{: SCISPACE

formerly Typeset

@ Open access - Journal Article -« DOI:10.1021/ACS.JPCLETT.7B01015

Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and
Opportunities for Spintronics and Spin-Orbitronics. — Source link [

Mikael Kepenekian, Jacky Even

Institutions: University of Rennes, Foton Motor

Published on: 11 Jul 2017 - Journal of Physical Chemistry Letters (American Chemical Society)

Topics: Spintronics

Related papers:

« Importance of Spin—Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications
» Rashba and Dresselhaus Effects in Hybrid Organic—Inorganic Perovskites: From Basics to Devices

» Rashba Spin—Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3

» Giant Rashba Splitting in CH 3 NH 3 PbBr 3 Organic-Inorganic Perovskite

« Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-
3fnkt24uds


https://typeset.io/
https://www.doi.org/10.1021/ACS.JPCLETT.7B01015
https://typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-3fnkt24uds
https://typeset.io/authors/mikael-kepenekian-5u292iosws
https://typeset.io/authors/jacky-even-2zadrp89h8
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/institutions/foton-motor-2asqnwfn
https://typeset.io/journals/journal-of-physical-chemistry-letters-1uht5hki
https://typeset.io/topics/spintronics-65e8x30h
https://typeset.io/papers/importance-of-spin-orbit-coupling-in-hybrid-organic-4l5msbdyqo
https://typeset.io/papers/rashba-and-dresselhaus-effects-in-hybrid-organic-inorganic-2kdm0p225j
https://typeset.io/papers/rashba-spin-orbit-coupling-enhanced-carrier-lifetime-in-1f9m4xo55e
https://typeset.io/papers/giant-rashba-splitting-in-ch-3-nh-3-pbbr-3-organic-inorganic-1zzd1ceoc1
https://typeset.io/papers/organometal-halide-perovskites-as-visible-light-sensitizers-4htlgy1ikw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-3fnkt24uds
https://twitter.com/intent/tweet?text=Rashba%20and%20Dresselhaus%20Couplings%20in%20Halide%20Perovskites:%20Accomplishments%20and%20Opportunities%20for%20Spintronics%20and%20Spin-Orbitronics.&url=https://typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-3fnkt24uds
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-3fnkt24uds
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-3fnkt24uds
https://typeset.io/papers/rashba-and-dresselhaus-couplings-in-halide-perovskites-3fnkt24uds

\
\

HAL

open science

Rashba and Dresselhaus Couplings in Halide
Perovskites: Accomplishments and Opportunities for
Spintronics and Spin-Orbitronics

Mikael Kepenekian, Jacky Even

» To cite this version:

Mikael Kepenekian, Jacky Even. Rashba and Dresselhaus Couplings in Halide Perovskites: Accom-
plishments and Opportunities for Spintronics and Spin-Orbitronics. Journal of Physical Chemistry
Letters, American Chemical Society, 2017, 8 (14), pp.3362-3370. 10.1021/acs.jpclett.7b01015 . hal-
01551094

HAL Id: hal-01551094
https://hal.archives-ouvertes.fr /hal-01551094
Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.archives-ouvertes.fr/hal-01551094
https://hal.archives-ouvertes.fr

Page 1 of 29

Rashba and Dresselhaus Couplings in Halide

OCoONOOORWN =

1 Perovskites: Accomplishments and Opportunities

15 for Spintronics and Spin-orbitronics

19 Mikaél Kepenekian®' and Jacky Even**

22 Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS - Université de Rennes 1, France,
24 and Fonctions Optiques pour les Technologies de I’ Information (FOTON), INSA de Rennes,
26 CNRS, UMR 6082, France

29 E-mail: mikael.kepenekian@univ-rennes1.fr; jacky.even@insa-rennes.fr

55 *To whom correspondence should be addressed

56 Tnstitut des Sciences Chimiques de Rennes, UMR 6226, CNRS - Université de Rennes 1, France

57 Fonctions Optiques pour les Technologies de I'Information (FOTON), INSA de Rennes, CNRS, UMR
58 6082, 35708 Rennes, France



