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Abstract

Standard approaches for estimating item response theory (IRT) model parameters
generally work under the assumption that the latent trait being measured by a set of

items follows the normal distribution. Estimation of IRT parameters in the presence

of nonnormal latent traits has been shown to generate biased person and item para-
meter estimates. A number of methods, including Ramsay curve item response the-

ory, have been developed to reduce such bias, and have been shown to work well for

relatively large samples and long assessments. An alternative approach to the nonnor-
mal latent trait and IRT parameter estimation problem, nonparametric Bayesian esti-

mation approach, has recently been introduced into the literature. Very early work

with this method has shown that it could be an excellent option for use when fitting
the Rasch model when assumptions cannot be made about the distribution of the

model parameters. The current simulation study was designed to extend research in

this area by expanding the simulation conditions under which it is examined and to
compare the nonparametric Bayesian estimation approach to the Ramsay curve item

response theory, marginal maximum likelihood, maximum a posteriori, and the

Bayesian Markov chain Monte Carlo estimation method. Results of the current study
support that the nonparametric Bayesian estimation approach may be a preferred

option when fitting a Rasch model in the presence of nonnormal latent traits and

item difficulties, as it proved to be most accurate in virtually all scenarios that were
simulated in this study.
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Item response theory (IRT) is a mainstay in psychometrics and educational measure-

ment. It provides researchers with information regarding performance of both items

on an assessment and performance of individuals who take the assessment.

Information about the items can then be used to refine the instrument and to select

sets of items that maximize the information provided about individuals. In turn,

information about individuals can be used to identify those in need of special psy-

chological or educational services, for example. There exist a number of IRT models

for dichotomous items, including the Rasch model, which is perhaps the simplest of

these. For a dichotomously coded item, the Rasch model takes the form:

P xij = 1jui, bj
� �

=
e ui�bjð Þ

1 + e ui�bjð Þ
, ð1Þ

where xij is the response to item j for individual i, where 1 is coded as endorsement

(or correct) and 0 as nonendorsement; ui is the person-level latent trait being mea-

sured by the scale; and bjis the location (or difficulty) for item j.

It should be noted that in the context of educational and cognitive assessments, bj
is frequently referred to as the item difficulty parameter. In other contexts, this para-

meter reflects the location of the item on the latent trait scale, but does not indicate

difficulty in the standard educational sense. In this article, we will use the two terms

interchangeably.

Of key interest in the current study is the fact that standard approaches for estimat-

ing the model in (1), such as marginal maximum likelihood (MML), joint maximum

likelihood (JML), and maximum a posteriori (MAP) assume that u is normally dis-

tributed (de Ayala, 2009). A number of researchers have examined the impact of non-

normally distributed latent traits in the population on the estimation of both person

and item parameters in the context of standard IRT, including the Rasch model for

dichotomous data. Monte Carlo simulation work in this area has demonstrated repeat-

edly that when the latent trait is skewed, estimates of both bj and u based on MML

are deleteriously affected (e.g., Stone, 1992; Woods, 2006, 2008; Woods & Linn,

2009; Woods & Thissen, 2006). Collectively this earlier work also demonstrated that

the degree of bias in these parameter estimates was concomitant with the degree of

skewness in u, such that more skewness led to more biased estimates. This general

finding of poor performance in the presence of skewed latent traits does appear to be

mitigated, to some extent, by characteristics of the data itself. For example, Stone

(1992) and Seong (1990) both found that bias in item parameter estimates was lower

for longer instruments (i.e., more items) and for larger sample sizes, when expected a

posteriori (EAP) estimation was used to estimate the latent trait. In addition, when
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MAP was employed the impact of skewness on the latent trait was largely overcome

for samples of 1,000 examinees and instruments of 40 items or more (Kirisci, Hsu, &

Yu, 2001). In summary, prior research has generally found that when the latent trait

is skewed, recovery of person parameter estimates will be biased, as compared to

when the latent trait is normally distributed, for the most commonly used methods of

estimation, MML, EAP, and MAP (e.g., Kirisci & Hsu, 1995; Stone, 1992; Woods,

2007, 2008).

Extending this work to include the distribution of item difficulty parameters for

all items on a scale, Sass, Schmitt, and Walker (2008) examined the interaction

between the distribution of u and the collective distribution of item difficulty para-

meters. These authors were particularly interested in characterizing item and person

parameter estimation bias when each of four approaches for estimating u were used:

MML, MAP with a normal prior, EAP using a prior distribution matching the distri-

bution used to simulate the data, and EAP using empirical weights to characterize the

latent trait distribution. Sass et al. simulated u to be either normal, or with a skewness

of 1.6 or 21.6. In addition to manipulating the latent trait distribution, these authors

also manipulated the item difficulty parameters into three conditions that they

referred to as normal, negatively skewed, and positively skewed. The values of the

item difficulty values under each condition appear in Table 1, and will be used in the

current study. We elected to use the same values as those in Sass et al. because we

wanted to make the results of the current study, particularly with respect to a rela-

tively new estimation method based on a nonparametric Bayesian approach, as

directly comparable to those in prior research as possible. We do acknowledge, how-

ever, that it would also have been reasonable to generate new item parameter values

from the same distribution as those used in the earlier study, rather than to use the

actual values themselves as we have done. It is also important to note that whereas

the current study used the Rasch model to generate and analyze item response data,

Sass et al. used the 2-parameter logistic (2PL) model for this purpose.

