
RASP:  A General Logic Synthesis System for SRAM-based FPGAs

Jason Cong and John Peck
Department of Computer Science

University of California, Los Angeles, CA 90024

Yuzheng Ding
AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract

In this paper, we present a general synthesis
system for SRAM-based FPGAs named RASP.  RASP
consists of a core with a set of synthesis and optimization
algorithms for technology independent logic synthesis and
technology mapping  for generating generic look-up tables
(LUTs), together with a set of architecture-specific
technology mapping routines to map the generic LUT
network to programmable logic blocks (PLBs) for various
SRAM-based FPGA architectures. Via a set of design
representation converter routines, these architecture-
independent and  dependent synthesis algorithms are easily
linked,  and the entire system is seamlessly integrated into
the design flow of commercial FPGA design systems. As a
result, RASP can produce highly optimized designs for
various SRAM-based FPGA architectures, and can be
quickly adapted for new SRAM-based FPGA architectures.
We compare RASP performance with that of several
commercial synthesis systems on the MCNC logic synthesis
benchmarks and a video compressor/decompressor.  For
almost all cases, RASP produces mapping solutions with
significantly smaller critical path delay after place and route
than current commercial synthesis systems.

1. Introduction

The RASP (RApid System Prototyping) system is a
general synthesis and mapping system for SRAM-based
FPGAs developed recently at UCLA.  The development of
RASP was motivated by the following two observations:

(1) The wide-spread use of the FPGA technology
for rapid ASIC designs and rapid system prototyping has led
to an exponential growth of the FPGA market, in which
SRAM-based FPGAs have the major share.  There are
several SRAM-based FPGA vendors, who introduce multiple
new FPGA architectures each year.  The existing SRAM-
based FPGA products include the Xilinx XC3000, XC4000,
and XC5000 families [Xi94a], the Altera FLEX8000 and
FLEX10000 families [Al95], AT&T 3000, ORCA1C, and
ORCA2C families [AT&T95].

Many new architectures are always under development.  The
programmable logic blocks (PLBs) in various FPGA
architectures are often different, in terms of the number of
LUTs, their sizes, their connection patterns, and other glue
logic in each type of PLB.  As a result, it becomes an
increasingly important yet challenging task for the EDA
industry to develop high-quality synthesis and mapping tools
for each FPGA architecture.   There is a strong need for a
general synthesis system for SRAM-based FPGAs which can
be easily and effectively  adapted to various FPGA
architectures.

(2) Much work has been done on architecture
independent LUT-based synthesis and mapping for particular
optimization objectives, such as area minimization [FrRC90,
MuNS90, Ka91a, Wo91a, LaPV93, SaTh92], delay
minimization [FrRV91b, MuSB91b, ChCD92, CoDi94a],
routability [ScKC92], or a combination of several objectives
[CoDi94b, CoHw95a].  Although many of these algorithms
have reported very encouraging results in terms of
optimizing the LUT networks, most of them have not been
tested on various real FPGA architectures.  It would be
interesting to know how effective these algorithms are when
applied to each specific FPGA architecture.  Therefore, there
is a strong need for a general framework to evaluate each
LUT-based synthesis and mapping algorithm on different
FPGA architectures.

In order to fulfill these two needs, RASP was
developed as a general synthesis system for SRAM-based
FPGAs.  It consists of a core with a set of synthesis and
optimization algorithms for technology independent logic
synthesis and technology mapping for generic look-up table
(LUT) network generation, together with a set of
architecture-specific technology mapping routines to map the
generic LUT network to PLBs in various SRAM-based
FPGA architectures. Via a set of design representation
converter routines, these architecture-independent and
dependent synthesis algorithms are easily linked,  and the
entire system is seamlessly integrated into the design flow of
commercial FPGA design systems. As a result, RASP can
produce highly optimized designs for various SRAM-based
FPGA architectures, and can be quickly adapted for new
SRAM-based FPGA architectures.  Also, RASP provides a
flexible and complete development framework in which
various architecture independent LUT synthesis algorithms
may be coupled with different architecture-specific
algorithms which map LUTs into PLBs.  New LUT synthesis
and mapping algorithms can be easily integrated into RASP
and put to trial against different kinds of SRAM-based
FPGAs.  RASP also provides the flexibility for



