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ABSTRACT

The problem addressed in the study is a comparison of three

methods ^f factor-analyzing dichotomously-scored item response

data. This comparison Was accomplished by using phi and

tetrachoric correlations among dichotomous data; and Pearson

product-moment correlations among Rasch probability estimates of

the same dichotomous data in factor analysis. The Rasch approach,

as a psychometric measurement model, was chosen because it met the

assumption of a linear ability continuum underlying dichotomous

item response data. Results indicated the superiority of the

Rasch-based technique for factor-analyzing dichotomously-scored

item response data.
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Rasch-based Factor Analysis

of

Dichotomously-scored Item Response Data

INTRODUCTION

In the behavioral and cognitive sciences, factor analysis

often involves test item responses assuming only two values, either

zero or one (Lawley, 1943; Mulaik, 1972; Cureton & D'Agostino,

1983; Gerbing, 1989; Goldstein & Wood, 1989). Previous attempts to

solve the estimation problem in the factor analysis of such dicho-

tomous data have focused on the selection of an appropriate measure

of correlation, r, , or r I as estimates of unobservable

correlations in the population. Pearson product-moment

correlations (r) however are intended for use with continuous,

interval-level data; phi coefficients (4) with dichotomous data;

and tetrachoric coefficients (rti,t) with dichotomous data that are

assumed to have underlying continuity.

(Hinkle, Wiersma, & Jurs, 1988).

Mislevy (1986, pp. 9-10) listed three shortcomings of 0:

(1) Values of are dependent nct only upon the strength of

the relationship between variables, but also upon the

difference between their mean values. The phi coefficient

can attain extreme values of -1 or +1 only when the two

correlated variables have equal means.

(2) The expression for 0 is generally augmented by terms that

depend on the skewness of the discrete variables, which in

the dichotomous case, is a function of their mean values.

(3) When binary variables are the result of dichotomizing

continuous variables, the placement of the cutting point
directly affects the value of the expected coefficients.
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Rasch-based Factor Analysis 2

The tetrachoric correlation coefficient (rt.t) has also been

utilized for dichotomous variables possessing underlying continuous

normal distributions (Kachigan, 1986, p. 211; Lord, 1980, p. 39).

Several authors, including Bock and Lieberman (1970), Crocker and

Algina (1986, p. 320), and Jöreskog and Sorböm (1986, p. rv.3) have

recommended rtet rather than for factor analyzing dichotomous

data, although Lord (1980, p. 21) asserted that "Jöreskog's maximum

likelihood factor analysis and accompanying significance tests are

not strictly applicable to tetrachoric correlation matrices".

Usage and interpretation problems however hinder the use of

rt.t Lord (1980, p. 21) warned that "tetrachoric correlations

cannot usually be strictly justified" when verifying the

unidimensionality of a set of test items, because tetrachoric

correlations are "inappropriate for non-normal distributions of

ability; they are also inappropriate when the item response

function is not a normal ogive [and] whenever there is guessing"

(ibid., p. 20). Muthén (1989) noted that:

(1) rum matrices are not assured positive definiteness, which

may indicate a violation of the underlying normality

assumption, or which may reflect sampling variability (p. 24).

(2) re.t matrices generally yield extremely inflated chi-square

values and underestimated standard errors of atstimate, as

compared with Pearson r matrides (p. 24).

(3) The assumption of underlying normality is questionable

when the mean value of a dichotomous variable departs

appreciably from .5 (p. 27).

5



Rasch-based Factor Analysis 3

In addition, Guilford and Fruchter (1973, pp. 300-306)

observed that:

(4) re.t is less reliable than r, since it is at least 50

percent more variable.

(5) Large samples (N = 200 or 300) are required when rt is
used to estimate the degree of correlation in the population,
although sample sizes of about 100 can be used to test the
null hypothesis of zero population correlation.

(6) rtet should be avoided when extreme skewness is present, as

when p or q = .90 or so, because the standard error is very
large in such cases.

(7) rtet must be avoided when only one cell in the pq by p'q'

matrix is empty, or when one cell exhibits a much smaller
frequency than the other three. In general, the distribution
should be fairly symmetrical alonc one matrix diagonal or the

other.