OCoONOOORWN =

Abstract

In halide hybrid organic-inorganic perovskites (HOP), spin-orbit coupling (SOC) presents
a well-documented large influence on band structure. However, SOC may also present more
exotic effects, such as Rashba and Dresselhaus couplings. In this perspective, we start by
recalling the main features of this effect and what makes HOP materials ideal candidates for
the generation and tuning of spin-states. Then, we detail the main spectroscopy techniques
able to characterize these effects and their application to HOP. Finally, we discuss potential
applications in spintronics and in spin-orbitronics in those non-magnetic systems, that would
complete the skill set of HOP and perpetuate its ride on the crest of the wave of popularity

started with optoelectronics and photovoltaics.
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The continuous success of halide hybrid organic-inorganic perovskites (HOP) as solar cell
active materials follows several paths. The main activity after 2012 consisted in the search for
improvement of the power conversion efficiency (PCE) in typical laboratory configuration (small
area, controlled environment). It led to an unprecedented growth of the PCE that has repeatedly
reached record values over 22%. > Meanwhile, another branch of HOP studies have been focused
on improving the stability of those cells unfortunately sensitive to light and moisture.>* Opting for

2 various forms, e.g. layered HOP,>~7 or by encapsulating

various mixtures of halide and cations,
the materials, the stability went from few hours to several thousands hours. Encouraged by these
breakthroughs, a third path has pushed the area of hight performance solar cells from less than
1 cm? up to 50 cm? with a PCE of 12.6%,® bringing the perovskite solar cells even closer to
commercial use.

A common point to all these record HOP materials is the presence of lead. Even though a
large effort has been and still is dedicated to the search for efficient lead-free HOP materials,®!°
their current record PCE remains around 6.4%.1! It is certainly unfortunate for solar cells because
of the known toxicity of lead,!? even though solutions have early been proposed,!>!* however,
due to the large spin-orbit coupling (SOC) exhibited by Pb, it represents a great opportunity for
optoelectronics, spintronics and spin-orbitronics applications where undesired heavy elements can
find a place (e.g. arsenic, cadmium).

The first identified effect of SOC in HOP materials has been a surprising giant splitting of

15,16 jnstead of the usual valence band splitting observed in classical semicon-

conduction bands,
ductors. !’ It has a strong influence on the band gap energy as well as on the effective masses and
the oscillator strength of the optical transitions at the band gap. The change of the symmetry of
the bottom of the conduction band with SOC has also more subtle effects, such as a change of the
selection rules for the allowed collision processes, either Auger-like effects'® or electron-phonon
processes.'? In addition, Bychkov-Rashba (a.k.a. Rashba) and Dresselhaus couplings, related to
20-23

the interplay between time-reversal symmetry and the lack of spatial inversion symmetry,

have been predicted as early as 2013 in HOP materials by computational investigations based on
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X-ray structures.?*3C It has recently been demonstrated experimentally by angle-resolved photoe-
mission spectroscopy (ARPES) on a single crystal of methylammonium lead bromide compound
(CH3NH3PbBr3),3! exhibiting a coupling of the same order of magnitude than the record set by
BiTel. 3233

Several groups working in the field of halide perovskites contributed significantly in the last
years toward a better understanding of their optoelectronic properties. However, various lattice in-
stabilities and symmetry breaking are observed experimentally in this new class of semiconductors,
affecting the overall performances of devices. These instabilities strongly depend on the chemical
composition of the pure materials and alloys, as well as the device architecture and growth proce-
dure. Among these instabilities, the importance of local or extended inversion symmetry breaking
leading in turn to Rashba-Dresselhaus effects is still a matter of debate and deserve deeper experi-
mental investigations.

In this perspective, we start by a brief recall of the main features of Rashba and Dresselhaus
couplings as well as of the ways to characterize the effects both experimentally and computation-
ally. We can then focus on the state-of-the-art in HOP as well as the remaining challenges in the
characterization or design of the couplings in those materials. We then inspect the possible impact
on photovoltaic performances. Finally, we raise the question of future applications in spintronic

and spin-orbitronic devices.