experimentation at each sub-step of the synthesis and
mapping process, which is useful in tuning the optimization
for a particular set of objectives.  We have successfully
incorporated several FPGA synthesis and technology
mapping algorithms, including FlowMap [CoDi94a],
FlowMap-R [CoDi94b], FlowSYN [CoDi93b], and CutMap
[CoHw95a], into RASP as the LUT mapping engines; we
have also developed heuristics for PLB mapping, including
ones for the Xilinx XC3000 and XC4000 FPGA families.
RASP has been successfully integrated with the design flow
of commercial synthesis systems, such as XACTTM [Xi94a]
and MaxPlusIITM [Al95] .

Fig. 1: RASP Framework Overview

2. Overall System Architecture

The overall framework of RASP is shown in Fig. 1.
We will illustrate it using a particular application, namely
synthesis and mapping for Xilinx XC4000 Family FPGAs, in
the following sections. The entire process is automated
through use of a shell script which may be modified to
accommodate changes in process flow for experimentation.
In the framework, exchangeable modules can be assigned by
the user via system parameters whereas the fixed modules do
not change.  The user may also modify parameters for both
exchangeable and fixed modules to control their
performance.

A vendor provided netlist translator or HDL
synthesizer is first used to produce a design file representing
the netlist (RTL or gate netlist), in a supported format, such
as Xilinx netlist format (XNF).  For each supported format,
an input netlist converter first separates the “non-
synthesizable logic”, which will be defined shortly, from the
“random logic” that is available for synthesis.  The former is
preserved internally using the original netlist format, which
is later re-incorporated into the final synthesis result.  The
latter is translated into the Berkeley Logic Interchange
Format (BLIF); which is used as one of the internal
representation formats in RASP.  The connections to each
non-synthesizable component are replaced by primary I/Os in

the BLIF representation, and redundant logic is trimmed
during the translation.  In the case of XNF input, the module
xnf2blif  is used to carry out the conversion.

“Non-synthesizable logic” includes target
architecture specific logic such as I/O pads and clock buffers,
structural logic such as datapath components or any special
modules supported by vendor-supplied library mapping tools
(e.g.  XBLOXTM), as well as designer mapped logic (i.e.
“hardwired PLBs”).  Structural logic is specified as hard or
soft macros in the design, and has a highly optimized
implementation from the vendor library, therefore making it
unlikely that further optimization can be accomplished by the
synthesis and mapping modules.  Designer mapped logic
may be used to satisfy special design requirements (such as
timing) that cannot be guaranteed by the automatic design
tool.  Therefore, these are regarded as non-synthesizable.
However, our input netlist converter does provide an option
that allows the user to merge structural and user mapped
logic into the random logic for re-synthesis and re-mapping
if the user so desires.

Then, the BLIF network representing the random
logic portion of the design is processed for sequential logic
optimization.  RASP uses the SIS logic synthesis system
[SeSL92] to perform such optimization, which gives the user
a rich variety of algorithm choices for state extraction, state
minimization and state assignment.  The optimized
sequential network is then passed to the combinational logic
extractor, which separates the sequential components from
the combinational components in the network, preserving the
sequential portion in BLIF representation for later integration
into the final synthesis/mapping solution. The extractor
represents the combinational portion as a Boolean network in
BLIF or EQN (Boolean equation) format, in which
connections to the sequential components are replaced by
primary I/Os.  It is noteworthy that such an extraction may
lose important information about the feasibility of a synthesis
mapping solution, since each PLB contains both
combinational and sequential elements.  If two or more
combinational logic elements are to be mapped into one PLB
it is required that their associated sequential logic elements,
if any, be compatible.  For example, in almost all types of
SRAM-based FPGAs, the flip-flops in a PLB are required to
share the same clock signal. To retain such constraints
without complicating the mapping procedure, the
combinational logic extractor also produces another file in
internal constraint file format (CST), which represents the
compatible classes of the sequential elements which have
corresponding primary I/Os in the Boolean network
according to the given specification of compatibility for the
target FPGA type.  Redundant logic trimming is also
performed during the extraction.