Kim and Mueller (1978, pp. 74-75) offered the following

general proscriptions against the factor analysis of dichotomous

variables:

"Nothing can justify the use of factor analysis on dichotomous

data except a purely heuristic set of criteria. . . . Even in

dichotomies, the use of phi's can be justified if factor
analysis is used as a means of finding general clusterings of
variables and if the underlying correlations among variables
are believed to be moderate--say less than .6 or 7 If

the researcher's goal is to search for clustering patterns,
the use of factor analysis may be appropriate. . . . One way

of doing this is to use tetrachoric correlations instead of
phi's. This approach is only heuristic because the

calculation of tetrachorics can often break down and the
correlation matrix may not be Gramian".

A rigorous investigation of dichotomous test data however was

pursued by researchers who were interested in much more than "a

purely heuristic" search for "general clusterings of variables".

Statistical techniques that enabled simultaneous investigations of



Rasch-based Factor Analysis 4

three or more variables were used, of which at least one was often

unobserved or "latent" (Loehlin, 1987). These techniques were

collectively labeled by Bentler (1980) as "latent variable

analysis".

Other authors have also recommended various approaches.

Christofferson (1975) described an approach to the factor analysis

of dichotomized variables based on the distribution of the first-

and second-order joint probabilities of item values using a

generalized least-squares estimation procedur-- with rt,t matrices.

Wise and Tatsuoka (1986) used order analysis, modified to include

item proximity information, to identify the dimensionality of

dichotomous data. Stage (1988) analyzed a dichotomous criterion

variable using stepwise logistic regression in conjunction with

LISREL output. The LISREL measurement model produced

unstandardized weightings cn the observed variables which were used

to create latent predictor v.iriate values, similar to "factor

scores", for the subsequent logistic regression analysis. Kim,

Nie, and Verba (1977) recommended factor-analyzing tetrachoric

correlations calculated from threshold values obtained from a

2-parameter IRT model, instead of phi correlations calculated

directly from raw dichotomous data. This procedure was advocated

on the conditions that (a) the underlying factors can be assumed to

have normal distributions, and (b) each observed binary variable

can be conceived to be the result of dichotomizing potentially

continuous underlying variables. The authors argued that many

practical factor analysis problems met these assumptions, since "a

7



Rasch-based Factor Analysis 5

normally distributed continuous variable can exhibit a variety of

observed forms", including skewness (p. 59).

MUthén (1984) proposed a structural equation model with a

generalized measurement part allowing observed variables to take on

dichotomous, ordered categorical (e.g. Likert) and/or continuous

values. The model required an assumption of distributional

normality for the latent continuous variables presumed to underlie

the observed dichotomous or categorical indicators, even though

Muthén "does not believe that underlying normality is always the

most appropriate specification". Dichotomous variable analysis

using Muthen's GLS model involved serious drawbacks: (a) problems

inherent in phi and tetrachoric correlation assumptions and

interpretations; (b) a model "is identified if and only if its

parameters are identified" in all tbr.?.e parts (p. 118); and (c) the

use of maximum likelihood estimattls of sample threshold values.

This procedure was inferior to a response modeling approach, as

apparently, Muthén later realized (1989). Takane and de Leeuw

(1987) formally proved that the marginal probabilities of

dichotomous variate values obtained from the 2-parameter IRT model

and from factor analysis were equivalent. They however used a

factor-analytic procedure of the type described by Muthén (1984).

Muthén (1989) later attempted to solve some of the estimation and

specification problems of factor analyzing dichotomous data. He

recognized that both sides of the factor model must be continuous,

and that a response model was needed for the continuous latent

variable, "the binomial distribution of which is described by

8



Rasch-based Factor Analysis 6

probabilities" (p. 21). Muthems' error lay in choosing a

2-parameter IRT model to derive continuous probability values for

x' and in using rt., correlations to measure the associations in

x'. In justifying his use of tetrachoric correlations, bluthén

(1989) stated:

Because the (xr) variables are continuous and unlimited,
[tetrachoric3] are the proper correlations to analyze. /t is

also well known that the phi coefficients are attenuated
relative to the tetrachoric co:rrelations (p. 22).