Sass et al. (2008) were particularly interested in the combined impact of the col-

lective item difficulty distribution and the latent trait distribution on the estimation

of IRT model parameters. Their results reinforced prior work, showing that model

parameter bias was lower when u was normally distributed, and when the item diffi-

culty values conformed to the normal pattern in Table 1. The poorest performance in

terms of both item and person parameter estimation was associated with positive

skew of both the items and u. The authors hypothesized that this result might be due

to a relative lack of items available for estimating u at the highest end of the distribu-

tion, thereby creating a cascade of estimation problems across all levels of the latent

trait (Sass et al., 2008). Finally, of the four estimation methods that were studied,

EAP with the prior distribution matching the data generating distribution was found

to perform the best, which was not surprising given the use of the correct prior.

However, as Sass et al. (2008) noted, this is not a realistic scenario because in most

cases researchers will not know what the population distribution of u actually is.

Other than EAP with the correct prior, MAP and MML both performed comparably
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when estimating item and person parameters across the conditions simulated by Sass

et al. The greatest difficulty for each of these methods was in recovering u estimates

for individuals in the tails of the distribution (e.g., above 2).

Methods for Estimating IRT Model Parameters in the Presence of a

Nonnormal Latent Trait

Given the clear evidence that estimation problems can arise when the latent trait is

not normally distributed, researchers have developed a number of methods that might

Table 1. Data Generating Item Difficulty Values.

Item number

Difficulty

Normal Negative skew Positive skew

1 1.08 20.49 0.49
2 20.01 2.06 22.06
3 0.73 2.12 22.12
4 20.03 1.37 21.37
5 1.02 1.29 21.29
6 20.15 1.96 21.96
7 22.24 1.67 21.67
8 21.98 1.16 21.16
9 20.24 2.30 22.30
10 0.31 20.51 0.51
11 0.43 20.01 0.01
12 20.71 1.27 21.27
13 1.66 20.11 0.11
14 0.26 20.62 0.62
15 0.14 1.77 21.77
16 22.26 1.15 21.15
17 20.01 1.14 21.14
18 0.05 1.97 21.97
19 20.12 1.72 21.72
20 20.39 2.16 22.16
21 20.26 0.39 20.39
22 0.20 0.39 20.39
23 0.59 1.95 21.95
24 3.11 1.79 21.79
25 20.58 20.87 0.87
26 20.09 1.48 21.48
27 0.44 0.74 20.74
28 21.46 0.91 20.91
29 0.71 0.93 20.93
30 1.50 21.10 1.10
Mean 0.06 1.00 21.00
SD 1.12 1.00 1.00
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be more appropriate in such conditions. Of particular interest in the current study are

Ramsay curve item response theory (RC-IRT) and nonparametric Bayesian estima-

tion (NBE). RC-IRT has been fairly well studied in recent years (Woods, 2006,

2007, 2008; Woods & Linn, 2009; Woods & Thissen, 2006) and has been found to

provide accurate IRT model parameter estimates under a variety of conditions (e.g.,

with a skewed latent trait distribution, 30 or more items). More recently, the NBE

method was introduced as an alternative for use with Rasch models when assump-

tions about the distribution of the model parameters cannot be made (San Martin,

Jaran, Rolin, & Mouchart, 2011). In contrast to RC-IRT, however, NBE has not been

thoroughly examined under a variety of conditions. San Martin et al. (2011) did con-

duct a small simulation study using both a normally distributed and a bimodal distri-

bution of u, and they found that NBE yields accurate person and item parameter

estimates. However, as noted by a number of researchers (e.g., de Ayala, 2009;

Kirisci & Hsu, 1995; Stone, 1992), standard approaches for estimating IRT para-

meters work reasonably well when the distribution is symmetric, which would

include the bimodal distribution simulated by San Martin et al. Therefore, relatively

little is known about how well NBE might recover the model parameters when u or

the set of item parameters are skewed. Following is a description of the NBE method

used here, given that it is the newest and least studied. Details of the MML, MAP,

RC-IRT, and Bayesian Markov chain Monte Carlo (MCMC) approaches to estima-

tion, which are also included in this study, are not provided here as they have been

thoroughly discussed elsewhere and are very commonly used in the IRT literature

(de Ayala, 2009; Fox, 2010; Woods, 2015).

Nonparametric Bayesian Estimation

Another alternative method for IRT model parameter estimation in the context of

nonnormal latent traits that has been suggested in the literature is NBE, which was

described by San Martin et al. (2011). These authors focused on the Rasch model,

linking the item responses under this model to the Bernoulli distribution as follows:

xijjuibj
� �

;Bernoulli
e ui�bjð Þ

1 + e ui�bjð Þ

 !

, ð2Þ

where xij = 1 indicates that subject i correctly answers item j, and xij = 0 indicates an

incorrect response; ui is the level of the latent trait for subject i; bj is the difficulty for

item j.

The entire item response pattern for subject i, Yi, is characterized by the

distribution

P Yi = yijb1:J ,Gð Þ=

ð

Y

1�i�n

P Yij = yijjui, bj
� �

( )

dG uð Þ, ð3Þ
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where Yi is the response pattern for subject i; b1:J is the set of difficulty values for the

J items; and G is the probability distribution of mixtures of the latent trait, u.

San Martin et al. (2011) noted that when u cannot be assumed to follow the nor-

mal distribution, estimates of item and person parameters are likely to be compro-

mised in the form of bias, which is an issue that has already been described in some

detail above. Their solution to this problem was to apply the Bayesian estimation

paradigm to the problem, but to do so in a way that imposes the least restrictive prior

information on the model parameters possible. Briefly, in practice Bayesian estima-

tion involves the combination of information from the data (the likelihood) with prior

information about the model parameters, in order to obtain a posterior distribution

for each parameter. The point estimates for the parameters are drawn from this pos-

terior distribution in the form of the mean, median, or mode. For an extensive discus-

sion of general Bayesian IRT modeling, the interested reader is referred to Fox

(2010).