Next, the Boolean network is passed to the LUT
mapping routine, which can be any implemented algorithm
that recognizes BLIF or EQN input and produces output in
these formats. For example, the FlowMap-R algorithm
[CoDi94b] can be used.  In the next section we shall
introduce several algorithms which RASP supports.
Optionally, technology independent logic synthesis can be
performed prior to the mapping by using SIS commands.
The output of the mapping algorithm is a network of  LUTs
which is passed to the PLB mapping routine.



The PLB mapping module is selected according to
the target FPGA type.  For example, for Xilinx XC4000
FPGAs, we have developed the module lut2xc4k. The PLB
mapping module takes the LUT network and the CST file
produced by the combinational logic extractor, and maps the
compatible LUTs into PLBs of the target FPGA.  More
details on this procedure will be presented in the next
section.  The output uses annotated EQN format with
necessary “group” (PLB) information.  Note that depending
on the target FPGA type and the parameters used during
LUT synthesis and mapping, the PLB mapping module may
decompose and/or merge some LUTs for better PLB
mapping.

Finally, an output netlist converter combines the
PLB netlist with preserved logic, including the non-
synthesizable logic and the sequential logic, and generates a
complete design representation in the vendor specific format,
such as XNF, that can be used as input to a commercial
design system such as XBLOXTM/XACTTM, which map the
structural logic and perform the target architecture layout and
routing.  For example, the rasp2xnf converter is used to
produce the XNF netlist.

3. Synthesis and Mapping Algorithms in RASP

The architecture independent LUT synthesis/
mapping and PLB mapping modules are the most important
parts of the RASP core which will be discussed in this
section.

3.1 Architecture Independent LUT Synthesis and
Mapping

For a particular FPGA based design, the design
engineer may have a particular optimization interest in mind
whether it be minimum delay subject to an area constraint,
hard delay constraint with area as a secondary concern, or
hard area constraint with delay as a secondary concern.
RASP incorporates a wide range of LUT-based FPGA
synthesis and technology mapping algorithms with different
objectives.  Currently it consists of the following algorithms.

FlowMap:  FlowMap [CoDi94a] is a LUT-based
FPGA technology mapper that produces depth-optimal
mapping solutions for general Boolean networks. The basic
idea of the FlowMap algorithm is to find a depth-optimal
mapping for each node in the network, according to the
topological order starting from the PI nodes.  The depth-
optimal mapping of each node is achieved by computing a
minimum height K-feasible cut (X, X’) in the fanin cone of
the node.  It was shown that such a cut can be computed in
polynomial time.

FlowMap-R:  The FlowMap-R [CoDi94b]
algorithm uses depth relaxation and re-mapping to generate a
set of mapping solutions with depth/area trade-offs. It first
uses FlowMap [CoDi94a] algorithm to compute a depth-
optimal mapping solution as a starting point for depth
relaxation. Then, for each given depth bound of the mapping
solution, the FlowMap-R algorithm first applies a sequence
of depth relaxation heuristics to produce an intermediate
network, and then carries out re-mapping for area
minimization on the intermediate network using an area-

optimal duplication-free mapping and two area-reduction
algorithms that exploit beneficial logic duplication.  To
generate a set of mapping solutions, the depth bound is
gradually increased and mapping is carried out for each
depth bound.  This algorithm is particularly suitable for
RASP since it provides flexibility for meeting optimization
objectives.

FlowSYN:  The FlowSYN [CoDi93b] algorithm
inherits the combinatorial optimization techniques from
FlowMap.  In addition, it uses global structural information
obtained during combinatorial optimization to selectively re-
synthesize parts of the given network using Boolean logic
operations for further depth and area optimization.  The
FlowSYN algorithm follows the FlowMap control flow by
computing a mapping solution at each node in the
topological ordering.  Re-synthesis using BDD-based
functional decomposition is applied where combinatorial
optimization fails to produce a good result.