Muthén neglected to mention that tetrachorics are designed for

observed dichotomous variables with underlying assumed continuous

normal distributions. If the continuous variables are observable,

either directly or as the result of a response model, it is

pointless to use tetrachorics when there is a universally accepted

measure of associatioa designed specifically for such continuous,

interval-level data, the Pearson product-moment correlation.

The search for an adequate direct measure of correlation among

dichotomous variables is doomed in the context of factor analysis

because there is a fundamental error of specification motivating

such research. The factor model expresses a linear relationship,

but the regression of a dichotomous variable on a continuous

variable is illogical (Muthén, 1989! pp. 20-21). The factor model

works only when xi is continuous.

A synthesis of the research findings indicates specific

premises concerning the latent variable analysis of dichotomous

item-response data. First, latent variable analysis requires a

better measure of association than either phi or tetrachoric
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correlations. Second, dichotomous item responses should be

converted to continuous interval-level data before they are

subjected to latent variable analysis. Third, the inter-

relationships among such item data can be measured with Pearson

product-moment correlations which are better-suited to latent

variable analysis than either phi or tetrachoric correlations.

Classical test theory unfortunately offers no explanation about

how examinees at different ability levels perform on test items.

The Rasch model, as a latent trait theory, however does permit

estimation of the influence of ability on item performance (Crocker

& Algina, 1986). The Rasch logistic function provides transformed

score values that indicate equal-interval locations along a latent

linear ability continuum (Wright & Stone, 1979). The advantages of

the Rasch model over other psychometric measurement models are

(Wright, 1977) :

(1) The Rasch model's assumption of independent estimation of

ability and difficulty yields score calibrations that are both

sample-free and test-free.

(2) Parameter estimates in the Rasch model are unbiased,

consistent, efficient, and sufficient.

(3) The Rasch model is the only mathematical formulation for

the ogive-shaped response curve that allows independent

estimation of ability and difficulty.

The problem addressed in the study therefore is a comparison of

three methods of factor-analyzing dichotomously-scored item

response data. This comparison was accomplished by using phi and

tetrachoric correlations among dichotomous data; and Pearson

product-moment correlations among Rasch probability estimates of

10



Rasch-based Factor Analysis 8

the same dichotomous data in factor analysis. This methodology

involved (a) Rascn procedures to convert dichotomous item response

data to continuous, interval-level logit values for each item, (b)

computation of Pearson product-moment correlations among item logit

values, and then (c) use of Pearson correlations among items in

factor analysis. This method was compared to prior approaches

using phi and tetrachoric correlations among items in factor

analysis.

METHODS AND PROCEDURES

The latent variable representation for factor analysis is

represented in equation [1):

[1]
x =Ax& +8 ,

where: x = a vector of q observed variables xi

= a (q x n) matrix of factor loadings of xi on

. a vector of n common factors (latent variables)

8 = a vector of q errors in measuring x; unique

factors; residuals.

Since the factors 4 and the residuals 8 are assumed to be

continuous, interval-level random variables, the observed variables

xi must abide by the same assumptions in order for the factor model

to apply (Mwthén, 1989, p. 20). It is also assumed in this study

that 8 is uncorrelated with E. (Jöreskog & Sörbom, 1986, p. 1.6),

and that g > n (Long, 1983, p. 22).

Since the dependent variables xi are observed and the

independent common factors E are not, the parameters contained in

11



Rasch-based Factor Analysis 9

A, and 8 from equation [1] cannot be directly estimated by

regressing x, on 4, as in regression analysis. Instead, indirect

estimation is achieved by decomposing the population covariances

among the x, variables according to the covariance equation [2]:

[2]
E=AxIDA",+-ea ,

in which:

/ = (q x q) matrix of covariances among q observed variables x,

11,1 = (q x n) loadings of xi on 4 , as in Equation [1]

(1) = (n x n) matrix of covariances among n common factors 4

= (n x q) transpose of A.

06 = (q x q) matrix of covariances among q unique factors 8

(Long, 1983, pp. 25, 33-34).

