel of cell lines (n=87) 
and tumors (n=916). In this study, cells with mutations at 
EGFR were resistant to MEK inhibitors. This may have 
resulted from the ability of EGFR to activate the PI3K/
PTEN/Akt/mTOR pathway which as discussed below has 
some crucial overlapping targets as the Raf/MEK/ERK 
pathway. NSCLC patients with EGFR mutations should 
not be treated with MEK (or BRAF) inhibitors as the 
respective therapies would be ineffectual. 

PI3K/AKt/Mtor InhIbItors

Many PI3K inhibitors have been developed [44, 
45]. These include: LY-294002 [Lilly], Wortmannin, 
PX-866 [Oncothyreon], GDC-0941 [Genentech], CAL-
101 [Calistoga Pharmaceuticals], XL-147 and XL-765 
[Exelixis and Sanofi-Aventis]. Some PDK1 inhibitors 
have been described but they are not specific for PDK1 
including OSU-03012 [Arno Therapeutics] and Celecoxib 
[Pfizer]. Various Akt inhibitors have been developed [46-
48]. These include: A-443654 [Abbott Laboratories], 
GSK690693 [GlaxoSmithKline], VQD-002 (a.k.a. API-
2, VioQuest Pharmaceuticals), KP372-1 [QLT, Inc] and 
Perifosine [AEterna Zentaris/Keryx Biopharmaceuticals]. 
Inhibitors of downstream mTOR have been developed [49-
53]. These include: rapamycin [Wyeth-Pfizer, Sirolimus] 
and modified rapamycins (rapalogs) (CCI-779, [Torisel, 
Temsirolimus, Wyeth-Pfizer], AP-23573 [Ridaforolimus, 
Ariad-Merck] and RAD001 [Afinitor, Everolimus, 
Novartis]). Rapamycin and the modified rapalogs are 
mTORC1 inhibitors. Some dual PI3K/mTOR inhibitors 
have also been developed [42, 54]. These include: (NVP-
BEZ235 [Novartis] and PI-103). 

There may be benefits to treating patients with an 

inhibitor which can target both PI3K and mTOR as opposed 
to treating patients with two inhibitors, that is one targeting 
PI3K and one targeting mTOR. Perhaps the most obvious 
benefit would be lowered toxicities. Treatment with a 
single drug could have fewer side effects than treatment 
with two separate drugs. The effects of unwanted Akt 
activation by mTOR inhibition might be decreased upon 
treatment with a dual kinase inhibitor. Furthermore, the 
negative side effects of mTOR inhibition on the activation 
of the Raf/MEK/ERK pathway might be alleviated 
with the PI3K inhibitor activity in the dual inhibitor. 
There remains, however, considerable uncertainty about 
potential toxicity of compounds that inhibit both PI3K 
and mTOR enzymes whose activities are fundamental to a 
broad range of physiological processes.

Some of the PI3K inhibitors such as Wortmannin 
and LY294002 have been used extensively to investigate 
the role of PI3K in various biological properties but these 
compounds are not being clinically explored for multiple 
reasons, including insolubility in aqueous solutions 
and high toxicity. The modified wortmannin PX-866 is 
undergoing clinical trials for advanced metastatic cancer 
by Oncothyreon. GDC-0941 is in clinical trial for advanced 
solid cancers by Genentech. XL-147 and XL-765 are in 
clinical trials for advanced solid tumors by Exelixis and 
Sanofi-Aventis. CAL-101, a PI3Kδ specific inhibitor, is in 
clinical trials for hematological malignancies by Calistoga 
Pharmaceuticals. NVP-BEZ235 is in Phase I/II clinical 
trials for advanced cancer patients by Novartis. 

Triciribine (API-2) inhibits phosphorylation in all 
three Akt isoforms in vitro and the growth of tumor cells 
overexpressing Akt in mouse xenograft models [45]. The 
mechanism by which triciribine inhibits Akt activity is 
unknown. Although no studies have been performed with 
triciribine in preclinical AML models, the drug has been 
used in a phase I clinical trial in patients with advanced 
hematologic malignancies, including refractory/relapsed 
AML. Results from this trial evaluating triciribine 
administered on a weekly schedule were encouraging 
and demonstrated that the drug was well-tolerated, with 
preliminary evidence of pharmacodynamic activity as 
measured by decreased levels of activated Akt in primary 
blast cells [55].   

The rapalogs have been extensively examined 
in clinical trials of various cancers including: breast, 
prostate, pancreatic, brain, leukemia, lymphoma multiple 
melanoma, HCC, RCC and non small cell lung carcinomas 
(NSCLC) [49-53]. The rapalogs Torisel and Afinitor are 
now approved to treat patients with RCC (see below).

mTOR inhibitors initially demonstrated promise, as 
PTEN is often deleted in various tumors; however, it has 
been determined that the mTOR pathway has a complicated 
feedback loop that actually involves suppression of 
Akt; hence mTOR inhibitors would potentially activate 
Akt in some cells [2]. When mTORC1 is suppressed by 
rapamycin, there is increased mTORC2 activity which 
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is the elusive PDK2 that serves to phosphorylate and 
activate Akt. mTOR can also be regulated by the Ras/Raf/
MEK/ERK pathway and mTOR can activate the Ras/Raf/
MEK/ERK pathway. This may be another relevant cross-
talk between the Ras/Raf/MEK/ERK and the Ras/PI3K/
Akt/mTOR pathways, and might offer a further rationale 
for treatments combining drugs that inhibit both signaling 
networks. As mentioned earlier, combination of these 
novel “dual” inhibitors with either a Raf or MEK inhibitor 
might lead to more effective suppression of cancer growth. 