When the Bayesian methodology is applied to the Rasch model, prior distribu-

tions must be given for both u and bj: Any reasonable prior can be provided for these

parameters based on information that the researcher has about the parameters and

their distributions. Most often in practice the normal distribution with mean of 0 and

variance of 1 is used as the prior for both u and bj (Fox, 2010). As noted previously,

however, IRT model parameters may not always follow the normal distribution, call-

ing into question the use of normal priors in combination with a normal based likeli-

hood function, which is standard practice. The NBE approach described by San

Martin et al. (2011) can be based on either the Dirichlet process (DP), which is a

prior probability distribution on a space of probability distributions, or Polya trees

(PT), which involves the probabilistic partitioning of observations into increasingly

homogeneous bins based on their distributional form (Lavine, 1992).

The DP is characterized by the parameters (M, G0), where M 2 R, and

G0 2 P Rð Þ: In other words, the probability distribution, G, generating the individual

latent trait u, is assumed to have come from some set of distributions contained

within the DP with the uncertainty regarding the exact distribution being reflected in

the prior distribution on P Rð Þ: The central tendency of this distribution is contained

in the prior distribution of M. So, for example, the researcher could specify as a prior

distribution for u the DP process based on a mixture of normal distributions, rather

than a single normal distribution for the entire set of data. This mixture of normal

distributions should serve to better characterize a parameter that does not in fact con-

form to a pure normal than would normal based methods such as MML, or even a

standard Bayesian approach that uses a single normal prior (San Martin et al., 2011).

It is also important to note that DP is not limited to the normal distribution, but rather

can accommodate any distributional form that the researcher believes to be appropri-

ate. Finally, NBE relies on the MCMC algorithm, which is very commonly used to

obtain posterior distributions for model parameters in Bayesian statistics (Geyer,

1992).
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The PT priors come from a sequence of m partitions in which nested subsets of

the data are obtained. The probability distribution G for the latent trait u is then dis-

tributed as PT (A, P), where A= faeg and P contains the set of partitions making

up the PT. The term ae controls the level of refinement desired in the PT solution

(i.e., the number of splits to be done), and is itself given a prior distribution. In many

instances it may be difficult for a researcher to specify a single distribution around

which the PT will be centered. In such cases, a mixture of PT (MPT) can be used by

setting a hyperprior on the centering parameter (i.e., mean) of the PT (Hanson &

Johnson, 2002). As an example, if for a standard PT the prior distribution for the

mean of G is N(0, 100), then for an MPT the prior distribution for G would become

N(h, 100), where h is itself a prior distribution, such as N(0, 500). Through the use

of MPT, the resulting posterior distribution will not be tied to a single centering prior

distribution, and should therefore accommodate a wide array of potential distribu-

tions to be found in a population (San Martin et al., 2011).

San Martin et al. (2011) conducted a small simulation study in order to assess the

performance of the NBE approach in terms of estimating both u and bj for the Rasch

model. The latent trait used in their study was simulated from a mixture of two nor-

mal distributions, which took the form 0.5N(21, 0.52) + 0.5N(2, 0.252) and yielded

a bimodal distribution. For each replication, 250 examinees were simulated, and

either 2, 4, 10, or 40 items were used. The outcome of interest was the Kolmogorov

distance between the posterior mean of the Bayesian process estimating u and the

data generating distribution itself. The priors used in this simulation were centered at

the N m,s2ð Þ, where the prior on m was N 0, 100ð Þ, the prior on s�2 was

G 2:01
2
, 0:01

2

� �

, and the prior on ae was G 2:0, 0:2ð Þ: In order for the model to be identi-

fied, the difficulty for item 1 was set equal to 0, and the prior distribution of the

remaining item parameters was N 0, 103xIn�1

� �

: The results of this study demon-

strated that NBE worked best for cases with larger numbers of items, and that the

posterior distribution was sensitive to the prior distribution used. This latter result

may be due in part to the relatively small sample size used in the simulation. In addi-

tion, the MPT approach outperformed the other methods for NBE with the Rasch

model.

Study Goals

The current study was designed to extend work in the area of IRT model parameter

estimation in the presence of nonnormal latent trait and item difficulty patterns in

several ways. First, the NBE technique was compared with other previously studied

methods, under a much broader array of conditions than it has been examined with

heretofore. Second, the performance of RC-IRT (as well as the other methods studied

here) was considered in light of interactions between the item and u distributions.

Prior work on this proven method has focused primarily on its performance with vari-

ous distributions of the latent trait, but not with regard to different item difficulty dis-

tributions. Third, the standard Bayesian estimation method (MCMC) was included in
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the study as well. Other approaches use Bayesian methods to estimate the latent trait

(i.e., MAP and EAP), but little previous research has examined performance of the

MCMC method for estimating both person and item parameters when item difficulty

and/or u are not normally distributed. Fourth, this study examined the performance of

the various methods with respect to both item and latent trait recovery. Much of the

prior work, particularly with NBE, has focused on the latent trait but not item recov-

ery. Finally, the current study broadens the number of items, sample size conditions,

and distribution of the latent trait as compared to previous research, in an attempt to

identify where these methods perform optimally, and where they have problems.

Based on previous research, it was possible to develop hypotheses regarding what

might be expected in this study. First, it was anticipated that NBE would outperform

the MCMC approach when the model parameters were skewed, as the former does

not rely so heavily on the form of the prior distribution of these parameters as does

the latter. Our second hypothesis was that RC-IRT would perform better than MML

or MCMC for item parameter estimation, and better than MML, MAP, or MCMC for

u estimation because it does not rely on a normality assumption, nor on normal priors.