If the variables are standardized to mean value zero and unit

variance, then Z , and e consist of population correlations.

In this study, all such matrices are assumed to contain

correlations in the off-diagonal positions, and ones in the

principal diagonals.

From a sample of observed data, a sample correlation matrix S

is calculated. Then S is used to derive an estimated population

correlation matrix /, such that equation [3]:

[3] t =Ax. +ea ,

the components of which are estimates of the population parameters

in equation [2]. The problem of estimation in confirmatory factor

so that
analysis is finding values for the elements of A., SI) and e
the predicted Z is as close as possible to the observed S

2



Rasch-based Factor Analysis 10

(Long, 1983, p. 35). The purpose of estimation is to infer

population parameter values that best explain the observed

relationships among sample data.

The Rasch analytic procedure uses a dichotomous persons by

items reFonse matrix to calculate estimates of person abilities

(bj and item difficulties (di). These ,,,111,es are then used to

estimate the probability 2 that person v will give a correct

response (xi = 1) to item i:

p{xi = 1 I b, di} = exp(b di) / (1 + exp(b, - di)]

(Wright & Stone, 1979, p. 15). The Rasch model is used to

calculate continuous probability values and thereby solve the

problems of est.imation and specification in the factor analysis of

dichotomous data.

The relationship between the Rasch and factor model is

x' = X + 8 r

where. x'= pfx,i = 1 J b di)

= exp(b, - di) /(1 + exp(b, d0),

in which x' is continuous and x..1 is dichotomous.

1 3



Rasch-based Factor Analysis 11

Data and Factor Model

Two raw score data sets were generated and analyz.ed separately.

One data set reflected normally-distributed latent traits and the

other reflected uniformly-distributed latent traits. Twenty

"observed" dichotomous variables xi were constructed, consisting of

two subsets of 10 variables. Each subset was hypothesized to load

on one of two factors, F1 and F2f and assumed to be mutually

orthogonal (uncorrelated) . Each xi had a unique error factor 8,.

A graphical representation of this factor analysis model is shown

in Figure 1.

Insert Figure 1 Here

By subjecting the 20 xi vectors to Rasch analysis, continuous

response probability values scare obtained. These values were then

substituted for the dichotomous values of xi, and the resulting

continuous variable x/i replaced xi in the factor model in Figure

1.

The 20 dichotomous xi vectors were constructed by letting each

subset of 10 xi variables represent a subtest of 10 items with

incrental difficulties. Thus, there were 11 possible scores on

each subtest, from zero correct to 10 correct. The 10 xi vectors

were arranged in columns with difficulty increasing from left to

right, from xl to x10 and from x" to x20, then the most likely

4



Rasch-ba3ed Factor Analysis 12

response pattern for any raw score was a Guttman pattern (Douglas

& Wright, 1990). It can be shown that for any raw score

attainable by two or more distinct response patterns, the

second-most-likely pattern can be reproduced by transposing the

Guttman (1,0) sequential response pair into the anti-Guttman pair

(0,1) as indicated in Table 1.

Insert Table 1 Here

The np values in Table 1 are the coefficients from the expansion of

the symmetrical binomial (p + q)', in which p is the probability of

a correct answer, q is the probability of an incorrect answer (q =

1 - p), and the exponent n represents the number of test items, in

this case 10. The coefficients np were taken from Pascal's

triangle (Ferguson, 1981, p. 91), and are numerically equivalent to

the expected relative frequencies of occurrence of the score values

r if the scores are distributed normally (ibid., p. 89). Thus, to

simulate a normal distribution of ability levels, the np values

from Table 1 were used as frequencies for the corresponding score

levels r. A more manageable sample size of n = 340 was attained by

dividing each np by three. For the uniform ability distribution,

each score occurred with equal frequency. A sample size of n = 324

resulted from 36 persons at each of nine score values.

