
Rasterization of Nonparametric Curves

JOHN D. HOBBY

AT&T Bell Laboratories

We examine a class of algorithms for rasterizing algebraic curves based on an implicit form that can

be evaluated cheaply in integer arithmetic using finite differences. These algorithms run fast and

produce “optimal” digital output, where previously known algorithms have had serious limitations.

We extend previous work on conic sections to the cubic and higher order curves, and we solve an

important undersampling problem.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation--display

algorithms

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Algebraic curves, rasterization, scan conversion

INTRODUCTION

A basic problem in raster graphics and computer typesetting is how to convert
from spline curves to dilscrete data appropriate for raster devices. Typically,
graphical objects are represented internally via collections of curves from some
fixed family, and the discrete representation is an array of pixels. There are
many different versions of the rasterization problem, but all of them involve
taking a given curve and determining its position relative to nearby pixels. For
this reason, many algorithms can be adapted to a wide range of rasterization
problems, and it is best to take as general an approach as possible.

We introduce a “canonical” definition of rasterization to serve as a common
denominator for the different versions of the rasterization problem. The canonical
rasterization is appropriate for spline-bounded regions and can also be applied
to curve-drawing applications. The precise definition is given shortly, but it is
based on the idea that the rasterization of a region is the set of pixels whose
centers lie in the region. The canonical rasterization of a curve C is essentially a
dividing line that determines which pixel centers lie to the left of C and which
lie to the right. All algorithms discussed here are stated in terms of canonical
rasterization, but with simple program transformations, the algorithms can be
regarded equally well as “optimal” curve-drawing algorithms: All that is required
is to work with a shifted copy of C as explained in [4].

Author’s address: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1990 ACM 0730-0301/90/0700-0262 $01.50

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990, Pages 262-277.

Rasterization of Nonparametric Curves - 263

The basic ideas behind “optimal” curve drawing are due to Freeman, who first
proposed a precise definition for the set of pixels to be computed when rasterizing
a curve [2, 31. Rasterized curves computed according to a precise rule such as
Freeman’s tend to be superior in terms of smoothness and uniformity of width.
They are sometimes referred to as “optimal” because they minimize the maximum
deviation between the input and the rasterized output.

Because of the previously mentioned program transformations, any curve-
drawing algorithm that satisfies appropriate optimality conditions can be viewed
as a solution to the canonical rasterization problem. The optimality conditions
severely restrict the class of available algorithms, but Knuth gives one such
algorithm for parametric cubic curves 19, Part 191. The reason for the sparsity of
appropriate algorithms may be because the parametric form is best suited for
generating points on the curve, whereas the optimality conditions require testing
specific points such as pixel centers to see which side of the curve they lie on.

One curve representation that does lend itself to checking pixel centers against
the curve is the implicit form F(x, y) = 0. This leads to a well-known but often
carelessly used class of algorithms that generalize some of the work by Pitteway
[ll]. The basic idea is that if F is a polynomial of low degree it can be evaluated
cheaply in integer arithmetic using a system of finite differences. This paper
shows how to evaluate F at a sequence of adjacent pixel centers and how to use
the results to determine the rasterization. One major advantage of this approach
is inner-loop speed: For cubic curves, six additions suffice to evaluate F and
update the finite differences.

For comparison, Knuth’s algorithm works by repeatedly subdividing the curve,
and does at least 29 arithmetic operations per subdivision. The number of
subdivisions depends on the slope of the curve and other parameters, but there
are typically about as many subdivision steps as pixel centers examined by the
implicit algorithms. The overall inner-loop speed is quite reasonable, but not as
good as with the implicit algorithm for cubic curves.

Of course, Knuth’s algorithm is not directly comparable to the implicit methId,
since Knuth uses parametric polynomial cubits, whereas the cubic version of the
implicit algorithm uses the broader class of algebraic cubic curves. Cubic curves
are often given in parametric form, in which case they have to be converted to
implicit form before the implicit method can be applied. Since the conversion
process entails a significant amount of overhead and can cause numerical prob-
lems, the implicit method is best suited to problems where the implicit form is
readily available or needed for other reasons. On the other hand, Pratt has found
it practical to convert conic sections from parameteric to implicit form and then
use the implicit form for rasterization [12].

A good discussion of the relationship between the implicit and parametric
forms and how to convert between them can be found in Sederberg’s thesis [13].
Implicitization algorithms for cubic curves appear in [lo] and [14]. See [7] for
an even more practical version that avoids the need for exact rational arithmetic.