Main features of Rashba and Dresselhaus couplings and occurences in HOP

A system presenting a large SOC and a lack of centrosymmetry experiences an effective magnetic
field that drives a spin splitting and can lead to spin polarization even in non-
magnetic materials.?> This phenomenon has been first described by Dresselhaus in zinc-blende
semiconductors,?? then by Rashba in wurtzite structures.>* Bychkov and Rashba later generalized
the observation to quasi-2 dimensional systems.?! Recently, Zhang ef al. have shown that spin
splitting can still occurs in crystals presenting centrosymmetric bulk groups, if the site point groups

do not have inversion symmetry (e.g. NaCaBi).>
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Figure 1: Schematic representation of the effect of SOC in the absence of centrosymmetry. (a) Band
dispersion in the absence of SOC (b) Same including SOC. Degenerated bands now split into inner (E.)
and outer (E_) branches. Typical spin textures in the case of (c) pure Rashba, and (d) pure Dresselhaus
couplings.

The strength of the effect is characterized by a parameter «, ratio between the amplitude of
the band splitting and the corresponding displacement away from the high symmetry point, o0 =
AE /2kg.

The main difference between both effects lies in the origin of the non-centrosymmetry. In the
case of the Rashba effect, the asymmetry is a site inversion asymmetry (SIA), whereas the Dres-
selhaus effect is related to the space group of the crystal, and is often described as a bulk inversion
asymmetry (BIA). Both effects can be observed separately or simultaneously and lead to typical
spin textures .22 A more detailed and more mathematical description of the
Rashba and Dresselhaus couplings is given for instance in references 22, 29, 35, 36 and refer-
ences herein. These effects have been investigated at length in classical semiconductors, either
in the form of heterostructures or in the case of quantum wells. Later, examples from bulk lay-
ered materials have also exhibited large splitting, so have metal and topological insulator surfaces.
These observations have already been recalled in several review articles.?36-43
Lead- and tin-based HOP possess a natural talent for Rashba and Dresslhaus couplings with a

large SOC induced by Pb?> and Sn”* ions and a diverse zoology of crystal structures, including

many deprived of centrosymmetry. It should be pointed out, that all the reported structures for lead,
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Figure 2: A few structural phase transitions observed in halide perovskites starting from the reference cubic
phase Pm3m.

tin or germanium halide perovskites are non-magnetic leading to a time-reversal symmetry of the
electronic band structure. For that reason, possible spintronic applications of halide perovskites
belong to the field of spin-orbitronics.*! However, thanks to the giant SOC found in lead and tin
compounds, large spin effects can be expected as soon as inversion symmetry can be broken.>*
The variety of structures can be described starting from the reference phase®* Pm3m, observed
as the high temperature phase of several HOP.*>*8 From this highly symmetrical structure, dif-
ferent phase transitions can occur being antiferrodistorsive, ferroelectric or antiferrodistorsive and
ferroelectric . If the centrosymmetrical groups Pnma and 14 /mcm have been proposed
as low and room temperature structures of the notorious CH;NH;PbI3,%° the same compound has
been refined as well in the polar P4mm group.’>° However, the existence of a polar structure
in CH3NH3PbI; seems to contradict the classical criterion on the Goldschmidt’s tolerance factor

S1-53 More ferroelectric

(t > 1) for the existence of ferroelectric phases in perovskite materials.
structures have been proposed for various metal, cation or halogen, among which one can find
simple examples in Amm2, R3m or Cmc2;.27#73034-36 For 3D materials containing Ge, the toler-
ance factor is more compatible with the onset of a polar distortion, and a sizable SOC may also
be present, especially with the contribution of heavy halogen atoms.>’ More complex cases may
correspond to combinations of both antiferrodistortions and ferroelectric behavior. More, due to
the inherent instability of the halide perovskite lattice in most cases, local symmetry breaking may

be spread in the material, at the boundaries between grains or at the surfaces.