In addition, it is now emerging that, at least in 
some cell types, rapamycin does not inhibit 4E-BP1 
phosphorylation. Small molecules designed for inhibiting 
the catalytic site of mTOR have shown promising effects 
on suppression of signalling downstream of mTOR 
[56, 57]. The development of mTOR specific kinase 
ATP-competitive inhibitors is currently under intense 
investigation. 

trEAtMEnt oF rEnAl cEll 
cArcInoMA (rcc), MElAnoMA And 
hEPAtocEllulAr cArcInoMA (hcc) 
wIth sorAFEnIb

Due to the broad specificity of Sorafenib 
(NexavarTM), this drug has been evaluated for the therapy 
of diverse cancers, including RCC, melanoma and HCC 
(due to the involvement of the Raf/MEK/ERK cascade, 
as well as altered VEGR pathway in these cancers) and 
gastro-intestinal stromal tumors (GIST) (due to the 
involvement of c-Kit mutations in this cancer) [58-61]. 
Sorafenib has been approved for the treatment of kidney 
cancer, including RCC [59]. BRAF is not mutated in 
RCC, however, VEGFR-2 may be aberrantly expressed as 
there is dysregulation of its cognate ligand VEGF which 
can activate VEGFR2 and the Raf/MEK/ERK cascade. 
Sorafenib is active as a single agent in this disease, 
probably due to its ability to suppress the activities of 
multiple signaling pathways activated in RCC, which are 
required for growth. 

As the BRAF gene is mutated in approximately 60 
to 70% of melanomas, Sorafenib was tested for its ability 
to suppress melanoma growth in mouse models [60, 61]. 
The overwhelming majority of BRAF mutations occur at 
V600E. Sorafenib had only modest activity as a single 
agent in advanced melanoma and it did not appear to be 
more effective in the treatment of melanomas that are 
either WT or mutant at the BRAF gene, hence it may be 
targeting a kinase other than B-Raf in these melanomas 
(e.g., VEGFR). Alternatively, it could be targeting an 
upstream receptor kinase which signals through the Ras/
Raf/MEK/ERK cascade. It is relevant to examine the 
effects of combining Sorafenib with a MEK inhibitor 
to treat malignant melanoma and certain other cancers. 
Sorafenib may target the VEGFR and other membrane 

receptors expressed on the particular cancer cells, whereas 
the MEK inhibitor would specifically suppress the Raf/
MEK/ERK cascade which is abnormally activated by 
the BRAF oncogene or other mutant upstream signaling 
molecules. To improve the effectiveness of Sorafenib 
in the therapy of melanoma, it is being combined with 
standard chemotherapeutic drugs (see below). 

Sorafenib, unlike more novel kinase inhibitors 
that target the mutant versus WT kinase, binds both the 
WT and mutant V600E B-Raf proteins and retarded the 
growth of melanoma xenografts in mice [33, 60, 61]. 
Other more recently developed Raf kinase inhibitors may 
show higher selectivity toward the mutant as opposed to 
WT Raf proteins [10, 11].

trEAtMEnt oF MElAnoMAs, 
PAncrEAtIc, colon, lunG, brEAst 
And hcc wIth sEluMEtInIb

Selumetinib is an orally-active MEK1 inhibitor that 
has undergone phase II clinical trials. It is one of the first 
MEK1 inhibitors to be evaluated in randomized phase II 
trials [3, 13, 20-22, 27]. Selumetinib has demonstrated 
significant tumor suppressive activity in preclinical 
models of cancer, including melanoma, pancreatic, colon, 
lung, liver and breast cancer. The effects of Selumetinib 
are enhanced significantly if the tumor has a mutation 
that activates the Raf/MEK/ERK signaling pathway. 
Selumetinib shows great promise in the treatment of 
pancreatic cancers, which often have mutations in Ras 
that can lead to downstream Raf/MEK/ERK pathway 
activation. Due to the frequent detection of pancreatic 
cancer at advanced stages, it may be necessary to combine 
signal transduction inhibitor therapy with conventional 
chemotherapy after surgical removal of the pancreatic 
cancer if possible. 

Selumetinib has undergone several phase I and II 
clinical trials. A phase I clinical trial to assess the safety, 
tolerability and pharmacokinetics of selumetinib in 
patients with various solid malignancies was performed. 
Phase II clinical trials have compared: (i) the efficacy 
of selumetinib versus temozolomide in patients with 
unresectable stage 3 or 4 malignant melanomas, (ii) the 
efficacy and safety of selumetinib versus capecitabine in 
patients with advanced or metastatic pancreatic cancer 
who have failed to respond to gemcitabine therapy, (iii) 
the efficacy and safety of selumetinib compared with 
pemetrexed in patients with NSCLC who have previously 
failed to respond to one or two prior chemotherapy 
regimens, and (iv) the efficacy and safety of selumetinib 
versus capectiabine in patients with colorectal cancer who 
have failed to respond to one or two prior chemotherapy 
regimens [62]. Initial results from clinical trials have 
not yielded overwhelming support for the use of MEK 
inhibitors (see below) as a single therapeutic agent in 
cancer patients who are not pre-screened for pre-existing 
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activation of the Raf/MEK/ERK pathway [27, 28]. The 
proper pre-identification of cancer patients who display 
activation of the Raf/MEK/ERK pathway may be 
necessary for prescribing MEK inhibitors as part of their 
therapy, as we have stated previously that MEK inhibitors 
are cytostatic and not cytotoxic.

trEAtMEnt oF rcc And hcc wIth 
Mtor InhIbItors

The modified rapamycins have been approved by the 
FDA to treat RCC that have been shown to be refractory 
to other therapies including sunitinib (Sutent) [63]. 