Rasch analysis discards persons with raw scores of 0 % (r = 0)

and 100 % (r = 10). Therefore, only scores of r = 1 to r = 9 were

1 5



Rasch-based Factor Analysis 13

represented in the data sets. Each 10-item subset represented a

unidimensional scale on which a latent trait or ability could be

measured. It was assumed that a subset score rk varied directly

with ability level bk; that is, the greater a person's ability

level, the more items he or she would answer correctly. Misfitting

or unexpected responses are always present in empirical

measurement. The data sets contained artificially replicated

misfit by letting 2/3 of the response patterns in each score group

be Guttman patterns, and the remaining 1/3 be next-most-likely

patterns. The normal and uniform distributions are summarized in

Table 2.

Insert Table 2 Here

To ensure that the two latent ability factors underlying each

20-item test were uncorrelated with each other, the case numbers,

which uniquely identify the hypothetical persons, were arranged

sequentially in one 10-item subset and randomly in the other.

These assignments were made separately for the normal and for the

uniform data sets.

Data Analysis

The generated data sets were analyzed as follows:

(1) The dichotomous data were subjected to Rasch analysis,
from which probability values p, were obtained, expressing
the likelihood that a person gives a correct response to an
item.

6



Rasch-based Factor Analysis 14

(2) Three correlation matrices were calculated for each data
set, which consisted of (a) phi = 40 and (b) tetrachoric = r"a

for the raw dichotomous data, and (c) Pearson = r for the

Rasch p, values.

(3) Each correlation matrix was subjected to confirmatory

factor analysis (Long, 1983). Each matrix was presumed to
manifest the same underlying factor model, as shown in Figure

1.

The above analyses were evaluated by comparing each on:

(1) The maximum internal correlation pi" (Joe & Mendoza,

1989), which is "a measure of total dependence among a set of

variables . . [and] is an upper bound to product moment
correlations" (p. 220). The sample estimate of p"/ is:

r(*) = (Al 2so / + xp)

where A. and Al, are, respectively, the largest and smallest

eigenvalues of the sample correlation matrix (ibid., p. 212).

The data sets in the present study were constructed to reflect
maximum internal correlations in the hypothetical population

equal to pi" = 1.00. Therefore, the values of r(*) calculated

for the phi, tetrachoric, and Pearson product-moment

correlation matrices can be used to compare the three
correlation methods, since each r(*) should be equal to unity,

minus the effects of contrived measurement error (caused by
misfitting response patterns, held constant for all three
correlation matrices calculated from a given data set).

(2) Since pi" is also "an upper bound to the product of the
two largest factor loadings (ibid., p. 220)", this product was
compared to the criterion value of pi" = 1.00 and to obtained

values of r(*) for each data set.

t3) The proportion of variance in the input variables
accounted for by the two common factors F1 and F2 is equal to:

hi2/L

where I 112 is the sum of the squared communalities for all

input variables, and L is the number of input variables
(Norusis, 1988, p. 6-46). This proportion was compared to a
hypothesized population value of 1.0 for each data set, as a

means of evaluating the factor solutions.

17



Rasch-based Factor Analysis 15

Procedure6

SPSS/PC+ (SPSS Inc., 1988) was used to transform the 10-item

generated data sets into 20-item sets, each containing two

uncorT-elated 10-item subsets. The 20-item normal and uniform data

sets were then each subjected to separate Rasch analyses, using

MSCALE sof.ware (Davis & Wright, 1988; Wright & Stone, 1979).

MSCALE output included a difficulty calibration for each item, and

an ability calibration for each raw score. These calibrations were

used to compute probabilities (p.,) in the normal and uniform data

sets.

Eigenvalues for the phi, tetrachoric, and Rasch-r correlation

matrices derived from each of the data sets were computed. To

extract eigenvalues, a principal components method was used, rather

than unweighted least-squares, since:

"In the [SPSS/PC+] principal components sol.tion, all initial

communalities are listed as l's. In all other solutions, the
initial estimate of the communality of a variable is the
multiple R2. . . These initial communalities are used in the
estimation algorithm." (Norusis, 1988, pp. 50-51).