The wealth of HOP structures available from crystallographic databases has motivated nu-
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merous computational investigations that have been the first to propose the potential occurence
of Rashba and/or Dresselhaus splitting in this class of materials.”-?4-27-2%-30-38 The computational
approach, whether it relies on density functional theory (DFT) with or without hybrid function-

als, 2% GW approximation, 60

or semi-empirical modeling (e.g. k- p or tight-binding), constitutes
a precious tool, combined with symmetry analysis, in the characterization of SOC-induced spin
splittings. Not only is it possible to draw the dispersion of bands and thus, the band splitting away
from a high symmetry point , one can also plot the corresponding in-plane
spin texture around the forbidden band and characterize the band splitting as
a Rashba, a Dresselhaus, or a mixed Rashba/Dresselhaus splitting. In the latter case, it is then
possible to assess the relative strenght of both. This has, for instance, been performed in the case
of CH(NH,),Snl3 where Rashba and Dresselhaus effects have been evaluated to oz = 0.50 eV-A
and op = 2.59 eV-A, respectively. 2727

Many o values have been predicted on various materials. Outside of structural configurations
arising from molecular dynamics (MD) calculations (vide infra), the record for a structure deduced
directly from the refinement of diffraction data, is hold by the P4mm structure of CH3;NH3Pbls
with a pure Rashba coupling and a parameter o larger than 3.70 eV.A for both the valence and
conduction bands.?’ Before 2016, the largest value ever measured for SOC-induced couplings was
a = 3.80 eV-A for BiTeI*233 and o = 3.05 eV-A for Bi/Ag(111).°!

However, one should be careful with those values as they strongly rely on the choice made for
the starting symmetry of the crystal structure, whose determination by X-ray diffraction is not al-
ways unequivocal. HOP present an additional difficulty for periodic DFT calculations. Indeed, the
orientations of organic cations, e.g. , CH3NH; affect significantly the polarization and therefore
the amplitude of the splitting and they are known to undergo fast reorientations at room temper-
ature. 3" Therefore, the initial choice on the organization of organic cations impose an important
bias on the results. A way around this technical issue is to substitute the dipolar cation by an

inorganic cation such as Na™ or Cs™'. Such a strategy has been shown to preserve the band struc-

ture near the Fermi level. Snapshots of local polar structures extracted from MD simulations or
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local structure minimizations may support the idea of dynamical Rashba-Dresselhaus effects. The
underlying assumption is that the crystallographic structures deduced by using classical diffrac-
tion techniques result from time averaging and do not necessarily lead to the correct prediction for
carrier relaxation or recombination processes.

Among the examples of HOP expected to show a Rashba or Dresselhaus splitting, a peculiar
example can be found in layered perovskites.”-6%% Indeed, these systems are, in many ways, very
similar to the heterostructures in which the Rashba and Dresselhaus effects are commonly found.
In addition many examples of layered HOP are ferroelectrics. Therefore, those structures have
the potential to exhibit large splittings. Indeed, several compounds belong to polar groups and
have been scrutinized.”->?>66465 One should notice that the above examples have a symmetry axis
perpendicular to the staking direction. As a consequence, the Rashba effect is incomplete, i.e.
the band splitting occur in only one direction of the Brillouin zone.”?? Surprisingly, in the large
collection of layered structures, to the best of our knowledge, none presents an absence of inversion
symmetry and a C; axis (or higher order) in the stacking direction. Let us note that because the
perovskite layers in layered structures can be non-centrosymmetric, those systems are promising
structures where the hidden spin polarization proposed by Zhang et al. could be observed.

Manifestations of spin effects in HOP are not limited to theoretical work. In 2015, a first study
using pump-probe setups with circularly polarized light on thin films of CH3NH3Pbl3z presented
evidence for spin lifetime of about 7 ps.°® But the first direct evidence of Rashba splitting has been
revealed by Niesner and coworkers who performed angle-resolved photoemission spectroscopy
(ARPES) on single crystals of CH;NH;3PbBr3.3! ARPES is the most direct method to obtain in-
formation about the dispersion of the top valence bands.®” This is performed by measuring the
kinetic energy and the exit angle of electrons emitted following a UV photoexcitation
In addition, spin-resolved measurements can lead to the description of spin textures.3>67-68 This
straightforward technique requires however a clean single crystal sample.