Recent studies have demonstrated that mTOR inhibition 
has remarkable activity against a wide range of human 
cancers in vitro and human tumor xenograft models. The 
mTOR pathway is known to be up-regulated in a subset of 
HCC patients [64]. In this study 15% of HCC displayed 
overexpression of phospho-mTOR, whereas 45% of HCC 
had increased expression of p70S6K, which correlated with 
tumor nuclear grade. Evidence from in vitro experiments as 
well as from preclinical in vivo data indicated that mTOR 
inhibition by rapamycin and its analogues everolimus 
(RAD001) significantly reduced the growth of HCC 
cells and improved survival primarily via antiangiogenic 
effects [64-67]. A pilot study conducted in 21 patients 

Figure 3: conceptual overview of targeting the ras/raf/MEK/ErK and ras/PI3K/PtEn/Akt/mtor Pathways to 
suppress Malignant Growth. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways can interact at many different levels. In 
this diagram, we have focused on how they interact to regulate mTOR, p70S6K and protein synthesis and autophagy. Targeting both of these 
pathways may be an effective means to regulate cell growth. Signaling molecules promoting phosphorylation events are indicated in green. 
Stimulatory signaling events are indicted in green lines with a green arrow before the target of the phosphorylation. Small molecule inhibitors 
are indicated in red. Inhibitory phosphorylation events are indicated in red lines with a block on the end before the target of the inhibition. More 
tentative inhibitory phosphorylation events are indicated in dotted red lines with a block on the end before the target of the inhibition. Inhibitory 
signaling or proapoptotic molecules or inactivated molecules are indicated in yellow. A growth factor and a growth factor receptor are indicated 
in purple. Active transcription factors are indicated in purple diamonds. Inactivated transcription factors are indicated in yellow diamonds.
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with advanced HCC indicated that sirolimus (rapamycin) 
was a promising drug for the treatment of HCC, and 
currently, a phase I/II trial evaluating the rapamycin 
analog RAD001 for advanced HCC is recruiting patients 
(http://clinicaltrials.gov/ct2/show/NCT00390195). 

A topic of considerable current interest concerns 
the signal transduction pathways and the molecular 
mechanisms linked to chemoresistance of tumor cells to 
conventional anticancer drugs. In this context, combination 
of rapamycin with the conventional cytostatic drugs 
doxorubicin and vinblastine enhances the antineoplastic 
activity of the respective monotherapeutic HCC treatment 
with either doxorubicin or vinblastine alone [68, 69]. 
Taken together, the in vitro and preclinical in vivo data 
as well as the clinical trials conducted so far demonstrate 
that mTOR inhibitors are promising agents for HCC 
treatment, particularly in combination with conventional 
chemotherapeutic drug therapy. 

IncrEAsInG thE EFFEctIvEnEss oF 
tArGEtInG thE rAF/MEK/ErK And 
PI3K/PtEn/AKt/Mtor PAthwAys by 
sIMultAnEous trEAtMEnt wIth 
two PAthwAy InhIbItors

The obvious goal of current inhibitor development is 
to improve the effectiveness of treatment of cancer patients 
with small molecule signal transduction inhibitors. This 
has proven to be difficult for multiple reasons: first, as 
previously discussed, there tends to be a distinct genetic 
susceptibility for the success of a signal transduction 
inhibitor in suppressing growth, second, many of the small 
molecule signal transduction inhibitors are cytostatic as 
opposed to being cytotoxic and therefore will need to be 
combined with a therapeutic modality that induces cell 
death and will be discussed below and third, more than 
one signal transduction pathway may be activated in the 
cancer cells, which will be discussed in detail below.

Previously, we have predominantly discussed studies 
that employed a single Raf or MEK inhibitor, sometimes 
in combination with a chemotherapeutic drug. In the 
following section, we discuss the potential of combining 
inhibitors that target two pathways to more effectively limit 
cancer growth. In addition to the BRAF mutations present 
in melanomas that we have previously discussed, the 
PTEN phosphatase tumor suppressor gene is also deleted 
in approximately 45% of melanomas and the downstream 
AKT gene is amplified in approximately 45%. Both of 
these mutations result in increased expression/activity 
of Akt which is often associated with a poor prognosis 
in human cancer. Increased Akt expression will lead 
to mTOR activation and increased efficiency of protein 
translation. The targeting of mTOR has been examined in 
melanoma therapy as well as in the treatment options for 
many diverse cancers. Administration of mTOR inhibitors 

to melanoma patients as monotherapy resulted in 1 partial 
remission out of 33 patients [70]. Preclinical studies 
performed in human melanoma cell lines have highlighted 
that co-targeting of the Raf and PI3K/PTEN/Akt/mTOR 
pathways with Raf and Akt/mTOR inhibitors resulted 
in synergistic inhibition [71]. Treatment of inducible 
murine lung cancers containing KRAS and PIK3CA 
mutations with PI3K/mTOR (NVP-BEZ235) and MEK 
(selumetinib) inhibitors led to an enhanced response [72]. 
Recent reports have also indicated synergistic responses 
between sorafenib and mTOR inhibitors in xenografts of a 
highly metastatic human HCC tumor [73]. An illustration 
documenting the rationale for the targeting of both 
pathways is presented in Figure 3.