This work appeared in its preliminary form in [5]. It addresses two problems
that have plagued previous work on implicit rasterization algorithms: (1) Previous
work has been limited to conic sections, although many applications require
curves of degree three or higher. (2) The common practice of simply testing the

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

264 l John D. Hobby

sign of F(x, y) at pixel centers is susceptible to undersampling problems that

have been successfully addressed by Pratt by conic sections [121. These ideas are
dealt with in this paper as follows: Section 1 introduces the basic algorithm,
Section 2 deals with problem (2), Section 3 explains how to initialize the finite
differences, and Section 4 gives some concluding remarks.

1. THE BASIC ALGORITHM

The algorithm is based on an implicit form F(x, y) = 0 for a curve C, where F is
a polynomial of moderate degree in x and y. The object is to find the canonical
rasterization of C. As we shall see shortly, this is essentially a dividing line that
determines which pixel centers lie on one side of the curve and which lie on the
other side. The necessary :information can be obtained by generating a sequence
of pixel centers (ml, n,), (mB, n2), . . . and testing them by evaluating F (m,,, np)
for each p.

Assume that F is integer valued for integer x and y, and choose the coordinate
system so that pixel centers have integer coordinates and adjacent pixels are one
unit apart. Then the necessary evaluations of F(m,, np) can be accomplished via
a system of finite differences as follows: If F has total degree d, we maintain
($!‘) integer-valued registers foO, f 10, 01, 20, 111 f f f f 021 * * *, where we always have

foe = F(m,, np) for some pixel center (m,, np).
Since the finite differences vary as we go from one (m,, np) to the next, it is

convenient to introduce polynomials Fkl and to maintain the invariant that

fkl = Fkl(% np) for Osk+lld (1)

when we are ready to evaluate F(m,, n,). The invariant is easily maintained if
we let Foe = F be the implicit polynomial for C and define Fkl recursively so that

Fk+l,lb, Y) = Fklb + 1, 3’) - Fkl(X, 3’1, (2)

Fk,l+l(:b Y) = F/+(X, Y + 1) - Fklb, Y), (3)

for k, 1 2 0. When (1) holds we say that the difference registers are valid for the
point (m,, n,).

Figure 1 gives routines for computing registers valid at (mp + 1, n,) or at
(m,, n, + 1) given registers valid at (nz,, n,). In an actual implementation, d
would be a small constant, so that each procedure would reduce to (d2”) assign-
ment statements. Thus, there are three additions per pixel center examined when
d = 2, and six additions per pixel center when d = 3.

1 .l Canonical Rasterization

Before giving the rasterization routine, we need a precise definition for the
canonical rasterization that is supposed to be computed. As can be seen from
Figure 2a, the canonical rasterization of a curve C is essentially an approximation
to C that is restricted to a square grid appropriate for delimiting sets of pixels.
Thus, the canonical rasterization of the closed curve shown in the figure bounds
the set of pixels whose centers lie in the region bounded by C. (A formal statement
and proof of this property appear in [4].)

Let us assign integer coordinates to pixel centers and model pixels abstractly
as unit squares. The canonical rasterization is basically an approximation to the

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves 265

procedure move-right ; procedure moue-up;

for i c 0, 1, . . . , d - 1 for i t 0, 1, . . . , d - 1

for j c 0, 1, . . . , d - i - 1 for j c 0, 1 . . . , d - i - 1

fi, + fu + fi+l.j; f&j + fij + fij+l;

Fig. 1. Routines for updating the difference registers when

(mp+l, n,+l) is Cm, + 1, n,) or bp, n, + 1).

r

0:
L

r

L

(a)

1

-J--L-J--L-J

(b)

Fig. 2. (a) A closed curve and its canonical rasteriza-

tion. (b) A curve and its canonical rasterization with pixel

centers indicated by heavy dots, pixel squares delimited

by solid lines, and squares \k(m, n) delimited by dashed

lines. The heavy line is the canonical rasterization.

given curve restricted to the boundaries of pixel squares. It is defined in terms of
a function

~x,Y) = rd -$ tyl +i
()

that maps points to the nearest pixel corner. Since pixel centers are equidistant
from four pixel corners, there is a tie in that case, and the function is designed
to map pixel centers to the upper-left corner. (This tiebreaking rule necessitates
the asymmetrical treatment of x: and y in the definition of p.)