Given its relatively recent development and the need for more extensive examination

of its characteristics, we are not able to develop any hypotheses regarding the perfor-

mance of NBE vis-à-vis RC-IRT, other than to surmise that both methods would per-

form relatively better than the other methods studied here. Neither technique has

been examined under several of the conditions included here, so it was not clear how

accurate their estimates would be when compared with one another in these cases.

Method

In order to address the goals of this study, a Monte Carlo simulation methodology

was used. Several factors were manipulated (as described below), and completely

crossed with one another. For each combination of conditions, 1,000 replications

were simulated. Data generation and analysis were conducted using the R software

system (R Core Development Team, 2014) and RCLOG (Woods, 2006). Following

are descriptions of how item difficulty and person latent trait parameters were gener-

ated, how model parameters were estimated, and how the quality of these estimates

was ascertained. The manipulated factors in this study were item difficulty parameter

distribution (3 levels) by latent trait distribution (5 levels) by method of estimation

(5 levels) by sample size (4 levels) by number of items (3 levels), for a total of 900

separate conditions.

Item Difficulty Parameter

The data generation for the current study was based on work by Sass et al. (2008).

All data were generated using the Rasch model, with item difficulty parameters

drawn from Sass et al. and item discrimination values set to 1. The item difficulty

values were generated under three different conditions: normally distributed,
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positively skewed, and negatively skewed. The values under each condition appear

in Table 1. Under the normally distributed condition, item difficulty values were

drawn from the standard normal distribution, and designed to give maximal informa-

tion for examinees with latent trait values in the middle of the distribution. The posi-

tively skewed item difficulty values were drawn from the gamma distribution with a

mean of 1 and a standard deviation of 1, and provided maximal information about

examinees with latent traits near 21. Items from the negatively skewed difficulty

distribution had difficulty parameter values that were identical to those in the posi-

tively skewed case, but with the signs reversed. Three conditions for number of items

were simulated, including 10, 20, and 30. This condition was manipulated in the cur-

rent study, as it has been shown to be a salient factor in the performance of RC-IRT

(Woods, 2015) and NBE (San Martin et al., 2011). For the 10 items condition, the

difficulty parameters for the first 10 items in Table 1 were used, whereas for the 20

items condition, the difficulty values for the first 20 items were used in the simula-

tions, and for the 30 items condition all of the item difficulty parameter values were

used to generate the data.

Latent Trait

The latent trait was generated to be from one of five distributions: Standard Normal,

bimodal mixture of normals (0.5N(21, 0.52) + 0.5N(2, 0.252), skew of 1.5, 2.5, or

3.5. The bimodal distribution was used previously in San Martin et al. (2011) with

the NBE, and skewed distributions have been studied with RC-IRT and the MML/

MAP estimation methods previously. However, these previous studies did not utilized

latent traits that were skewed as severely as 3.5. Thus, the current study was designed

to build on prior work by using similar conditions (e.g., bimodal, skew of 1.5) to prior

studies, but also to apply new distributional conditions (e.g., skew of 3.5) and the

older conditions to new methods (e.g., bimodal with RC-IRT, skewed distributions

with NBE). Samples of 250, 500, 1,000, and 2,000 examinees were simulated.

Estimation Methods

Person latent trait parameters were estimated using MML, MAP, RC-IRT, NBE, and

Bayesian IRT (MCMC; Fox, 2010). Item difficulty parameter estimation was carried

out using MML, RC-IRT, NBE, and MCMC. MAP was used with a standard normal

prior, and model estimation was carried out using the RM and PP_4pl functions of the

eRm and PP R libraries. MCMC was carried out using standard normal priors for both

latent trait and item difficulty parameter values, as is common in the literature (e.g.,

Fox, 2010; Kim & Bolt, 2007). Two chains of 20,000 iterations each were generated

using MCMC, with a burn in period of 1,000 iterations, and thinning set to 20. Prior

to conducting the simulation portion of the study, several test analyses were con-

ducted using data generated under the conditions described above so that parameter

estimation convergence could be determined based on trace plots and autocorrelation
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functions. It was found that using the MCMC settings described above, model con-

vergence was attained within 1,000 iterations in all cases. Therefore, we were very

confident that using 20,000 iterations was sufficient for appropriate parameter estima-

tion under all conditions studied here. The MCMC modeling was done using the

MCMCirt1d function in the MCMCpack R library.

The NBE estimation was done using the DPMrasch function in the DPpackage

R library. Based on prior results demonstrating its strong performance (San Martin et

al., 2011) the MPT method was used for NBE, with the nonparametric priors centered

at the N m,s2ð Þ distribution. For m, the N 0, 100ð Þ prior distribution was used, whereas
the prior for s�2 was distributed as G 2:01

2
, 0:01

2

� �

, in keeping with San Martin et al.

(2011). The MCMC algorithm was used to obtain parameter estimates, using 20,000

iterations with a burn-in of 1,000, and thinning of 20. As with the MCMC approach,

these settings were tested on data simulated using the methods described above. It

was found that convergence was always obtained by 1,000 iterations. Therefore, it

was determined that using 20,000 iterations with a burn-in of 1,000 would ensure

model parameter estimation convergence.

The use of RC-IRT to fit the models was based on the simulation work of Woods

(2006), and subsequent recommendations for practice (Woods, 2015). Specifically,

25 different models were fit to each simulated dataset using the RCLOG software,

with 5 number of knots used (2, 3, 4, 5, and 6), crossed with the 5 separate orders of

the polynomials (2, 3, 4, 5, and 6). In addition, 121 quadrature points between 26

and 6 were used in the estimation process. A prior standard deviation of 75 was used

with the normal prior applied to the spline parameters. The Hannan–Quinn (HQ) cri-

teria and the Kolmogorov–Smirnov test were used to identify the optimal solution for

each replication. Specifically, following the recommendations of Woods, the model

with the smallest HQ statistic was selected as the provisional best fit to the data. The

resulting latent trait from this model was then compared to the normal distribution

using the Kolmogorov–Smirnov test (a = 0.05). If the result was statistically signifi-

cant, the result was retained, otherwise the normally distributed latent trait estimates

were used. The item and person parameter estimates for this optimal solution were

then used as the RC-IRT estimates for purposes of calculating the outcome variables

for the simulation study (described below), and for comparison with the other estima-

tion methods.