The combined effects of inhibiting MEK with PD-
0329501 and mTOR with rapamycin or its analog AP-
23573 (ARIAD Pharmaceuticals/Merck) were examined 
in human NSCLC cell lines, as well as in animal models 
of human lung cancer [74]. PD-0325901 and rapamycin 
demonstrated synergistic inhibition of proliferation 
and protein translation. Suppression of both MEK and 
mTOR inhibited ribosomal biogenesis and was associated 
with a block in the initiation phase of translation. These 
preclinical results support suppression of both the MEK 
and mTOR pathways in lung cancer therapy and indicate 
that both pathways converge to regulate the initiation of 
protein translation. ERK phosphorylates MAPK signal 
integrating kinases (Mnk1/2) and p90 ribosomal S6 
kinase p90Rsk, which regulate the activity of the eukaryotic 
translation initiation factor eIF4E. The phosphorylation 
of 4EBP1 is altered in cells with the BRAF mutation. It 
should also be pointed out that the 4EBP1 is also regulated 
by Akt, mTOR and p70S6K. This may result in the 
efficient translation of certain mRNAs in BRAF-mutant 
cells. This could explain how co-inhibition of MEK and 
mTOR synergize to inhibit protein translation and growth 
in certain lung cancer cells.

EnhAncInG EFFEctIvEnEss oF rAF/
MEK And PI3K/Mtor InhIbItors 
wIth chEMothErAPy

Classical chemotherapy often remains the most 
prescribed anti-cancer therapy for many different types 
of cancer treatment [75]. Drugs such as doxorubicin 
and taxol are effective in the treatment of many cancers, 
even though in some cases drug resistance develops after 
prolonged treatment. Doxorubicin and taxol target cellular 
events, such as DNA replication and cell division, which 
are often downstream of the targets of signal transduction 
pathway inhibitors. Chemotherapeutic drugs can activate 
the Ras/Raf/MEK/ERK pathway by diverse mechanisms 
(See Figure 4). Drugs such as doxorubicin can activate 
p53 which can lead to increased expression of the 
discoidin domain receptor (DDR), which in turn can result 
in Raf/MEK/ERK pathway activation. Activated ERK can 
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Figure 4: targeting ras/raf/MEK/ErK and ras/PI3K/PtEn/Akt/mtor Pathways May Prevent drug resistance and 
reemergence of cancer Initiating cells. Chemotherapeutic drugs such as Doxorubicin and Docetaxel may also induce the Raf/MEK/
ERK pathway which may contribute to emergence of drug resistant clones. The Raf/MEK/ERK pathway may regulate downstream transcription 
factors such as GATA-1 which control the transcription of genes such as XRCC1 and ERCC1 which are involved in DNA repair and their 
aberrant expression may contribute to drug resistance. Treatment of drug resistant cells with MEK inhibitors, or combined treatments consisting 
of a chemotherapeutic drug and a MEK inhibitor, may be an effective approach to prevent drug resistance. Treatment of certain cancer 
initiating cells with Akt or mTOR inhibitors may prevent their reemergence. Various components of the Ras/PI3K/PTEN/Akt/mTOR pathway 
are implicated in drug resistance. Changes in Akt expression may occur to mutations at PI3K or PTEN. Furthermore, altered expression of 
microRNAs may be involved in decreasing PTEN expression which results in drug resistance. The roles of these various genetic changes in 
cancer initiating cells are beginning to become apparent. Chemotherapeutic drugs are indicated in irregular black elipses. Treatment of certain 
cancer initiating cells with Akt or mTOR inhibitors may prevent their reemergence. Signaling molecules promoting phosphorylation events are 
indicated in green. Stimulatory signaling events are indicted in green lines with a green arrow before the target of the phosphorylation. Small 
molecule inhibitors are indicated in red. Inhibitory phosphorylation events are indicated in red lines with a block on the end before the target of 
the inhibition. More tentative inhibitory phosphorylation events are indicated in dotted red lines with a block on the end before the target of the 
inhibition. Inhibitory signaling or proapoptotic molecules or inactivated molecules are indicated in yellow. A growth factor and a growth factor 
receptor are indicated in purple. Active transcription factors are indicated in purple diamonds. Inactivated transcription factors are indicated in 
yellow diamonds.
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phosphorylate p53 and regulate its activity. Doxorubicin 
can also activate the calcium calmodulin dependent kinase 
(CaM-K) cascade via reactive oxygen species (ROS) [4]. 
Activation of this cascade can also result in activation of 
the Raf/MEK/ERK cascade. Activation of this cascade 
can result in the transcription of genes such as XRCC1 and 
ERCC1 which are involved in DNA repair and lead to drug 
resistance [75, 76]. Taxols can also stimulate activation 
of the Raf/MEK/ERK cascade and lead to their increased 
association with proteins involved in cell division [77, 
78]. Thus, by combining classical chemotherapy with 
targeted therapy, it may be possible to enhance toxicity, 
while lowering the prescribed concentrations of classical 
chemotherapeutics necessary for effective elimination 
of the tumor [78]. As we have previously discussed, 
activation of the Raf/MEK/ERK cascade can alter the 
activity and subcellular localization of many proteins that 
play critical roles in apoptotic cascades. Also the Raf/
MEK/ERK cascade can regulate the transcription of many 
critical genes involved in cell cycle progression, growth 
and differentiation.

A phase II trial demonstrated that the combination 
of sorafenib and doxorubicin improves progression-free 
and overall survival of patients with advanced HCC [79]. 
Moreover, a phase II trial is currently recruiting patients to 
determine the progression-free survival of sorafenib plus 
tegafur/uracil (UFUR) for the treatment of advanced or 
metastatic HCC.