For eigenvalue computations, it was important to use l's as initial

communality estimates, because:

"When unities are placed in the principal diagonal of R
[correlation matrix] then usually m = n [factors or principal

components = original variables]. If some numbers less than

unities (estimates of communalities) are placed in the

diagonal, and the positive semi-definite [Gramian] property
of R is preserved, then m will usually be less than n, and
all [eigenvalues] will be real and nonnegative. However,

the reduced correlation matrix R (i.e., with communality
estimates in the diagonal) will not be positive semi-definite
in practice, and both positive and negative [eigenvalues]
may be expected." (Harman, 1976, p. 141)

8



Rasch-based Factor Analysis 16

LISREL software (Joreskog & Sorböm, 1986) was used for

confirmatory unweighted least-squares factor analysis cf the

correlation matrices.

RESULTS

Of the three factor-analytic methods, the Rasch-based

procedure rendered pattern matrices most similar to the criterion

matrix given normal ability distributions (Table 3). A pattern

matrix contains regression weights for the common factors and a

structure matrix contains correlations between the factors and the

observed variables, but both are similar with standardized

variables (Kim & Mueller, 1978, p. 84). The Rasch-r pattern matrix

contained 20 significant correlations (one-tailed p < .05), as

specified by the criterion structure; the other two approaches each

contained 16. Table 4 indicates the superiority of the Rasch-based

method on two of the three criterion measures described earlier.

Insert Tables 3 & 4 Here

The Rasch-r pattern matrix indicated the strongest overall

similarity to the criterion matrix, but the tetrachoric method

yielded the highest loadings on six items for the uniform ability

distributions (Table 5). However, the tetrachoric method failed

to produce significant loadings for two items (numbers 1 and 11);

1 9



Rasch-based Factor Analysis 17

the other methods estimated significant loadings for all 20 items.

Table 6 indicates thr, Rasch-r method's superiority on the h2/L

criterion. The tetrachoric method produced the highest rmazir,,x2

value, and the r(*) measures were inconclusive.

Insert Tables 5 & 6 Here

CONCLUSIONS

Rasch-based factor analysis is a viable approach when using

dichotomously-scored item response data. Results indicate that

Pearson correlations of Rasch estimates performed better than those

obtained through phi and tetrachoric correlations among dichotomous

data. The Rasch procedure was chosen in favor of other

psychometric measuz,ment models because only the Rasch model meets

the latent trait analysis assumption that a linear ability

continuum underlies dichotomous item response data. This new

approach should enable researchers to incorporate results from a

variety of dichotomous variables into complex latent variable

models which can be analyzed by techniques available in L1SREL

(Jöreskog & Sorböm, 1986).

20



Rasch-based Factor Analysis 18

The results of this study however are qualified by the

following irregularities in the findings:

(1) For the r,r criterion measure in uniform

distributions, the tetrachoric value exceeded the Rasch-r
value. The difference however was relatively small (.9930 vs.

.9264).

(2) Exact r(*) values could not be obtained for several of the

data sets, because of negative eigenvalues.

Analyzing P-values versus Ability-Difficulty Differences

Since Rasch probability values (p,n) are restricted to a range

of zero to unity, it may seem more appropriate to factor-analyze

the differences between Rasch-calibrated person abilities and item

difficulties (b,- di), which is a theoretically unbounded quantity.

However, several considerations led to the decision to use pi

values rather than (b, d) differences as input variables in the

present study.

First, even though (by - di) is theoretically unbounded, in

practice differences outside the range of -2 to +2 occur in only

about 1% of observations (Smith, 1988, pp. 660 & 662).

Second, it has been assumed in this study that an observed

item response evaluated at either zero or unity represents a

dichotomized manifestation of some continuous unobservable

variable. The most logical conceptualization of this unobservable

variable across all possible varieties of cognitive abilities and

objectively-scored measuring instruments is the latent probability

of giving a correct response to an item. Since probabilities of

21



Rasch-based Factor Analysis 19

less than zero or greater than unity are not defined, it is

unreasonable to expect a quantitative probability variable to stray

outside these bounds.

Third, the use of p,i preserves consistent scaling across

latent variables. Replacing dichotomous responses with (b, - di)

values would produce response measurements differing in scale

across latent variables. Such scale variation could have

significant substantive effects on the results obtained from

covariance-matrix-based applications of a scale-dependent factor

analytic method such as ULS (Long, 1983, p. 79).