Study Outcomes

The quality of the item and person parameter estimates were assessed and compared

in two ways. First, the absolute value of the estimation bias, sometimes referred to as

mean absolute error (MAE), was calculated for each item and person estimate. For

the item difficulty values, this calculation was

MAE = bj � b̂j
�

�

�

�, ð4Þ
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where bj is the population value of difficulty parameter for item j; b̂j is the estimate

of difficulty parameter for item j.

Similarly, the absolute bias in the latent trait estimates was calculated as

MAE = ui � ûi
�

�

�

�, ð5Þ

where uj is the population value of latent trait parameter for person i; ûj is the esti-

mate of latent trait parameter for person i.

The second outcome of interest in the current study was the mean squared error

(MSE) of the model parameter estimates, which for item estimates took the form:

MSEj =

PR
r = 1 bj � b̂j

� �2

R
: ð6Þ

Terms are as defined above, with the addition that R is the number of replications.

For latent trait estimates, MSE is calculated as

MSEj =

PR
r = 1 ui � ûi
� �2

R
: ð7Þ

In order to determine which of the manipulated study factors were significantly

related to the outcomes, a repeated measures analysis of variance (ANOVA) was

used. The dependent variable was absolute bias (analyses were run separately for

item and person latent traits), the repeated measures factor was estimation method,

and the between replication factors were distribution of the item difficulty para-

meters, difficulty of the latent trait, number of examinees, and number of items.

With regard to the item parameter estimates, a separate ANOVA was run for each

item and the results were compared with one another in terms of the manipulated

study effects that were identified as being related to the outcome variable, MAE.

Results

The results of the simulation study for item difficulty and person parameter estima-

tion are presented in the following section of the article. Difficulty parameter estima-

tion results were obtained for all items in each replication, and as noted above

ANOVA results were obtained for each item. However, given the many combinations

of study conditions, it was not feasible to present results for each item. Furthermore,

in terms of the factors that were identified as being significantly associated with

MAE, the ANOVA results were very similar across the items. Therefore, in order to

present study results fully reflective of item difficulty parameter values for the vari-

ous study conditions, difficulty estimation outcomes for Items 2 and 10 were selected

for presentation below. These items were selected because they took a range of popu-

lation values across the item difficulty parameter distributions used. Thus, by focus-

ing on these two items, we had combinations of items with difficulty values near 0,
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as well as both extremely positive and extremely negative for the normal, negative

skewness, and positive skewness item difficulty distributions.

Item Difficulty Estimation

The ANOVA used to identify significant manipulated study factors with regard to

item parameter MAE found that estimation method by item difficulty distribution by

latent trait distribution (F16, 248 = 5:555, p\:00001,h2 = 0:264), and the interaction of

estimation method by sample size (F3, 124 = 51:982, p\:00001,h2 = 0:557) were sta-

tistically significant for the target items. Note that the results for both of the target

items were very similar to one another, so only the ANOVA results for Item 2 are

presented above. Figure 1 contains bar charts for MAE by estimation method, distri-

bution of the latent trait, and distribution of item difficulty parameters, for Items 2

(top panel) and 10 (bottom panel). With respect to Item 2, when the distribution of u

was normal, MML, NBE, and RC-IRT had very similar MAE values across the dis-

tribution of the item difficulty conditions. Furthermore, these were lower than those

of MCMC when the item difficulty distribution was either normal (b = 1.08), or

negatively skewed (b = 20.49). However, when the item distribution was positively

skewed (b = 20.49), the MCMC bias was comparable to that of the other methods.

When the data were bimodal, the lowest MAE results were associated with NBE and

MML for both the normal (b = 1.08) and positively skewed item difficulty conditions

(b = 0.49). Item difficulty estimates from RC-IRT exhibited the largest MAE in these

conditions. On the other hand, when the item difficulties were negatively skewed in

the population (b =20.49) and the latent trait was bimodal, the four estimation meth-

ods yielded very similar levels of MAE for Item 2. Finally, when the latent trait was

skewed, the pattern of difficulty parameter MAE for Item 2 was very similar to that

in evidence when the latent trait was normally distributed.

MAE results for Item 10 appear in the bottom panel of Figure 1. When u was

normally distributed and the item parameters were also normally distributed

(b = 20.24), the MAE present in estimates produced by MML, RC-IRT, and NBE

was generally comparable, with slightly higher values for MCMC. However, when

the item parameters were either negatively (b = 2.30) or positively (b = 22.30)

skewed, MAE for MCMC was much larger than that of the other methods, and RC-

IRT exhibited greater MAE than did either MML or NBE, both of which yielded

results similar to those in the normal item difficulty distribution condition. A similar

pattern of MAE was evident when the latent trait followed a bimodal distribution,

except that the value for RC-IRT was slightly higher than the others in the normal

difficulty item condition (b = 20.24), and was nearly comparable to that of MCMC

in the negative item skewness case (b = 2.30). When the latent trait was skewed, the

pattern of item difficulty MAE was similar to that when u was normally distributed.