Measurements on CH;NH3PbBr3 have been performed above and below the orthorhombic/cubic

transition on cleaved crystals of 5 mm, exposing the (001) surface.?!' Surprisingly, at both tempera-
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(a) ARPES (b) ARIPES (c) RILS (d} pump-probe setup

laser

signal

spectrometer

{e) Shubnikov-de Haas / WAL {f) CPGE

saurce drair

Figure 3: Schematic representation of the experimental setup of (a) ARPES and (b) ARIPES. (c) Schematic
representation of RILS experiment in quasi-backscattering geometry (left) and spin-flip intrasubband tran-
sitions leading to a signal with two peaks shifted by AE (right). The dotted line marks the position of the
Fermi energy. (d) Setup for pump-probe experiments with a circularly polarized pump signal and a linearly
polarized probe signal. Rashba and Dresselhaus effects are quantified by applying an additional external
field being either electric or magnetic. (e) Scheme of a Hall bar for Shubnikov-de Haas or WAL studies.
Oscillations in the resistivity due to edge states are monitored with respect to the amplitude of the transverse
magnetic field B and for various gate voltages. Schemes of (f) CPGE, (g) SGE, and (h) MPGE. Photogal-
vanic effects rely on the spin-to-charge conversion allowed by the Rashba-Edelstein effect.

tures, a large splitting is observed with Rashba parameter o of 7 £ 1 eV-Aand 11+4eV-A whereas
bulk materials are expected to exhibit centrosymmetric Pnma and Pm3m structures, respectively.
This is a well-known drawback of ARPES measurements: it is surface-sensitive. In this case,
the loss of translational symmetry imposed by the presence of a surface solely can lead to a symme-
try breaking sufficient to explain the occurence of Rashba spin splitting in these centrosymmetric
groups as for instance in the case of metallic surfaces.3® One should also keep in mind that HOP
are rather soft materials and tend to reorganize themselves with low energy costs. In particular,
scanning tunneling microscopy (STM) performed on single crystals of CH;NH3PbBr3 has shown
the presence of two surface reconstructions, which might lead to surface polar domains and there-
fore an enhanced splitting. %70 Another possible explanation may rely on the strong anhamonicity
of the perovskite bulk lattice, leading to large atomic motions and a dynamical effect related to
polar symmetry breaking. Even all caveats taken into account, this first experimental evidence for
Rashba splitting remains an important motivating force as the measured amplitude of the coupling

is much larger than the previous record set by BiTel using the same approach. Over the years,

9
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many spectroscopies apart from ARPES and computational approaches have been developed to
assess SOC-induced splittings for surfaces and heterostructures, and are waiting to be applied to
HOP. In the following, we recall some of the main spectroscopies used to unravel the presence of

Rashba and Dresselhaus effects.

Characterization of Rashba and Dresselhaus couplings

ARPES is extremely powerful to describe valence states. However, HOP are characterized by a
strong SOC mostly effective in the conduction bands.'® Therefore, angle-resolved inverse pho-
toemission spectroscopy (ARIPES) would describe the part of the band structure where SOC is
the most effective. In ARIPES, a beam of electron with fixed kinetic energy is used to emit pho-
tons that are detected at a fixed angle. The reciprocal space is probed by modifying the incidence
angle of the electrons .T1=13 As a more accurate alternative, one would turn to time-
resolved-ARPES (trARPES) experiments, in which circularly-polarized pump pulses are used to
access excited states.”* Chemical engineering of the Rashba-Dresselhaus effects and SOC is pos-
sible through metal substitution (Pb, Sn, Ge). The ARIPES technique may provide a nice solution
to probe the induced changes in the conduction band. More, the general character of the optical
transition (direct versus indirect) still deserves further investigations.

In the 1990s, Jusserand and coworkers have shown that resonant inelastic light scattering
(RILS) could be used to probe not only the SOC and asymmetry-induced spin splittings but also to
assess the relative strength of Rashba and Dresselhaus effects.”>’ Measurements are performed
in quasi-backscattering geometry with crossed linear polarizations of the laser and
scattered light (depolarized geometry). It relies on the spin-flip intrasubbands transitions between
the inner and outer branches .77 Thanks to the scattering angle ®, a wave vector q can
be transferred parallel to the plane of the sample. In the presence of a spin splitting, it leads to a
double peak feature related to the energy splitting at the Fermi level. Interestingly, by acting on
the n or p doping of the sample, it has been possible to probe the splitting either in the valence or

conduction band.”>~7"8

10
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However, such measurements require the Raman spectra to be conducted at very low tempera-
ture (T =~ 5 K). In those conditions, HOP exhibit a stable exciton. For instance, in CH3NH3Pbls,
the binding energy of the exciton at low temperature is found to be around 50 meV.”® The inter-
play of the exciton with the Raman signal makes the interpretation of spectra even more delicate.
Such measurements require a careful tuning of the excitation energy to avoid anomalous resonance
effects occurring due to the strong resonance with excitons. 8