CutMap:  The CutMap [CoHw95a] algorithm also
improves FlowMap by performing area minimization under
depth constraint, but uses an approach different than that
used in FlowMap-R:  it first computes the minimum depth to
which each node can be mapped, then implements the LUTs
not according to the minimum-height K-feasible cut, but
according to the minimum-cost K-feasible cut where a cost
function is used to encourage the sharing of input signals
among LUTs and guarantees that the critical path depth will
not increase.  As a result, it preserves the depth optimality of
FlowMap while substantially reducing the number of LUTs.

3.2 Architecture Dependent PLB Generation from
LUT Networks

After the architecture independent synthesis and
mapping algorithm produces an LUT netlist, RASP converts
it into a netlist of PLBs for the target FPGA using the
appropriate converter from the RASP architecture specific
PLB generation toolkit.  Each of the converters exploits the
PLB architecture of a specific FPGA type.  Mapping LUTs to
PLBs involves choosing one or more LUTs to be packed into
each PLB taking into account the PLB architectural
constraints, so that the number of PLBs used is minimized by
compact packing, the delay of the PLB network is minimized
by effective use of multi-level LUT interconnections inside a
PLB, and the routability is maintained by careful selection of
closely connected LUTs for each PLB.  Due to the
availability of auxiliary logic and internal connections, a
group of LUTs may be mapped into a group of LUTs of
different sizes and connections in a PLB (for example, a 5-
LUT can be implemented by the two 4-LUTs and the
auxiliary MUX in a PLB of  XC3000 FPGA).

Clearly, this is a complex optimization problem,
and we have developed heuristics for various FPGA
architectures and optimization objectives.  Each of these
heuristics is based on a sequence of maximum weighted
matching operations on a compatibility graph which yields
proper grouping of LUTs into PLBs without violating the
constraints.

3.2.1 Forming the Compatibility Graph

At each step, the vertices of the compatibility graph
represent the partial PLBs (initially the LUTs) that will be



considered for grouping at this step.  An edge is formed
between two vertices if the two corresponding partial PLBs
can be grouped into one.  When generating an edge in the
compatibility graph, we check the constraints on the input
size and pattern, output size and pattern, and if there are
registered outputs, the number of such outputs and their
compatibility, in terms of the shared control signals of the
registers, using the information in the constraint file.

3.2.2 Weighting the Compatibility Graph

Once the compatibility graph is constructed, we
assign weights on the edges to guide the matching algorithm
to select the best merging of partial PLBs.  Different weights
are assigned for different optimization objectives.  For delay
minimization, a larger weight is given to an edge
corresponding to the grouping of two LUTs that may reduce
the length of a critical path in the PLB network.  For
routability, a larger weight is given to an edge that
corresponds to the grouping of two "close" LUTs so that we
do not create complex interconnection patterns in the final
mapping solution.  For area minimization, we simply want a
matching of maximum cardinality, but we can still use
weights to break ties and obtain a maximum cardinality
matching with good delay and/or routability.

The "closeness" of two LUTs can be measured in
various ways.  In our current implementation, we use the
overlap of their fanin subnetworks as the measurement.
More precisely, for an edge (v, w) we use ( | Nv ∩ Nw | ) / ( |
Nv | + | Nw | ) as the weight. We have found that this simple
measurement is usually sufficient to produce routable
solutions.  More accurate measurements can also be derived,
e.g. by also including the fanout subnetworks into
consideration.  The actual weight W(e) of each edge e
consists of two parts, a "nominal weight" WN(e) that is the
same for all edges, and a "preference weight" WP(e) that
varies among edges, i.e. W(e) = WN(e) + WP(e).  The
preference weight is used for optimization objectives other
than area minimization. For example, for routability
optimization, the closeness measurement is used as the
preference weight. The nominal weight is used to balance the
optimization for the objective emphasized by the preference
weight, and the objective of area minimization. As the value
of  nominal weight increases, the emphasis on the cardinality
of the matching increases, and the maximum weighted
matching solution yields more area reduction.  For example,
for routability optimization, we use the following weight
function:  W(v, w) = WP(v, w) + WN(v, w) =  [( |Nv ∩ Nw | ) / (
|Nv | + |Nw | )]  +  α |N|, where N is the network, and 0 ≤ α ≤ 1
is a parameter to adjust the trade-off between area and
routability.  When α = 1, the maximum weighted matching is
guaranteed to have maximum cardinality.  If the resulting
solution is not routable, α is reduced.