Figure 2 contains the MSE for the item difficulty estimates by estimation method,

distribution of item difficulty parameters, and distribution of the latent trait. Panel 1

of Figure 2 includes the MSE for item difficulty parameter estimates of Item 2 for
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Figure 1. MAE of difficulty estimates for Items 2 and 10 by estimation method, latent trait

distribution, and item difficulty distribution.

674 Educational and Psychological Measurement 76(4)



Figure 2. MSE of difficulty estimates for Items 2 and 10 by estimation method, latent trait

distribution, and item difficulty distribution.
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each method, by the distributions of u and item difficulty. The pattern of results for

MSE was similar to those of MAE across the simulated conditions. In sum, when the

data were simulated to be bimodal, RC-IRT had the largest MSE values among the

methods for Item 2, with the greatest deviations for the normal item distribution case

(b = 1.08). In contrast, when the data were simulated to be skewed to some degree,

MSE was greatest for MCMC, particularly in the normal (b = 1.08) and negatively

skewed (b = 20.49) conditions. Finally, across conditions, MSE was lowest for

the skewed conditions when the item parameter distribution was positively skewed

(b = 0.49). It should be noted that in this case, the skewness of the latent trait and the

item difficulty parameters was in the same direction, that is, positive.

The bottom panel of Figure 2 contains the MSE for Item 10 by method, latent trait

skewness, and item difficulty skewness. As was the case for Item 2, the pattern of

results for MSE with Item 10 was very similar to the pattern seen in the bottom panel

of Figure 1 for MAE. Both MCMC and RC-IRT exhibited the greatest MSE when

the item difficulty parameters were positively skewed (b = 22.30). In addition, for

most of the simulated conditions MSE was largest for MCMC, followed by that of

RC-IRT. The lone exception to this pattern occurred when u was most positively

skewed, in which case RC-IRT had the larger MSE value. When the latent trait was

normally distributed, all of the methods had comparable MSE values, except for

MCMC for which it was larger when skewness = 2.5. Both MLE and NBE exhibited

the lowest, and very comparable, MSE values across all conditions for Item 10.

Indeed, particularly relative to the other methods, the performance of neither MLE

nor NBE appeared to be influenced by the simulated conditions.

The MAE and MSE values associated with each method by sample size for Items

2 and 10 appear in Table 2. From these results, it appears that across other simulated

conditions MAE and MSE both declined with increasing sample size for all the meth-

ods, for both items. This rate of decline was comparable for MLE and NBE, and

Table 2. MAE and MSE for Difficulty Estimates of Items 2 and 10 by Estimation Method and

Sample Size (N).

N

MLE RC-IRT MCMC NBE

MAE MSE MAE MSE MAE MSE MAE MSE

Item 2
250 0.16 0.04 0.25 0.12 0.26 0.09 0.16 0.04
500 0.11 0.02 0.21 0.10 0.22 0.07 0.11 0.02
1,000 0.08 0.01 0.15 0.07 0.14 0.08 0.08 0.01
2,000 0.06 0.01 0.14 0.06 0.14 0.06 0.06 0.01

Item 10
250 0.19 0.06 0.59 1.10 0.66 1.16 0.19 0.06
500 0.14 0.03 0.36 0.29 0.55 0.42 0.14 0.03
1,000 0.09 0.01 0.31 0.20 0.48 0.30 0.09 0.01
2,000 0.06 0.01 0.27 0.16 0.45 0.26 0.06 0.01
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somewhat greater for both RC-IRT and MCMC for both items. In other words, sam-

ple size was somewhat more salient for the performance of RC-IRT and MCMC than

for either MLE or NBE.

Latent Trait Estimation

In order to identify the important main effects and interactions of the manipulated

conditions with respect to the MAE for the latent trait estimates, a single repeated

measures ANOVA was used, in which the within subjects factor was estimation

method, and the between subjects factors were latent trait distribution, item difficulty

distribution, number of items, and sample size. By including all of the study condi-

tions in a single ANOVA, we were able to identify those that were significantly

related to estimation MAE, and thus more broadly understand the factors that affected

this outcome variable. The ANOVA identified the interaction of method by item dif-

ficulty distribution by number of items (F16, 496 = 8:479, p\:00001,h2 = 0:215), and

the interaction of method by latent trait distribution (F32, 496 = 6:165,

p\:00001,h2 = 0:285) as significantly related to MAE. All other terms in the model

were either not statistically significant, or were subsumed in one of these interactions.

Figure 3 contains MAE for estimates of u for each method by the distribution of item

Figure 3. MAE of latent trait estimate by estimation method, item difficulty parameter

distribution, and number of items.
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difficulty parameters and the number of items. For all methods, MAE declined as the

number of items increased, except for MCMC, on which the number of items did not

appear to have an impact. The number of items had a particularly strong impact on

MAP and MLE estimation. For 10 items, these two estimation approaches exhibited

much greater MAE than either RC-IRT or NBE. However, for 30 items MAP and

MLE yielded comparable MAE to RC-IRT across the distribution of the item diffi-

culty parameters. Latent trait MAE results were somewhat lower for NBE than for

the other approaches, regardless of the item difficulty distribution. In addition, MAP

consistently yielded lower MAE than did MLE. With respect to the impact of item

difficulty distribution on the estimation of u, MAE values were lower in the normal

condition for MAP and MLE, particularly for 10 items. For larger number of items,

the difference in MAE for these two approaches across item difficulty distributions

declined. On the other hand, for NBE and RC-IRT there were no differences in MAE

for u based on item difficulty distribution. MCMC yielded somewhat lower MAE val-

ues for negatively skewed item difficulty parameters than for the other two

conditions.

Table 3 contains MAE values for the latent trait by estimation method, distribu-

tion of item difficulty parameters, and the distribution of the latent trait. Across all

simulated conditions MCMC yielded the most biased estimates, except when both

the latent trait and the item difficulty parameters were simulated to be normally dis-

tributed, in which case all of the methods performed similarly with respect to MAE.