Fourth, examinees with perfect scores on a latent ability

scale (r = 100% or r = 0%) are eliminated from the Rasch analysis

of that scale. Using a pi-based method, these examinees can be

included in subsequent factor analysis, because their observed

responses of unity or zero are, appropriately, at the extremes of

the pvi value range. But there can be no (b., - di) values for

examinees with perfect scores, and their original observed

responses are incompatible with (b,- di) scaling. Therefore, these

examinees would :oe excluded from all phases of (b, dli) based

factor analysis.

Finally, there are precedents.in the psychometric literature

for replacing dichotomous values with probabilities prior to factor

analysis. Muthén (1989, p. 21) argued that:
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"The y* variable may be thought of as the specific tendency
to report a certain symptom [y]. . . . The relationship
betvieen y and y* leads to a nonlinear relationship between y
and [a common factor F], expressing not the value of y but
the probability of y as a function of [F]. This is

appropriate because what is needed is a response model for a
discrete y, the binomial distribution of which is described
by probabilities."

On the other hand, the literature contains no examples or

arguments in favor of subjecting (b, - di) values to factor

analysis. There may, however, be some advantages to a factor-

analytic method based on (b, - di), which could be profitably

explored in subsequent research.

Despite the benefits expected to be derived from further study

of the new Rasch-r procedure, with a variety of data sets and

perhaps with fitting functions other than ULS, and despite the

limited explanations provided for specific irregularities, the

procedure vas clear advantages for researchers who use confirmatory

factor analysis with dichotomous item response data. Therefore,

its use is strongly recommended in such contexts.

23



8, x,

82

83 X3

-4 X4

85 X5

86 X6

8, x,

8, x,

a, x,

AI, 1

Rasch-based Factor Analysis 21

4:1

A'11, 2

811

X12 512

X13 1-- 813

X11 4 814

xis 815

Xis 81$

X17 4-- 817

Xis 4. 819

X19 em- 514

A10,1 120, 2

X20
elem. 520

Figure 1: Factor model with 20 observed dichotomous xi items

Legend

8i = unique factors; measurement errors in xi

xi = observed variables, dichotomously scored (1 = right,

0 = wrong)

- loadings of variables xi on common factors

common factors

common factor correlation
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Table 1: Probable Dichotomous Response Patterns for 11 Score

Values

o

1

2

3

4

5

6

7

8

9

10

Legend

r

np = # of possible unique response patterns yielding a

given r. These values are based on the binomial

expansion (p + q)", where n = 10.

np Most Likely 2nd-Most Likely

1 0 0 0 0 0 0 0 0 0 0 NONE

10 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

45 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

120 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

210 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0

252 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0

210 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0

120 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0

45 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0

10 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 NONE

= raw score = # of it3ms answered correctly
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Table 2: Expected Response Patterns at Nine Score Values for

Normal and Uniform Ability Distributions

np fN fU fNl fUl fN2 fU2

1 10 3 36 2 24 1 12

2 45 15 36 10 24 5 12

3 120 40 36 30 24 10 12

4 210 70 36 47 24 23 12

5 252 84 36 56 24 28 12

6 210 70 36 47 24 23 12

7 120 40 36 30 24 10 12

8 45 15 36 10 24 5 12

9 10 3 36 2 24 1 12

Leciend

r = raw score = # of items answered correctly.

np = # of possible unique response patterns, given r.

fN = frequency of this score in a normal distribution.

fU = frequency of this score in a uniform distribution.

fN1 = frequency of Guttman response pattern for this score

value in a normal distribution.

fUl = frequency of Guttman response pattern for this score

value in a uniform distribution.

fN2 = frequency of 2nd-most-likely response pattern in a

normal distribution.

fU2 = frequency of 2nd-most-likely response pattern in a

uniform distribution.
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Table 3: Pattern Matrix ProduceA by Three Methods of Factor-
Analyzing Normal Ability Distribution Data Set