As mentioned previously, a side effect of some 
chemotherapeutic drugs, such as paclitaxel, is the 
induction of the Raf/MEK/ERK pathways. Activation of 
this pathway can under certain circumstances promote 
proliferation and prevent apoptosis. Also the PI3K/PTEN/
Akt/mTOR pathway can modulate the Raf/MEK/ERK 
pathway and altering MEK activity can have opposing 
effects on different cell types [80, 81]. Combining 
paclitaxel treatment with PI3K inhibitors enhances 
apoptosis and inhibits growth of ovarian carcinoma 
cell lines, and this may have been mediated in part by 
suppression of inhibitory phosphorylation of Raf by Akt 
[80]. In addition, the effects of combined treatment with 
MEK inhibitors and paclitaxel have been examined. The 
synergistic effects of paclitaxel and MEK inhibitors are 
complex and have not been fully elucidated, but may be 
in part mediated by inhibition of Bad phosphorylation at 
S112 by ERK in UM-SCC-23 squamous carcinoma cell 
line [82]. This is just one documented interaction that may 
be suppressed by MEK inhibitors. Obviously many other 
key phosphorylation events mediated by ERK may be 
suppressed which play critical roles in cell growth.

The cytotoxic effects of combinations of MEK 
inhibitors and paclitaxel may be specific for cells of certain 
origins and may depend on the levels of endogenous 
activated MEK/ERK present in those cells. In a study with 
NSCLC cells which constitutively-expressed activated 
MEK/ERK, no increase in paclitaxel-induced apoptosis 

was observed when the cells were treated with a MEK 
inhibitor [81]. In contrast, addition of a dominant negative 
(DN) MEK gene to these cells potentiated paclitaxel-
induced apoptosis.

Cisplatin-induced apoptosis was associated with 
increased levels of both p53 and the downstream Bax 
protein in a study with neuroblastoma cells [82]. Activated 
ERK1/ERK2 levels also increased in these cells upon 
cisplatin treatment. MEK inhibitors blocked apoptotic cell 
death, which prevented the cisplatin-induced accumulation 
of p53 and Bax proteins [82].

It should be noted that the combination of MEK 
inhibitors and chemotherapeutic drugs may not always 
result in a positive interaction. In some cases, combination 
therapy results in an antagonistic response. For example, 
combining MEK inhibitors with betulinic acid, a drug 
toxic for melanoma cells, antagonized the normal 
enhancing effects of betulinic acid on apoptosis in vitro 
[83]. Furthermore, the precise timing of the addition of two 
agents is important as they may differentially affect cell-
cycle progression; therefore, the order of administration 
may be important for a synergistic response to be obtained 
and perhaps to prevent an antagonistic response [83]. 

EnhAncInG EFFEctIvEnEss oF rAF/
MEK And PI3K/Mtor InhIbItors 
wIth rAdIothErAPy

Radiotherapy is a common therapeutic approach 
for treatment of many diverse cancers. A side effect 
of radiotherapy in some cells is induction of the 
Ras/Raf/MEK/ERK cascade [4]. Recently various 
signal transduction inhibitors have been evaluated as 
radiosensitizers. The effects of pre-treatment of lung, 
prostate, and pancreatic cancer cells with selumetinib 
were evaluated in vitro using human cell lines and in vivo 
employing xenografts [84]. The MEK inhibitor treatment 
radiosensitized the various cancer cell lines in vitro and 
in vivo. The MEK inhibitor treatment was correlated with 
decreased Chk1 phosphorylation 1-2 hrs after radiation. 
The authors noticed the effects of the MEK inhibitor on 
the G2 checkpoint activation after irradiation, as the MEK 
inhibitor suppressed G2 checkpoint activation. Since 
ERK1/ERK2 activity is necessary for carcinoma cells to 
arrest at the G2 checkpoint, suppression of phosphorylated 
Chk1 was speculated to lead to the abrogated G2 
checkpoint, increased mitotic catastrophe and impaired 
activation of cell cycle checkpoints. Mitotic catastrophe 
was increased in cells receiving both the MEK inhibitor 
and radiation when compared to the solo-treated cells. It 
was also postulated in this study that the MEK inhibitor 
suppressed the autocrine cascade in DU145 prostate 
cancer cells that normally resulted from EGF secretion and 
EGFR activation. Suppression of this autocrine cascade 
by the MEK inhibitor may have served as a radiosensitizer 
to the radiation therapy. The other two cancer cell lines 
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examined in this study (A549 and MiaPaCa2) had KRAS 
mutations and both were radiosensitized by the MEK 
inhibitor. Although these studies document the ability of a 
MEK inhibitor to radiosensitize certain cells, clearly other 
cancer cell lines without activating mutations in the Ras/
Raf/MEK/ERK pathway or autocrine growth stimulation 
should be examined for radiosensitization by the MEK 
inhibitor as the KRAS mutation may also activate the PI3K 
pathway which could lead to therapy resistance.

PI3K/Akt/mTOR inhibitors will sensitize the tumor 
vasculature to radiation both in vitro in cell lines and in 
vivo in xenogratfs [85, 86]. mTOR and radiation play 
critical roles in the regulation of autophagy [87, 88]. 
When mTOR is blocked by rapamycin there is an increase 
in autophagy. This is important as apoptotic cell death is 
a minor component to cell death in solid tumors. These 
studies document the potential beneficial use of combining 
mTOR inhibitors and radiation to improve the induction 
of autophagy in the treatment of solid tumors.