3.2.3 Example of LUT to PLB Mapping

Since the heuristics for PLB mapping differ for
different FPGA architectures, we illustrate our approach
using two examples, the XC3000 and XC4000 families.
Following the terms used by the vendor, the LUTs are called
function generators, and the PLB is called the configurable
logic block (CLB).

 Mapping for Xilinx XC3000 FPGAs
The Xilinx XC3000 family CLB architecture

contains one combinatorial function unit which can either be
used as two 4-variable function generators F and G with
totally no more than 5 inputs, or be used as one 5-variable
function generator F.  Each functional generator can have
one (registered or non-registered) output, and all register
control signals are shared.

The architecture independent synthesis and
mapping algorithm in RASP produces a network of LUTs
with input size no more than 5.  Each 5-LUT is then
implemented by one CLB using the F mode of CLB
operation.  Then, smaller LUTs are matched according to the
input constraints, as well as the output constraints (if there
are registered outputs), using the weighted matching
approach discussed earlier1. Unmatched LUTs are then
treated as 5-LUTs and implemented by separate CLBs.

Although the constraint on total number of inputs
usually requires input sharing between the matched LUTs,
unrelated small LUTs can still be packed together if
preference weight is ignored. Therefore, we use the number
of shared inputs (a simple measurement of closeness) as the
preference weight for routability control.

Mapping for Xilinx XC4000 FPGAs
The Xilinx XC4000 family CLB architecture

contains three function generators.  Two of the function
generators named F and G each have four input variables.
The third function generator H has three inputs, two of which
are connected to the outputs of function generators F and G
and the third is unrestricted.  Moreover, if H is used, only
one of F and G can have its output (registered or otherwise)
accessible by outside.  We have developed a multi-step
matching heuristic for this architecture as follows.

Step 1: Starting   with   a   network   of   LUTs
with   input   size   no   more   than   5,   we   first
decompose all   5-LUTs using Shannon decomposition

f x x x f x x x f x x( ,..., ) * ( ,..., ) * ( ,..., )1 5 1 1 2 5 1 0 2 5= + .  Note that if f is

unate on x1, then f1 = 0 or f0 = 0, and the decomposition can
be implemented by one 4-LUT and one 2-LUT; otherwise, it
can be implemented by two 4-LUTs and one 3-LUT.  In the
latter case, it will occupy a CLB by itself; while in the former
case, it will occupy the F and H function generators and has a
vacant G slot that may be filled by another 4-LUT, which is
preferred.  Therefore, we look through the inputs to find a
unate one for the decomposition before accepting the
decomposition of three LUTs.  After such decompositions,
each 5-LUT is associated with a fully or partially filled CLB.
Then, we associate each of  the other LUTs (of input size no
more than 4) with a CLB and let the LUT occupy the G
function generator.

Step 2:  We construct a compatibility graph over
the CLBs containing only one LUT, where an edge (v, w) is
drawn if CLB v has a 3-LUT LUTv, and CLB w has an LUT
LUTw whose only output is LUTv. Clearly, v and w can be
merged by putting LUTv and LUTw  into the F and H

                                                          
1 A similar approach for XC3000 CLB generation  has been used by,

for example, [MuSB91a].



function generators of v.  We compute a maximum weighted
matching with the depth of LUTw  as preference weight and
large enough nominal weight to guarantee a maximum
cardinality.  The use of depth as preferred weight is to
encourage the packing of LUTs of large depth first.  The
matched pairs are merged.  A matching candidate for this
step is illustrated in Fig 2(a).

Fig 2  Mergeable CLBs during XC4000 CLB mapping

Step 3:  We construct a bipartite graph, where at
one side of the graph are the CLBs which contain two LUTs
and whose H-slot LUT has at least 2 inputs, and at the other
side of the graph are the partial CLBs which contain one
LUT.  An edge (v, w) is drawn if (i) the H-slot LUT of CLB
v, LUTv,, is a fanout of the LUT of CLB w, LUTw,; and (ii)
the registered outputs of LUTv and LUTw, if any, are
compatible.  Clearly, v and w can be merged by putting
LUTw  into the vacant G-slot of the CLB v.  The preference
weight used for the matching is input(LUTv), whose reason
will be clear in the next step.  Again, we use a large enough
nominal weight to guarantee a maximum cardinality
matching. Each matched pair is merged into a full CLB.  A
matching candidate for this step is illustrated in Fig 2(b).