Pump-probe optical measurements have proven to be an effective tool to investigate the spin
properties of semiconductors. The absorption of circularly polarized photons initiates a population
of spin-polarized, e.g. along z, holes or electrons. Their evolution is probed by a delayed linearly
polarized pulse . The measurements therefore provide information on the longitudinal
relaxation time.3!

An important feature of both Rashba and Dresselhaus effects is that the combination of time-
reversal symmetry, SOC and the lack of inversion symmetry produces a spinor splitting,2* but not
pure spin states.?’ The spin continuously processes as for example in the case of a spin-valve af-
ter spin injection.?? In the usual asymmetric 2D electron gases, e.g. quantum wells, the dominant
mechanism for spin relaxation is thus the spin precession driven by the effective magnetic field gen-
erated by the spin splitting, i.e. the D’yakonov, Perel’ and Kachorovskii (DPK) mechanism, 8283
with phase changes associated to carrier scattering events as in GaAs. More, the Rashba effect
in bulk HOP is linear and is thus expected to play a similar role as the Dresselhaus effect, when
they are both allowed by symmetry. Additional spin relaxation mechanisms may be important for
HOP,3* among them the Eliott-Yafett (EY) mechanism present in centrosymmetric semiconduc-
tors like Si.35-8¢ In HOP, in the absence of the Rashba-Dresselhaus effects, the SOC does not split
the spin-up/down states in the valence band, but the coupling with other states may nevertheless
induce spin flipping as observed in the conduction band of Si. It will be of course necessary to
gauge the respective importance of DPK and EY spin relaxation mechanisms in HOP. Finally let

us mention the Bir-Aronov-Pikus (BAP) mechanism,®” observed for electrons in heavily p-doped

classical semiconductors and related to spin-flipping associated to enhanced exchange interaction

11
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between electron and holes. The same situation due to reverse band ordering should affect the
spins of non-equilibrium holes by exchange interactions with electrons in heavily n-doped HOP.
However a strong carrier doping is only observed up to now of the p-type in tin compounds.
Several flavors of the pump-probe setup have been proposed to address specifically the case
of Rashba and Dresselhaus effects occurring either separately or simultaneously. The working
principle of those approaches is to modify the splitting through an external stimulus being a static
electric field, 8% a transverse static magnetic field (Hanle effect) 90.91 o in transmission with an

oscillating magnetic field (time-resolved Faraday rotation). %>

All these alternatives are possible in
HOP, since external electric and magnetic fields have already been applied with success on HOP
to investigate various effects such as the influence on excitons.

A different set of experiments rely not solely on optical activities but also on the transport
properties of the sample. The orignal inspections of the asymmetry induced spin splitting were
performed through the analysis of the beating pattern of Shubnikov-de Haas oscillations observed
thanks to a Hall bar setups .9394 However, this approach is not deprived of ambigu-
ities because of inhomogeneities in the concentration of carriers or of the occupation of multiple
subbands.

An alternative path, using the same setup, is to take advantage of the weak antilocalization
(WAL) phenomenon. At low temperature and for weak magnetic fields applied perpendicularly
to the 2D gas, a magnetoresistance occurs, caused by the weak localization of electrons as a con-
sequence of constructive interferences. The latter are suppressed by the precession of spins due
to spin-orbit coupling leading to a weak antilocalization and a positive magnetoresistance.” By
varying the value of the magnetic field and the gate voltage, it is then possible to determine the
strength of Rashba and Dresselhaus effects. This strategy has been used with success on various

heterostructures. ?>—98

Its applicability to HOP will rely probably on the the growth of clean single
crystal samples with well-defined facets, as well as a better understanding of the surface defects
and reconstructions.