Just as new inhibitors are described, cells and tumors 
resistant to these inhibitors will also be discovered. 
Resistance to Gleevec (Imatinib) a BCR-ABL inhibitor 
has been well documented and novel inhibitors have been 
discovered to overcome this resistance [89]. Recently two 
distinct mechanisms for resistance to Raf inhibitors have 
been described [90, 91]. In one case, the BRAF-mutant 
melanoma cells that had been maintained in medium 
containing the B-Raf inhibitor AZ628 shifted their 
dependence from B-Raf to Raf-1 [91]. In another case, 
some B-Raf mutant melanoma cells may be intrinsically 
resistant to B-Raf inhibitors as a result of cyclin D 
amplification [91]. Some of these “additional” genetic 
mutations may be preexisting in the tumor cell population 
and upon culture of the cells or tumor in the presence of 
the Raf inhibitor; the “mutant-resistant” cells may take 
over the population.

KrAs And PIK3cA MutAtIons In thE 
sAME cEll or PAtIEnt cAn rEsult 
In conFErrInG rEsIstAncE to 
rAPAMycIn

Cancers containing PIK3CA mutations are often 
sensitive to the mTOR inhibitor rapamycin and the 
modified rapamycins (Rapalogs). However, PIK3CA-
mutant cells that also have mutations at KRAS are 
resistant to Rapalogs [92, 93]. This maybe due to 
complicated feedback loops between the Ras/Raf/MEK/
ERK and PI3K/PTEN/Akt/mTOR pathways wherein 
either mTORC1 inhibition leads to ERK1/2 activation by 
a p70S6K/PI3K/Ras dependent pathway or by the KRAS 
mutants activating p90Rsk-1 which serves to activate eIF4B 
and rpS6 thereby bypassing mTOR-dependent activation.

 

IdEntIFIcAtIon oF novEl sItEs In 
thE PIK3cA GEnE whIch conFEr 
rEsIstAncE to PI3K InhIbItors

 A group of highly-gifted graduate students and their 
colleagues developed an innovative approach to identify 
residues in PIK3CA that will result in resistance or 
increased sensitivity to PI3K inhibitors [94]. Frequently 
mutations in kinases which confer resistance to inhibitors 
occur in the gatekeeper residues that block drug binding. In 
an insightful study performed by Zunder and colleagues, 
they took advantage of the fact that yeast do not contain or 
express PIK3CA and that the product of PIK3CA (PI3K) 
is normally toxic to yeast [94]. Therefore introduction of 
membrane-localized PIK3CA into yeast resulted in yeast 
toxicity, however, when they treated the transfected yeast 
with a PI3K inhibitor, the yeast survived. They found that 
certain mutations in PIK3CA would confer resistance to 
the PI3K inhibitors, preventing growth, in transfected 
yeast at drug concentrations which would allow normal 
membrane-localized PIK3CA-transfected yeast to grow. 
Unlike with BCR-ABL inhibitor resistant mutations, these 
PIK3CA mutations did not reside in the classic gatekeeper 
residues. As a biological bonus, they also identified some 
mutations in PIK3CA (L814C) that conferred enhanced 
sensitivity to PI3K inhibitors. These mutations allowed 
the growth of the mutant PIK3CA-transfected yeast at 
inhibitor concentrations that would normally suppress 
the growth of yeast bearing the WT membrane-localized 
PIK3CA. Furthermore, such information is valuable for 
the design of novel PI3K inhibitors that will be effective 
in the treatment of cancer patients which become resistant 
to the first generation of PI3K inhibitors.

suMMAry oF rAF/MEK/ErK And 
PI3K/PtEn/AKt/Mtor PAthwAys 
InhIbItors EvAluAtEd In cAncEr 
thErAPy And In clInIcAl trIAls

 In Table 1, a detailed summary of many of the 
various Raf, MEK, PI3K, Akt and mTOR inhibitors which 
have been evaluated in preclinical and cancer clinical 
trials is presented [89, 95-178]. Clearly targeting these 
activities involved in normal and cancerous growth has 
become an intensely investigate field. Perhaps some of 
the most recent success has arisen in targeting mTOR. 
The regulation of mTOR and its subsequent effects on 
protein translation is critically implicated in many cancers 
[171-181] and is also involved in cell differentiation [182-
185], cancer initiating cells [187-198] and other important 
cellular processes as will be discussed below. 
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novEl usEs oF rAF/MEK And PI3K/
AKt/Mtor InhIbItors: tArGEtInG 
cAncEr InItIAtInG cElls (cIcs)

 An overview of the Raf/MEK/ERK and PI3K/PTEN/
Akt/mTOR pathways in some of novel aspects of their 
usage is presented in Figure 4. Targeting these pathways 
may be an approach to overcome chemotherapeutic 
drug resistance. An area of intense research interest in 
experimental therapeutics is the cancer stem cell, more 
appropriately referred to as the cancer initiating cell 
(CIC) [89, 187-243]. CICs often share some properties 
with drug resistant cells as they both are often resistant 
to chemotherapeutic and hormonal based therapies. The 
abilities of the various Raf, MEK and mTOR inhibitors 
as well as the natural product resveratrol to target and 
suppress the proliferation of CICs are beginning to be 
examined [185, 191-195, 212-220]. It is not clear whether 
Raf or MEK inhibitors will specifically target CICs [193, 
194]. CICs have unique properties from the majority of 
the particular cancer (often called bulk cancer) as they can 
be both quiescent and also resistant to chemotherapeutic 
and hormonal based drugs, often due to their increased 
expression of proteins involved in drug transport as well 
as PI3K/PTEN/Akt/mTOR pathway [89, 193, 194, 197-
200, 224-226]. However, under certain conditions, they 
resume proliferation and hence should be potentially 
susceptible to: Raf, MEK, PI3K, Akt, mTOR and other 
inhibitors Targeting the Raf/MEK/ERK and PI3K/PTEN/
mTOR pathways could be very important in terms of CIC 
elimination.