Step 4:  If there are still CLBs with one LUT,
clearly they cannot be merged with a CLB of two LUTs by a
real connection to its H-slot LUT.  Therefore, we construct
another similar bipartite graph where one side of the graph
are CLBs of two LUTs and the other side of the graph are
CLBs of one LUT, except that for the CLBs of two LUTs,
the H-slot LUT must have no more than 2 inputs.  Because
the H-slot LUT of the two-LUT CLB has an unused input,
any single-LUT CLB can be merged with it as long as the
outputs are compatible. Therefore, an edge is drawn if the
registered outputs are compatible.  For this matching, we use
the preference weight for routability as discussed in Section
3.2.2, and compute a maximum weighted matching, and
merge the matched pairs into full CLBs.  Fig 2(c) illustrates a
candidate for the matching of this step.

Step 5:  Finally, if there are still CLBs with one
LUT, they cannot be merged with remaining CLBs of two
LUTs.  So we have to merge them with each other by finding
a maximum matching among them, where the only constraint
is the compatibility of their registered outputs.  We use the
preference weight for routability in Section 3.2.2 for the
matching.  The matched pairs are merged by using the F and
G function generators of a CLB.  At this point, no further
merging of CLBs is possible and we have obtained a mapped
solution.

Mapping for Altera FLEX-8000 FPGAs

The Altera Flex-8000 family PLB is called a logic
cell (LCELL).  Each LCELL contains one 4-variable
function generator and a register.  RASP is used to produce
4-LUT solutions which are placed one per LCELL.  The
Altera design flow is resumed after RASP creates solutions
in a Text Design File (TDF), a standard interface to the
Altera Hardware Descriptor language (AHDL).

4. Experimental Results and Comparative Study

We have compared RASP performance using our
technology mapping algorithms for LUT synthesis/mapping
and our PLB mapping heuristics for XC3000/XC4000
FPGAs with several commercially available logic synthesis
and technology mapping systems.  The commercial synthesis
systems are XACTTM 5.1  from Xilinx Corporation,
MaxPlusII from Altera Corporation and another state-of-the-
art synthesis system donated to us for use in our research
which we refer to as System X.

The RASP results in the figures are chosen by a
solution selector which uses a cost function based on PLB
count and depth before placement and routing.  Suppose that
RASP produces n PLB mapping solutions of the form S1 =
(PLB1, D1), S2 = (PLB2, D2), S3 = (PLB3, D3), ..., where PLBi

and Di are the PLB count and depth of solution Si.  Then, we
define a cost function cost(Si) = a*PLBi/min_PLB +
b*Di/min_Depth where min_PLB = min{PLB1, PLB2, ...},
min_Depth = min{D1, D2, ...} and a and b are weighting
factors the user may input.  In our experimental results, we
have used a = 1, and b = 1.2, making depth 20% more
important than PLB count.  The solution with the minimum
cost is selected by RASP for each design.

The total CPU time required to produce all three
PLB solutions (by FlowMap, CutMap, and FlowSYN)
considered by the solution selector in RASP is about 5% of
the time required by place and route in the XACT tools and
on the same order of magnitude as Altera’s MaxPlusII.

Fig 3:  RASP Comparison with commercial synthesis
systems on MCNC logic synthesis benchmarks using

XC3000 LUT to CLB matching heuristic.



Fig 4:  RASP Comparison with Commercial Synthesis
Systems on MCNC Logic Synthesis benchmarks using

XC4000 LUT to CLB matching heuristic.

Fig 5:  Trade-off in routability and number of CLBs for
XC3000 LUT to CLB matching heuristic.  All other

benchmarks routed without difficulty.

Fig 6:  RASP Comparison with Altera MaxPlusII on
MCNC Logic Synthesis benchmarks.