By considering the curve C as an ordered list of points rather than just a point
set, we can apply p to each point on C and obtain an ordered list of pixel corners

(

1 1

)(

1 1
mo--,no--, ml--,nl--,

2 2 2 2)

(

(4)
1 1

) (

1 1
m2 - - , n2 - -

2 2
, . . . , mk--, nk--

2 2)
.

If for each i < k, the difference vector (mi+l, ni+l) - (mi, ni) is either (0, 21) or
(fl, 0), the canonical rasterization of C is the polygonal line joining each point
(mi - $, ni - $) in order.

The heavy line that follows pixel edges in Figure 2b is an example of a
canonical rasterization. Since the set of all points (x, y) such that p(x, y) =

(m - f, n - f) is a square of the form

Q(m, n) = ((x, y) 1 m - 1 < x: I m and n - 1 I y < n),

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

266 l John D. Hobby

Fig. 3. The region *(m, IZ) with a portion of

C and the canonical rasterization passing

through it. Portions of the boundary included

in q(m, n) are shown as solid lines, and other

parts of the boundary are indicated by dashed

lines. Corners of the region are labeled with

their coordinates.

as illustrated in Figure 3, the canonical rasterization depends on the sequence of
squares Q(m, n) that C passes through.

A consequence of the treatment of the boundary of \k(m, rz) illustrated in

Figure 3 is that the plane is divided into square regions +(m, n), and where
four of these regions meet at a corner, that corner is assigned to the square
that is immediately above and to the left. Thus, a curve C of positive slope
cannot pass from \k(m, n) to *(m + 1, n + 1) without passing through one of the
orthogonally adjacent squares \k(m + 1, n) or \k(m, n + 1). In other words, the
function p(x, y) that generates (4) as (x, y) moves along C cannot jump directly
(m - $, n - half) to (m + $, n + half).

The orthogonal adjacency of successive p(x, y) values can only break down
when C, with nonpositive slope, passes through a pixel center. Then we can have

(mi+l, ni+l) - (mi, ni) = +(1, -l), in which case we disambiguate by inserting

mir*(mi, ?&+I) - i, min(n;, &+I - 3)

after (mi - i, ni - f). (See [4] for more details.)

1.2 The Rasterization Routine

When actually computing the rasterization, it is convenient to break up the curve
F(x, y) = 0 by finding vertical and horizontal extrema. For simplicity, we deal
only with the case where x and y are nondecreasing on C and C is a first quadrant
curve. (Other quadrants can be handled by rotation and slight changes in the
tiebreaking rules.)

Given a first quadrant curve C that begins at (X,, Y,) and ends at (X,, Yb),
we initialize (m, n) t p(X,, Y,) + (f, i) and then examine F(m, rz) to determine
whether C enters \k(m + 1, n) or \k(m, n + 1) when it leaves !P(m, n). The
algorithm in Figure 4 uses this idea to compute the canonical rasterization of C.
Thus, the output is not a. sequence of pixels but rather the vertices of a polygonal
line that passes between pixels. It is a relatively simple matter to use this output
to determine the pixels whose centers lie on the “interior” side of C. Alternatively,
the output can be used with the techniques of [6] to find a rasterized version of
C one or more pixels wide.

The statements “if (m, n) is above C ” and “Make the registers valid for
(m, n)” in Figure 4 are discussed in Sections 2 and 3.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves 267

procedure quadrant 1;

(n, n) + P(X., YJ + ($, 3;

Cm’, n’) + PK, Y*) + (& f);

Make the registers valid for (m, n);

while(m#m’andn#n’)

{output (m - f, n - $,;

if (m, n) is above C
then (m c m + 1; moue-right)

else {n + n + 1; moue-up}

I
output (m - $, n - $1;

if m # m’ then output (m + 1, n’), (m + 2, n’), . . . , (m’, n’)

else if n # n’ then output (m’, n + l), (m’, n + 2), . . . , (m’, n’);

Fig. 4. A procedure for rasterizing a first quadrant curve starting at

(X,,, YJ and ending at (X6, YLJ.

Depending on how the output is to be used, the subtractions in the output
statement can probably be avoided in practice. Additionally, one comparison
could be saved in the inner loop by only testing m against m ’ when m is updated
and by similarly reducing the comparisons between n and n ’ .