The “tumor microenvironment” most likely plays 
critical roles in CIC survival and also reemergence 
and subsequent metastasis [206-211]. Combinations 
of cytotoxic chemotherapeutic drugs and inhibitors 
which target the Raf/MEK/ERK, PI3K/PTEN/mTOR 
and upstream kinases may be an eventual approach to 
target the tumor microenviroment, however, specificity 
of targeting may be a significant problem. The ability to 
target the tumor microenvironment is a challenging issue. 

Recently miRNAs have been shown to regulate 
many genes involved in drug resistance and likely CIC 
regulation [200, 223]. miRNAs specific of the 3’UTR 
of PTEN have been shown to be upregulated in certain 
ovarian cancer cells and can cause resistance to cisplatin 
[223]. One can also hypothesize that there may be altered 
expression of similar or additional miRNAs in CICs which 
will alter their sensitivities to mTOR and other inhibitors. 
The p53 pathway and genome stability/instability play 
key roles in regulating many aspects of cell growth 
including CICs [225-243]. We know very little about the 
changes in p53 and genome stability/instability that may 
occur in the initial CIC to more “malignant” CICs which 
may be present at later stages of tumor progression. As 
we learn more regard the effects of p53 and DNA damage 
responses on CIC and they development, we may be able 

to more effectively target these biochemical events from 
happening and inhibit tumor progression.

tArGEtInG thE rAF/MEK/ErK And 
PI3K/PtEn/AKt/Mtor PAthwAys to 
suPPrEss cEllulAr sEnEscEncE/
QuIEsEncE

The Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR 
pathways also play critical roles in the regulation of 
cellular senescence and quiescence [227-242]. Escape 
from drug-induced senescence has also been associated 
with drug resistance and CICs [227]. Often an additional 
key molecule implicated in: DNA damage responses, 
cellular senescence and drug resistance is p53, whose 
activity can be regulated by both the Raf/MEK/ERK and 
PI3K/PTEN/Akt/mTOR pathways. These pathways exert 
their effects on p53 itself (post-translation modification by 
ERK and many other kinases as well as on the p53 inhibitor 
MDM-2 [231-236, 239-242]. mTOR can modulate the 
ability of p53 to promote senescence or quiescence [239, 
240]. Genomic instability and epigenomic regulation 
can also have key effects on CIC generation and cellular 
senescence/quiescence [233-240] and can be regulated in 
part by mTOR [239-242]. 

tArGEtInG thE rAF/MEK/ErK And 
PI3K/PtEn/AKt/Mtor PAthwAys 
to suPPrEss cEllulAr And 
orGAnIsMAl AGInG

While we have discussed the roles of these pathways 
in cancer in significant detail, an additional important 
aspect of targeting the Raf/MEK/ERK and PI3K/PTEN/
Akt/mTOR pathways is to halt cellular aging, which in 
the end, kills all those who either do not have or have 
been fortunate to survive cancer and other diseases. There 
is an emerging scientific field which documents that 
slowing the growth process and stimulating metabolism 
will slow aging and perhaps dementia as well [243-273]. 
Indeed, caloric restriction may be critically important in 
suppression of aging as well as cancer [263-273]. Many 
studies have indicated that inhibiting the PI3K/PTEN/
Akt/mTOR and Raf/MEK/ERK pathways will influence 
aging [251, 254, 255, 256]. These experiments have led 
to innovative hypothesis that cellular senescence results 
from the hyper-activation of proliferative pathways and 
that drugs (e.g., Metformin) and signal transduction 
inhibitors (e.g., Raf, MEK, PI3K, mTOR inhibitors) can 
inhibit cellular proliferation and cellular aging [251, 254, 
255, 256, 271]. Similar effects on the prevention of cellular 
senescence were observed with Resveratrol, the active 
component contained in the skins of red grapes which 
was shown to also inhibit mTOR and p70S6K cellular 
senescence [193, 194, 252, 256, 257, 259]. Additional 
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studies have shown that the commonly-prescribed 
diabetes drug Metformin will also inhibit mTOR and 
prevent cellular aging [246, 247, 266, 270, 271]. Since 
both the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/
mTOR pathways interact to regulate the activity of mTOR 
and downstream components of this pathway are critical 
for both mRNA stability and protein translation of genes 
involved in critical growth and survival, it is believed 
that by inhibiting some of these key pathways, it may be 
possible to prevent cellular aging.