 Fig 3 and Fig 4 compare RASP performance with
two commercial synthesis systems on the MCNC logic
synthesis benchmarks (both combinational and sequential)
for two families of Xilinx target architectures.  On the
MCNC logic synthesis benchmarks using the XC3195A part,
RASP has lower measured delay after place and route 94%
of the time, lesser depth in terms of block levels2 94% of the

                                                          
2 Depth in block levels is obtained using the Xilinx XdelayTM tool which first

determines the critical path in terms of measured delay and then counts the

time and smaller CLB count 50% of the time.  On the MCNC
logic synthesis benchmarks using the XC4010 part, RASP
has lower measured delay after place and route 83% of the
time, lesser depth in terms of block levels 94% of the time
and smaller CLB count 55% of the time.  Fig 5 shows the
increased routability of two CLB netlists when we require
that the two LUTs placed together in each CLB share at least
a certain minimum number of common inputs.  The -c x
parameter shown as a column heading is the number of
common inputs required for pairing.  We have observed the
transition from an un-routable to a routable CLB netlist for
the C880 and duke2 benchmarks with only an increase of 3
and 7 CLBs respectively.  All other benchmarks routed
without difficulty with no input restrictions.  Fig 6 compares
RASP performance with the Altera MaxPlusII synthesis
package.   On the MCNC logic synthesis benchmarks using
the 8452A part, RASP has lower measured delay after place
and route 94% of the time, and smaller LCELL count 16% of
the time.

Fig 7:  Families of solutions generated using
RASP/FlowMap-R and XC4000 LUT to CLB matching

heuristic.

Fig 7 shows the RASP solutions for the MCNC
logic synthesis benchmarks and a reconfigurable FPGA
based real-time video compressor/decompressor design
[ScVMJ95].  The r column indicates the relaxation value
used during the generation of the solution.  The XNF netlist
for the video compressor circuit consists of 1281 simple
gates, 234 registers and 79 I/Os.  The video decompressor
consists of 1205 simple gates, 249 registers, and 75 I/Os.
RASP solution performance exceeds that of XACTTM 5.1
and System X which produced solutions of 267 CLBs, 163.7
(ns) and 274 CLBs, 185.7 (ns) respectively.  RASP generates
solutions which have lower critical path delay and only
slightly higher CLB count for both the compressor and
decompressor designs.

                                                                                         
number of block levels along the critical path.  It is therefore possible that
the critical path in terms of delay will be of the same or lesser depth than the
critical path in terms of LUT levels in the technology mapped solution.



5. Limitations and Ongoing Work

While RASP insures that no two LUTs with
conflicting registered outputs will be matched together in a
CLB, it does not currently map registers to specific CLBs but
instead relies on the XACTTM mapper for this function.
RASP does not currently support all types of non-
resynthesizable elements in the XNF specification, however,
this support can be easily added as future research demands.
Also, although RASP is extremely powerful in both depth
and final delay minimization, there are cases where the CLB
usage by RASP is considerably higher.  We are in the
process of developing more effective area minimization
algorithms while maintaining the advantage in delay
minimization.  Efforts are also underway to utilize the RASP
framework for ongoing research in the area of retiming and
automatic pipelining.

Acknowledgment
This work is partially support by ARPA/CSTO

under Contract DABT63-93-C-0055 and NSF Young
Investigator Award MIP9357582.

References

[Al95] Altera, Flex 8000 and Flex 10000 Programmable
Logic Device Family Data Sheets.  San Jose, CA:
Altera 1995.

[AT&T95] AT&T Microelectronics, Optimized Reconfigurable
Cell Array (ORCA) Series FPGAs.  Allentown, PA:
AT&T Microelectronics 1995.

[ChCD92] Chen, K. C.,  J. Cong, Y. Ding, A. B. Kahng, and P.
Trajmar, "DAG-Map:  Graph-based FPGA technology
mapping for delay optimization," IEEE Design and
Test of Comput., pp. 7-20, Sept. 1992.

[CoDi92a] Cong, J. and Y. Ding, "An optimal technology
mapping for delay optimization in lookup-table based
FPGA designs," Proc. IEEE Int. Conf. on Computer-
Aided Design, pp. 48-53, Nov. 1992.