When the latent trait was normally distributed and the item difficulty parameters

were not, MAE for all methods increased compared to the normally distributed

Table 3. MAE for Latent Trait Estimates by Method, Item Difficulty Distribution, and Latent

Trait Distribution.

Latent trait
distribution

Item difficulty
distribution MAP MML RC-IRT MCMC NBE

Normal N 0.43 0.41 0.42 0.42 0.40
NS 0.53 0.65 0.45 0.88 0.43
PS 0.54 0.66 0.52 0.98 0.43

Bimodal N 0.52 0.63 0.71 1.61 0.40
NS 0.56 0.68 0.75 1.55 0.42
PS 0.75 0.92 0.76 1.66 0.45

Skew 1.5 N 0.42 0.51 0.40 0.52 0.39
NS 0.53 0.64 0.41 0.91 0.41
PS 0.53 0.70 0.43 1.15 0.41

Skew 2.5 N 0.51 0.62 0.39 0.80 0.40
NS 0.64 0.75 0.41 1.08 0.40
PS 0.64 0.79 0.44 1.38 0.43

Skew 3.5 N 0.75 0.81 0.41 1.34 0.40
NS 0.94 1.05 0.40 1.56 0.41
PS 1.03 1.12 0.46 1.77 0.42
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difficulty values, with the smallest increase occurring for NBE. The impact of nega-

tively versus positively skewed item difficulty parameters was similar when the

latent trait was normally distributed. When the data were generated from the bimodal

distribution, all of the methods exhibited higher latent trait MAE when compared to

the normally distributed latent trait, except for NBE, which performed similarly in

the two conditions. Again, MCMC produced the most biased u estimates, followed

by those of RC-IRT. The relationship between the skewness of u and the value of

MAE was positive for most of the estimation methods such that greater bias was

found with a more skewed distribution. The exception to this pattern occurred for

NBE, and for RC-IRT when the items were normally distributed. However, when the

items were simulated from a skewed distribution, MAE for RC-IRT was much

greater than in the normal case. In addition, for all of the methods, MAE for u esti-

mates was highest when both the latent trait and item difficulty parameters were

positively skewed.

Table 4 includes MSE values of the latent trait estimates by estimation method,

and the latent trait and item distributions. MSE for all methods was lowest when both

the latent trait and the item difficulty parameters were normally distributed. Indeed, in

this case MAP yielded the lowest MSE indicating that its estimates were closest to the

data generating values. When the item parameters were skewed, MSE for all of the

methods increased, with the smallest such increases occurring for NBE, followed by

RC-IRT. When the latent trait took a bimodal distribution, NBE consistently had the

lowest MSE, followed by RC-IRT. MSE in the u estimates increased concomitantly

with increases in the skewness of the latent trait for all of the methods except NBE and

Table 4. MSE for Latent Trait Estimates by Method, Item Difficulty Distribution, and Latent

Trait Distribution.

Latent trait
distribution

Item difficulty
distribution MAP MML RC-IRT MCMC NBE

Normal N 0.42 0.51 0.48 1.58 0.46
NS 0.89 1.09 0.50 1.81 0.50
PS 0.92 1.12 0.53 1.94 0.50

Bimodal N 0.69 0.84 0.73 4.01 0.48
NS 0.97 1.17 0.79 3.73 0.50
PS 1.48 1.80 0.88 4.17 0.56

Skew 1.5 N 0.49 0.53 0.48 2.43 0.45
NS 0.89 1.09 0.51 2.70 0.46
PS 0.90 1.07 0.52 3.12 0.51

Skew 2.5 N 0.84 1.03 0.49 2.75 0.46
NS 1.01 1.21 0.53 3.43 0.46
PS 1.10 1.32 0.55 3.99 0.50

Skew 3.5 N 1.17 1.34 0.49 3.77 0.45
NS 1.37 1.65 0.53 4.12 0.47
PS 1.41 1.68 0.56 4.47 0.52
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RC-IRT, both of which had MSE values similar to those they exhibited in the normal

distribution condition, regardless of the degree of bias. Finally, all of the methods stud-

ied here, including RC-IRT and NBE, had somewhat larger MSE values when both the

latent trait and the item parameters were positively skewed (see Figure 4).

Discussion

The purpose of this study was to examine the performance of several methods of item

and person parameter estimation for the Rasch model when the latent trait and item

difficulty parameters were not normally distributed in the population. Two goals were

central to this work: (1) investigation of a relatively new method for Rasch model

parameter estimation based on the nonparametric Bayesian paradigm and (2) further-

ing prior work with RC-IRT by including nonnormal item difficulty parameters as

well as a nonnormal latent trait. The results presented above demonstrated that when

the latent trait and item difficulty parameters were normally distributed, all of the

methods provided similarly accurate latent trait estimates, which has been demon-

strated to be the case in prior studies as well. However, again similar to prior research

results, when the latent trait was not normally distributed normal based methods such

as MML, MAP, and MCMC with normal priors exhibited more bias and higher MSE

Figure 4. MSE of latent trait estimate by estimation method, item difficulty parameter

distribution, and number of items.
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values than either RC-IRT or NBE. In turn, NBE was consistently the best performer

in terms of parameter estimation accuracy as measured by MAE and MSE. Even for

the bimodal distribution, which created problems for RC-IRT (which performed well

with a skewed latent trait), NBE was able to yield accurate person parameter esti-

mates. In terms of item parameter estimation, NBE again was always among the most

accurate, if not the most accurate method studied here, regardless of the simulation

condition. In addition, item difficulty estimation for the other methods was generally

more accurate when the item parameters were normally distributed as a whole, and

when the specific item parameter was less extreme (i.e., closer to 0). This last result

was particularly in evidence for MCMC, which had the greatest difficulty estimating

more extreme item parameter values across conditions.