conclusIons

Various pharmaceutical companies have developed 
inhibitors to the Ras/Raf/MEK/ERK pathway. Initially 
MEK inhibitors were shown to have the most specificity. 
However, these inhibitors may have limited effectiveness 
in treating human cancers, unless the particular cancer 
proliferates directly in response to the Raf/MEK/ERK 
pathway. Moreover, MEK inhibitors are often cytostatic 
as opposed to cytotoxic, thus their ability to function as 
effective anti-cancer agents in a monotherapeutic setting 
is limited, and they may be more effective when combined 
with chemo or radiotherapy. Raf inhibitors have also been 
developed and some are being used to treat various cancer 
patients (e.g., Sorafenib). This particular Raf inhibitor also 
inhibits other receptors and kinases which may be required 
for the growth of the particular cancer. This promiscuous 
nature of Sorafenib has contributed to the effectiveness 
of this particular Raf inhibitor for certain cancers. Mutant 
specific Raf and PI3K inhibitors are also being developed. 
This is perhaps the most exciting area in terms of inhibitor 
development as it may result in the effective targeting 
of the mutant gene promoting the proliferation of the 
particular tumor. However, problems have been identified 
with certain B-Raf mutant allele inhibitors as they will also 
result in Raf-1 activation if Ras is mutated. Combination 
therapy with either a traditional drug/physical treatment 
or another inhibitor that targets a specific molecule in 
a different signal transduction pathway is also a key 
approach for improving the effectiveness and usefulness 
of MEK and Raf inhibitors. 

Modified rapamycins, Rapalogs are being used to 
treat various cancer patients, (e.g., patients with RCC and 
HCC). While Rapalogs are effective and their toxicity 
profiles are well know, one inherent property is that they 
are not very cytotoxic when it comes to killing tumor cells. 
This inherent property of rapamycins, may also contribute 
to their low toxicity in humans.

Mutations at many of the upstream receptor genes 
or Ras can result in abnormal Raf/MEK/ERK and PI3K/
PTEN/Akt/mTOR pathway activation. Hence targeting 
these cascade components with small-molecule inhibitors 
may inhibit cell growth.. The usefulness of these inhibitors 
may depend on the mechanism of transformation of the 
particular cancer. If the tumor exhibits a dependency on 

the Ras/Raf/MEK/ERK pathway, then it may be sensitive 
to Raf and MEK inhibitors. In contrast, tumors that do 
not display enhanced expression of the Ras/Raf/MEK/
ERK pathway may not be sensitive to either Raf or MEK 
inhibitors but if the Ras/PI3K/Akt/mTOR pathway is 
activated, it may be sensitive to specific inhibitors that 
target this pathway. Some promising recent observations 
indicate that certain CICs are sensitive to mTOR inhibitors, 
documenting their potential use in the elimination of the 
cells responsible for cancer re-emergence [185, 191]. 
Some CICs may be sensitive to Resveratrol. Finally, it is 
likely that many of the inhibitors that we have discussed 
in this review will be more effective in inhibiting tumor 
growth in combination with cytotoxic chemotherapeutic 
drugs or radiation. 

Some scientists and clinicians have considered that 
the simultaneous targeting of Raf and MEK by individual 
inhibitors may be more effective in cancer therapy than 
just targeting Raf or MEK by themselves. This is based 
in part on the fact that there are intricate feed-back loops 
from ERK which can inhibit Raf and MEK. For example 
when MEK1 is targeted, ERK1,2 is inhibited and the 
negative feed-back loop on MEK is broken and activated 
MEK accumulates. However, if Raf is also inhibited, it 
may be possible to completely shut down the pathway. 
This is a rationale for treatment with both MEK and Raf 
inhibitors. Likewise targeting both PI3K and mTOR may 
be more effective than targeting either PI3K or mTOR 
by themselves. If it is a single inhibitor which targets 
both molecules, such as the new PI3K and mTOR dual 
inhibitors this becomes a realistic therapeutic option. 
Finally, an emerging concept is the dual targeting of two 
different signal transduction pathways, Raf/MEK/ERK 
and PI3K/PTEN/Akt/mTOR for example. This has been 
explored in some preclinical models as discussed in the 
text. The rationale for the targeting of both pathways may 
be dependent on the presence of mutations in either/or 
both pathways or in upstream Ras in the particular cancer 
which can activate both pathways. However, it is not clear, 
at this point in time, that the targeting of two different 
kinases in the same pathway or two different kinases in 
two different pathways with two different inhibitors will 
be performed clinically in the near future. While it may be 
scientifically interesting and effective it may be clinically 
impractical. It might make more clinical sense to target 
one kinase and also use a chemotherapeutic drug which 
will kill the cells. 

It is not always clear why a particular combination of 
a signal transduction inhibitor and chemotherapeutic drug 
works in one tumor type but not at all in a different tumor 
type. This has also been experience with the development 
of individual chemotherapeutic drugs, some work in some 
cells but not others. This may result from many different 
complex interacting events. Some of these events could 
include: percentage of cells in different phases of the cell 
cycle, persistence of CICs and many other factors. Finally, 
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chemotherapeutic drug therapy and other types of therapy 
(radiotherapy, antibody therapy) may induce certain 
signalling pathways (e.g., the reactive oxygen species 
generated by chemotherapy and radiotherapy induce the 
Ras/Raf/MEK/ERK pathway). The induction of these 
signalling pathways may counteract some of the effects of 
the signal transduction inhibitors.

Scientists and clinicians often have an intentionally 
narrow view of a particular topic. For example, cancer 
researchers predominantly feel that Raf, MEK, PI3K, Akt 
and mTOR inhibitors will suppress the growth of malignant 
cancer cells. Yet MEK and mTOR and other inhibitors may 
also be useful in the treatment of autoimmune and allergic 
disorder where there is abnormal cellular proliferation. 
Recently it has been observed that the suppression of the 
Ras/Raf/MEK/ERK and Ras/PI3K/Akt/mTOR pathways 
may prevent the induction of cellular senescence and 
aging. Clearly, these later two clinical topics, immune 
disorders and aging, greatly enhance the potential clinical 
uses of these targeted therapeutic drugs. 
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