[CoDi93b] Cong, J. and Y. Ding, "Beyond the Combinatorial
Limit in Depth Minimization for LUT-Based FPGA
Designs," Proc. IEEE Int’l Conf. on Computer-Aided
Design, pp. 110-114, 1993.

[CoDi94a] Cong, J. and Y. Ding, "FlowMap:  An Optimal
Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs,"
IEEE Trans. on Computer-Aided Design, Vol. 13(1)
pp. 1-12, 1994.

[CoDi94b] Cong, J. and Y. Ding, "On Area/Depth Trade-off in
LUT-Based FPGA Technology Mapping," IEEE
Trans. on VLSI Systems, Vol. 2, June 1994.

[CoHw95a] Cong, J. and Y. Hwang, "Simultaneous Depth and
Area Minimization in LUT-based FPGA Mapping,"
Proc. ACM/SIGDA International Symposium on
FPGAs, 1995.

[FrRC90] Francis, R. J., J. Rose, and K. Chung, "Chortle:  A
Technology Mapping Program for Lookup Table-
Based Field Programmable Gate Arrays," Proc. 27th
ACM/IEEE Design Automation Conference, pp. 613-
619, June 1990.

[FrRV91b] Francis, R. J., J. Rose, and Z. Vranesic, "Technology
Mapping for Delay Optimization of Lookup Table-
Based FPGAs," MCNC Logic Synthesis Workshop,
1991.

[Ka91a] Karplus, K., "XMap:  A Technology Mapper for
Table-lookup Field-Programmable Gate Arrays," Proc.
28th ACM/IEEE Design Automation Conference, pp.
240-243, June 1991.

[LaPV93] Lai, Y.-T., M. Pedram, and S. Vrudhula, "BDD Based
Decomposition of Logic Functions with Application to
FPGA Synthesis," Proc. 30th ACM/IEEE Design
Automation Conf., pp. 642-647, June 1993.

[MuNS90] Murgai, R., Y. Nishizaki, N. Shenoy, R. Brayton, and
A. Sangiovanni-Vincentelli, "Logic Synthesis
Algorithms for Programmable Gate Arrays," Proc.
27th ACM/IEEE Design Automation Conf., pp. 620-
625, 1990.

[MuSB91a] Murgai, R., N. Shenoy, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Improved Logic Synthesis
Algorithms for Table Look Up Architectures,” Proc.
IEEE Int’l Conf. on Computer-Aided Design, pp. 564-
567, Santa Clara, CA, Nov. 1991.

[MuSB91b] Murgai, R., Y. Nishizaki, N. Shenoy, R. Brayton, and
A. Sangiovanni-Vincentelli, "Performance Directed
Synthesis for Table Look Up Programmable Gate
Arrays," Proc. IEEE Intl’l Conf. on Computer-Aided
Design, pp. 572-575, Nov. 1991.

[SaTh92] Sawkar, P., D. Thomas, “Technology Mapping for
Table-Look-Up Based Field Programmable Gate
Arrays,” ACM/SIGDA Workshop on Field
Programmable Gate Arrays, pp. 82-88, Feb. 1992.

[ScKC92] Schlag, M., J. Kong, and P. K. Chan, "Routability-
Driven Technology Mapping for Lookup Table-Based
FPGAs," Proc. 1992 IEEE International Conference
on Computer Design, pp. 86-90, Oct. 1992.

[ScVMJ95] B. Schoner, J. Villasenor, S. Molloy, and R. Jain,
"Techniques for FPGA Implementation of Video
Compression Systems," Proc. ACM/SIGDA
International Symposium on FPGAs , 1995.

[SeSL92] Sentovich, E., K. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. Stephen, R.
Brayton, and A. Sangiovanni-Vincentelli, “SIS:  A
System for Sequential Circuit Synthesis,” U.C.
Berkeley Technical Report UCB/ERL M92/41, May,
1992.

[Xi94a] Xilinx, The Programmable Logic Data Book.  San
Jose, CA: Xilinx 1994.

[Wo91a] Woo, N.S.  “A Heuristic Method for FPGA
Technology Mapping Based on the Edge Visibility,”
Proc. ACM/IEEE Design Automation Conference, pp.
248-251, San Francisco, CA, Jun. 1991.