Another set of experiments giving access to the Rashba and Dresselhaus effects is based on the

12
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Rashba-Edelstein and inverse-Rashba-Edelstein effects, i.e. the charge-to-spin and spin-to-charge
conversions. °1%0 Let us mention here the circular photogalvanic effect (CPGE), the spin-galvanic
effect (SGE) and the magneto-gyrotropic photogalvanic effect (MPGE). The CPGE
uses a circularly polarized light to generate an unbalanced occupation in momentum space
of the excited carriers because of the band splitting and spin textures induced by the Rashba
and/or Dresselhaus effects. Y7193 In the SGE , the electric current is caused by the
out-of-equilibrium spin polarization of the system. It can be created either by the injection of
a spin-current or by optical excitation. '93-19 Both methods have been used in InAs and GaAs
heterostructures to determine the relative amplitude of Rashba and Dresselhaus effects.'® The
MPGE uses a normal incident light excitation in addition to an in-plane magnetic field to generate
the photocurrent 107,108
The application of photogalvanic effects to HOP has been theoretically examined by Li and
Haney based on DFT calculations and drift-diffusion equations. !°>11% One should note they used
a structure exhibiting a ferroelectricity that is not predicted experimentally from the known crys-
tallographic structures. Their investigations show that the generation of photo or spin currents are
is of similar efficiency than with classical semiconductors and therefore CPGE, SGE and MPGE
are promising tools to study the asymmetry-induced band splitting in HOP. Such an effect was

observed in CH3NH3Pbl; as reported in a recent work from Niesner and coworkers. I e opens a

new perspective for experimental developments along this line.

Effect on carrier lifetime

Avoiding carrier recombination and thus enhancing carrier lifetime, while preserving efficient
electron-hole separation after light excitation, is a key factor for optimal photovoltaic perfor-
mances, especially reaching very high open circuit voltages (V,).!'> When a Rashba or Dressel-
haus effect is observed on the valence and/or conduction band one can expect effect on the lifetime
of the carriers. Indeed, it has been proposed that the band splitting resulting of these effects would

enhance the lifetime of charge carriers because of spin-forbidden transitions'!3 and the resulting

13
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indirect band gap. !14115

The Rashba-Dresselhaus effect was proposed initially for hybrid perovskites on the basis of
refined crystallographic structures exhibiting an interplay between lack of inversion symmetry,
a strong SOC and time reversal symmetry.>*2° More recently, it was proposed that the cen-
trosymmetry breaking may rather occur on a local scale through dynamical fluctuations of the
structure.3%113-116 Hence, the Rashba-induced mechanism preventing carrier recombination is
suspected to occurs also in structures with centrosymmetry, e.g. the room-temperature phase of
CH3NH3Pbl3. These theoretical propositions are based on the Born-Oppenheimer approximation
and electronic band dispersions computed within a classical Brillouin zone representation for snap-
shots of local structures obtained by DFT-based molecular dynamics and structural minimizations.
These dynamical effects are expected to have a direct impact on the effective carrier lifetime and
mobility, and in a schematic picture are related to the coexistence of an indirect and a direct op-
tical transitions. The Born-Oppenheimer approximation is justified on account of the observed
timescales for the corresponding structural fluctuations, but more detailed atomistic simulations
should address in the future the local nature of the lattice distortions and their impact on the local
electronic density, as well as the anharmonicity of atomic motions and their impact on the carrier
processes. !> This would help discussing properly the propositions related to dynamical Rashba
effects with more classical propositions dealing with localizations of carriers on shallow defect

states. 117

Applications in spintronics and spin-orbitronics

Systems ruled by Rashba and Dresselhaus effects have been used to design devices able to (1)
generate a spin-current, (ii) detect a spin-current, and (iii) modulate a spin-current.‘“"‘2 The gen-
eration of a pure spin-current, i.e. the transport of spins but not of charges, known as the spin
Hall effect (SHE) has been extensively studied. 106.118 Ty addition to the extrinsic mechanism, an
intrinsic mechanism rely on the charge-to-spin conversion allowed by the Rashba-Edelstein ef-

fect.”>119 In the case of a Rashba coupling, spins are oriented perpendicularly to the momentum.