2. THE UNDERSAMPLING PROBLEM

The undersampling problem is that a curve F(x, y) = 0 cannot necessarily be
located reliably by sampling the sign of F(m, n) at integer m and n. This was
recognized by Pitteway in 1967 [111, but it was only recently solved by Pratt [121
and Van Aken and Novak [15] for the special case where F has total degree 2.
The problem arises in the implementation of the test “if (m, n) is above C.”
It is convenient to test the sign of F(m, n) (by testing the sign of too), but as
Figures 5a and b show, this is not always sufficient. Each figure shows a cubic
curve C together with sign information for a corresponding polynomial function
F. The curved lines give the zeros of F, and the thick parts locate the original
curve C. The sign of F at pixel centers near C is given by + and - signs centered
on the appropriate coordinates.

When rasterizing the curve shown in Figure 5a, the function F is initially
positive above the curve and negative below it, but the relationship is reversed
after the crossover point. It would be especially difficult to implement the
aboveness test near the crossing point where the sign change disappears. In any
case, the situation is even more hopeless in Figure 5b where sampling the sign of
F at pixel centers gives little or no indication of the potential confusion.

In his paper [12] on conic sections, Pratt mentions that confusion can be
avoided by testing the sign of aFlay in addition to the sign of F. To generalize
this to the case where F has total degree d > 2, we simply use the registers fo2,
fo3, f&l, * * * to obtain higher order derivatives. Assuming that the difference
registers are valid for a pixel center (m,, np), the partial derivatives determine
the function F] X=mp obtained by restricting F to the line x = m,. The test required
in quadrant 1 reduces to comparing n,, to the roots of F] x=,,,p, given the derivatives
at n,.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

268 - John D. Hobby

---------_---- --- ---------
(4 (b)

Fig. 5. Cubic curves F(n, y) = 0 with the sign of F(x, y) for pixel centers

b, Y).

Letting 4 (y) = F 1 x=mp, we evaluate the sequence of derivatives 4 (n,), 4 ’ (rz,),

4” &A * * * , $@‘(n,) and let I;((& nP) be the number of sign reversals omitting
any zeros in the sequence. If roots(@, y) is the number of roots of 4 that are
greater than y, Budan’s theorem states that

roots(dJ, y) - roots~(h y ’) 5 rd (4, Y) - rd (4, Y ’) when y’ry

(see [l]). Thus, we can test roots(4, nP) against any desired threshold by testing
rd (4, nP) against a (possibly different) threshold.

Since one of the roots of 4 (y) corresponds to the point where the desired curve
intersects x = m,, a test of roots(4, nP) against an appropriate threshold

determines whether the y in question is greater than n,. If not, then (m,, nP) is
on or above the curve.

To determine whether (m,, nP) is strictly above the curve, let B(y) = 4(-y)
and use jd (6, nP) = rd (4, -nP) to test roots(8, -nP). Thus, ?d (4, nP) is the number

of sign reversals after eliding zeros in the sequence 4(n,), -4 ’ (n,), 4~ N (n,), . . . ,
(-l)%$(d)(nJ.

The aboveness test depends on knowing the threshold k = fd($, y,), where
4 = F] x=mp and (m,, yP) is on the desired curve C. To determine whether nP > yP
without computing yP, w6? test if ?d (6, nP) > k:

n, > yp a 0 < roots(O, -np) - roots(8, -yP)

5 rd (0, -np) - rd((8, -yp) = fd (4, np) - k,

n, 5 yp + 0 5 roots(8, -yP) - roots@, -nP)

5 rd(e, -yp) - rd(e, -np) = k - ?dd$, np).

2.1 Implementing the Aboveness Test

In order to evaluate ?d(.F IxEmP, np) for pixel centers (rn,, n,), the 0UUdrUntl
procedure must be able 1;o compute the partial derivatives of F given only the
difference registers foe, fol , fez, . . . , fOd valid for (m,, np).

We can obtain an expression for F(m,, + X, n, + y) in terms of the difference
registers by using a simple inductive argument based on formulas (2) and (3)

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves . 269

from Section 1 to verify for nonnegative integers 1z: and 3 that

Since

= 5(X - l)(Z - 2) * * * (x: + 1 + k - i)

(i - k)!

and

() Y =9(jJ-1)(7-2) **. (Y+l+Z-j)

j-l (j - l)!

can be viewed as polynomials in f and 7, (5) can be viewed as a polynomial
equation that holds for all real f and 9.