ITEM Fl F2

rtet

Fl F2

Rasch-r

Fl F2

Criterion

Fl r2

1 .125 .000 .039 .000 .505 .000 1.00 .000

2 .256 .000 .003 .000 .630 .000 1.00 .000

3 .385 .000 .391 .000 .729 .000 1.00 .000

4 .552 .000 .607 .000 .842 .000 1.00 .000

5 .609 .000 .808 .000 .891 .000 1.00 .000

6 .609 .000 .858 .000 .891 .000 1.00 .000

7 .552 .000 .858 .000 .841 .000 1.00 .000

8 .:35 .000 .809 .000 .729 .000 1.00 .000

9 .256 .000 .603 .000 .629 .000 1.00 .000

10 .126 .000 .393 .000 .504 .000 1.00 .000

11 .000 .126 .000 .001 .000 .504 .000 1.00

12 .000 .256 .000 .000 .000 .629 .000 1.00

13 .000 .385 .000 .389 .000 .729 .000 1.00

14 .000 .552 .000 .603 .000 .842 .000 1.00

15 .000 .609 .000 .810 .000 .891 .000 1.00

16 .000 .609 .000 .858 .000 .891 .000 1.00

17 .000 .552 .000 .859 .000 .842 .000 1.00

18 .000 .385 .000 .810 .000 .729 .000 1.00

19 .000 .256 .000 .606 .000 .630 .000 1.00

20 .000 .126 .000 .393 .000 .505 .000 1.00

P7
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Table 4: Comparison of Three Methods of Factor-Analyzing
Normal Ability Distribution Data Set

Method r tat Rasch-r Criterion

r(*) .7150 >1.000* >1.000* 1.0000

rat- x 1 rntax2 .3709 .7370 .7939 1.0000

I hi2/20 .1812 .3821 .5369 1.0000

Legend

r(*) = estimate of maximum internal correlation

rwmir = product of two largest factor structu:e loadings

112/20 = proportion of observed variance accounted for

by the two common factors

Note: The presence of negative eigenvalues prevents the
calculation of an exact r(*) value.

1 8
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Table 5: Pattern Matrix Produced by Three Methods of Factor-

Analyzing Uniform Ability Distribution Data Sat

ITEM Fl F2

rtet

Fl F2

Rasch-r

Fl F2

Criterion

Fl F2

1 .254 .000 .000 .000 .688 .000 1.00 .000

2 .434 .000 .494 .000 .769 .000 1.00 .000

3 .631 .000 .706 .000 .866 .000 1.00 .00(

4 .758 .000 .898 .000 .931 .000 1.00 .000

5 .826 .000 .972 .000 .962 .000 1.00 .000

6 .826 .000 .996 .000 .962 .000 1.00 .000

7 .756 .000 .987 .000 .930 .000 1.00 .000

8 .629 .000 .937 .000 .865 .000 1.00 .000

9 .432 .000 .843 .000 .767 .000 1.00 .000

10 .252 .000 .715 .000 .687 .000 1.00 .000

11 .000 .253 .000 .071 . 0 .688 .000 1.00

12 .000 .432 .000 .488 .000 .768 .000 1.00

13 .000 .631 .000 .701 .000 .866 .000 1.00

14 .000 .758 .000 .894 .000 .931 .000 1.00

15 .000 .826 .000 .972 .000 .963 .000 1.00

16 .000 .825 .000 .997 .000 .962 .000 1.00

17 .000 .758 .000 .985 .000 .930 .000 1.00

18 .000 .629 .000 .945 .000 .865 .000 1.00

19 .000 .433 .000 .844 .000 .767 .000 1.00

20 .000 .251 .000 .720 .000 .687 .000 1.00
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Table 6: comparison of Three Methods of Factor-Analyzing
Uniform Ability Distribution Data Set

Method rtt Rasch-r Criterion

r(*) .8970 >1.000* >1.000* 1.0000

rroax1rmax2 .6815 .9930 .9264 1.0000

E hi2/20 .3807 .6562 .7205 1.0000

Legend

r(*) = estimate of maximum internal correlation

= product of two largest factor structure loadings

I hi2/20 = proportion of observed variance accounted for
by the two common factors

Note: The presence of negative eigenvalues prevents the
calculation of an exact r(*) value.

30
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