Implications for Practice

The results of this study present several implications for researchers and measurement

practitioners alike. First, the NBE method shows great promise for use in estimating

both item and person parameters in the context of Rasch modeling when either or

both are not normally distributed. These results are in keeping with those in San

Martin et al. (2011), but extend on that earlier work both in terms of the types of non-

normal distributions that were used, and the inclusion of nonnormal item difficulty

parameters, per Sass et al. (2008). It must be noted, however, that despite its strong

performance in the context of the Rasch model used in this study, the NBE approach

is limited in practice because it is currently only available for fitting the Rasch model

with either dichotomous or Poisson data. San Martin et al. (2011) discuss the fact that

work is underway to extend this estimation technique to more complex IRT models,

but currently such are not available. Thus, when considering alternatives to NBE that

may be useful for nonnormal data conditions and more complex (e.g., 2-parameter

logistic or 3-parameter logistic) models, the results presented here provide further

evidence that the RC-IRT approach might be an attractive alternative when the latent

trait is skewed. In those cases, RC-IRT was nearly as accurate in terms of both item

and person parameter estimation as NBE under most conditions simulated here.

However, when the latent trait was bimodal, RC-IRT exhibited some difficulty when

estimating both item difficulty and the latent trait of interest. Thus, for more complex

models than the Rasch, this study suggests that MAP and MML may be preferable to

use with a bimodal distribution. In making this recommendation, we are very careful

to note that the current study was limited to the Rasch model. Thus, it is possible that

when estimating person and item parameters in the nonnormal conditions simulated

here, performance of the various methods will not follow the patterns seen here when

the underlying model is more complex. It is for this reason that we say the current

study only provides preliminary evidence for more complex models. Clearly, more

research needs to be done investigating the performance of these estimation methods

with more complex models. However, because one of our primary goals was to study

NBE in a wider range of conditions than has been done heretofore, we were limited
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to using the Rasch model. Nonetheless, we believe that the current results are not only

useful for those interested in using the Rasch model with nonnormal person and item

parameters, but also as an extension of prior work with RC-IRT by exploring its per-

formance with nonnormal item difficulty parameters in conjunction with a nonnormal

latent trait.

Limitations and Directions for Future Research

While the current study extends prior work in the area of IRT model parameter esti-

mation in the context of nonnormal latent trait and item difficulty distributions, there

are a number of areas in which it needs to be further developed in future work. First,

the current study is limited to the Rasch model, as noted above. While NBE is only

available for Rasch estimation as of this writing, plans exist to extend it to the 2PL

and 3PL models, so that future work should investigate its performance for these.

This study demonstrates its great promise under a variety of conditions with the

Rasch model, but it is not clear whether this will be the case for more complex IRT

models. In addition, the current work demonstrated the difficulty that MCMC estima-

tion has in most instances when the latent trait and/or item difficulty parameters are

not normally distributed, and a normal prior is used. However, it is not clear how

MCMC estimation might work were more accurate priors placed on the model para-

meters. It has been shown that another Bayes based method for estimating the latent

trait, EAP, performed optimally when the nonnormal distribution used to generate the

data was also used as the prior for u (Sass et al., 2008). While this may not be particu-

larly realistic in practice, it is possible that a researcher could examine the distribution

of observed scores from a scale, and use these as a starting point to determine the

priors for MCMC estimation. Similarly, an examination of the proportion of correct

responses to a dichotomous item could be used for a similar purpose in ascertaining

priors for item parameters. In this way, the researcher might be able to develop more

accurate priors for use with MCMC, than the normal based distributions used in this

study. Thus, future work with MCMC and nonnormal data could make use of more

accurate such priors. Given its promise, future research should also incorporate DC-

IRT (Woods & Linn, 2009) estimation with nonnormal latent trait and item difficulty

parameters. As noted above, this methodology is somewhat limited in terms of practi-

cal utility by the lack of an easy to use software interface. However, as such software

becomes available researchers will need to know how well DC-IRT performs under

conditions similar to those simulated here. Early work with this method by Woods

and Linn suggests that it is a promising approach. Finally, Sass et al. (2008) examined

the recovery of latent trait estimates for individuals with extreme values of u. Given

the dual focus on recovery of both person and item parameters for several estimation

methods, it was felt that including estimation recovery results for examinees with

such extreme estimates was beyond the scope of the current work. However, future

research should investigate the ability of each of these methods, particularly RC-IRT
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and NBE, to accurately estimate extreme values of the latent trait under the various

conditions simulated here.

Conclusions

The current study shows that under a variety of skewed distributions, as well as with

bimodal data, NBE may be the most accurate procedure available for Rasch model

parameter estimation. It proved to be most accurate in virtually all scenarios that

were simulated here, and is not difficult to use with the R library DPpackage. Thus,

researchers interested in fitting the Rasch model to data in which the latent trait and/

or the item difficulty parameters are not normally distributed may find it particularly

useful. RC-IRT is also a strong candidate for cases in which the latent trait is skewed,

but not when it is bimodal. In addition, RC-IRT has the advantage of being able to fit

the 2PL and 3PL models, which currently cannot be done using NBE. Finally, when

the latent trait or the item difficulty parameters are not normally distributed, the

researcher would be best not to use estimation methods assuming normality, specifi-

cally MAP, MML, or MCMC with normal priors. Whereas these approaches per-

formed quite well when the data conformed to the normal distribution, they each had

difficulty in the various nonnormal cases, with more problems arising under greater

degrees of nonnormality, particularly skewness, as has been shown in prior work.
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