14
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When an electric field is applied, e.g. along x, the Fermi surface is displaced and electrons ex-
perienced a modified effective magnetic field which tilts the spins, creating a spin-current along
y . The SHE has been one of the main target of spintronics, with the notable realiza-
tion of a all-semiconductor SHE transistor. 'Y The practical realization of similar devices in HOP
will depend on the quality and processability of crystal samples, as well as the stability of the
spinor-states. Deep analyses of the possible spin relaxation mechanisms mentioned before are thus

required. The reciprocal mechanism that converts spin-current into charge-current is known as the

drain

Figure 4: (a) Scheme of the Rashba-Edelstein effect. In the presence of a Rashba coupling, spins are
oriented perpendicularly to the momentum (left). When an electric field is applied along x (right), the Fermi
surface is displaced by Ak and spins tilt, creating a spin current along y. (b) Scheme of a Datta-Das spin-FET.
The gate voltage controls the precession of spins between the source and the drain by tuning the amplitude
of the Rashba coupling.

inverse Rashba-Edelstein effect'%’ and is responsible for the SGE . The injection of
a spin-current generates a charge current that can be detected. This phenomenon completes the
toolbox necessary for spintronic devices (from charge to spin back to charge). It has recently been
achieved using perovskite oxides. %!

Because, Rashba and Dresselhaus couplings are sensitive to external electric fields, they can
be used to manipulate spins. It has been proposed to use the electric control of spins to build a
Stern-Gerlach spin-filter without ferromagnetic materials. !> An important contribution has been
delivered by Datta and Das, who proposed to use this property to built a spin field effect transis-

tor (spin-FET, ).123 Because spins precess under the influence of the effective magnetic



OCoONOOORWN =

field induced by the Rashba/Dresselhaus effects, and because their amplitude can be tuned by a
gate voltage, one can control the pace of the spin precession and finally control the orientation
of the spin when it reaches drain.'?* The electric control over Rashba effect in the case of HOP
has been proposed based on computational investigations.?*3% In the low-temperature centrosym-
metric Pnma phase the Rashba coupling is naturally null, but a gate voltage of 1.25 V leads to
a weak coupling around o = 0.1 eV-A enough to contrast with the absence of spin precession

when the gate voltage is not applied.

Leppert and coworkers predicted that in the P4mm phase,
a coupling of nearly 1 eV-A could be obtained with a feasible gate voltage of 4 V over a 200 nm
thick thin film.3® A limiting factor for the design of spin-FET is the spin relaxation that should
allow the spin to travel from one end to the other of the device. At the time we are writing this
perspective, only one measurement of spin lifetime has been reported. Pump-probe experiments
have been performed on polycristalline thin films resulting in a spin relaxation lifetime of around
7 ps for electrons and nearly 1 ps for holes.%® As suggested by the authors, improvement over
the quality of the sample would greatly affect these figures. Let us conclude on the possibility to
manipulate individual spins, not with magnetic fields, but with gigahertz electric fields. Setups
have been designed in architectures of GaAs/AlGaAs and InAs ruled by a Rashba and Dresselhaus
couplings. 123126 The electric field can initialize a state, manipulate and read it. Therefore, a fully
electrical manipulation of spin qubits is achieved. This possibility would require for example fur-

ther investigations of spin-effects in HOP nanostructures. Available information on this topic are

indeed scarce up to now in the available literature.

Conclusion and perspectives

In this perspective, we have recalled the main features of spin-orbit effects in non-centrosymmetric
structures, a.k.a. Rashba and Dresselhaus effects, and explained why the observation and the engi-
neering of these effects could be particularly attractive in HOP. After several computational works
predicting the occurrence of such effects in HOP, not only has clear experimental evidence been

provided, but CH3NH3PbBr3 now detains the record for highest Rashba parameter ever measured.
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This first experimental result and the recent progress in HOP crystal growth should greatly mo-

tivate complementary experimental works, whether for the characterization of couplings or their

exploitation for devices. After having raised the interest of optoelectronics and microelectronics

30 years ago, and being the rising star of photovoltaics, HOP could be on the verge of making its

great entrance in spintronics and spin-orbitronics.
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