Setting k, 1, and i to zero and noting that Fij (m,, np) = fij when the registers
are valid for (m,.,, n,), we obtain

F(m,, n, + 7) = C r+,sd (f)($fi’ = ,,;=d (;)“j*

The next step is to substitute

0

T = c

Oai’sj

(-l) j-i’ !, 5,

[I 1 .

where [i,] denotes the Stirling number of the first kind as given by Knuth [8]:

The result of the substitution is

F(m,, n,, + 7) = C
Osi’sjad

and differentiating q times with respect to jj yields

(6)

In other words, aQF/dyq is a linear combination of at most d + 1 - q of the
difference registers with simple rational coefficients.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

270 - John D. Hobb)

In the important case 11! = 3, (6) becomes

FbP, 4 = foo,

dF(mp, np)
dY

= fOl - if02 + ifo3,

CZFZ; 4 = fez - fo3,

d3Fb,, np) -

dY3
= 03. f

Thus, d2F/dy2 > 0 when fo2 > fo3, and dF/dy > 0 when fol + : fo3 > fo2 - fol . Since
the difference registers are integer valued, aF/ay > 0 when fol + r$foB1 > fo2 -
fol, dF/dy C 0 when fol + L f fo3 J < fo2 - fol , and dF/dy = 0 only if fo3 is divisible
by 3.

We can now test the sign of F, dF/dy, d2F/ay2, and a3F/6’y3 and implement
the aboveness test when d = 3, assuming without loss of generality that F has
been chosen so that the constant fo3 is nonnegative. First, consider the case when
fo3 is positive and not divisible by three so that dF/dy is never zero. Then the
test “if (rn,, np) is above C ” can be implemented as follows when L f fo3 J and
r f fo3 1 are precomputed:

~3(FI.=mp, np) > 2 @ foe > 0 and if03 1 1 f fol > fo2 - fol and fo2 > fo3,

i(F I x=m,, np) > 1 w if ff03
1 1

+ fol > fo2 - fol then fo2 > fo3 else foe > 0,

?3:3(F I x=m,, np) > 0 * f00 > 0 or if03 + fol < f02 - fol or fO2 > f03.

i 1

For instance, the third line says that there are sign reversals in the sequence F,
-dF/dy, d2F/dy2, and -d3F/ay3 whenever F > 0, -aF/ay > 0, or a2F/ay2 > 0.

The same tests work when fo3 is a positive multiple of three, except that

i(F I x=m,, np)>1~ifA=Bthenfoo<Oandf02~f03,

else if A > B then fo2 > fo3 else foe < 0,

where A = $ fo3 + fol and B = fo2 - fol . In any case, the aboveness test for cubic
curves requires two additions and three comparisons.

2.2 Finding Thresholds

Now that we know an efficient way of testing ;d (F 1 r=,,,,, np) against an integer
threshold, the remaining question is how to choose the threshold. Presumably
we have difference registers that define the function F, and we know the endpoints
of the desired curve C. Of course, some kind of additional information may be
necessary in order to determine C unambiguously when the endpoints are given
approximately or when they lie at places where F(x, y) = 0 crosses itself. Such
crossings are particularly hard to deal with in the absence of additional infor-
mation since it can be difficult to decide which branch of F (x, y) = 0 is desired.

Rather than go into great detail about how to locate crossings and decide which
branch of F(x, y) = 0 is desired there, let us assume that any possible crossing

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves 271

points are given as part of the problem instance. Such crossings commonly occur
when C has a parametric form from which the implicit form is derived. If this
derivation is done as described in [7] and [14], the crossing point location is
found as a side effect.

The problem is to find ?d (F 1 x=mP, y), where (m,, y) is on the curve C being
rasterized. As a point (x, y) moves along C, the threshold ?d (F] X=X, y) can only
change when one of the derivatives dF/dy, d2F/dy2, . . . , ad-‘F/ayd-’ changes
sign. Thus, it suffices to find all such sign changes and use them to subdivide C
so that each piece has its own threshold value.

When F has total degree d = 2, C is a conic section, and dF/dy has no zero
crossings except at horizontal extrema. Thus, if C is already subdivided as
required by the quadrant1 procedure, the threshold ?d (F 1 X=x, y) is constant for
(x, y) on C, and we need only evaluate it at the starting point.

In the cubic case where d = 3, zero crossings of aF/ay on C occur at horizontal
extrema and possibly at a point where F(x, y) = 0 crosses itself as in Figure 5a.
Thus, if the crossing point is given in advance, we need only find where C crosses
the line d2F/ay2 = 0.

For cubits where fo3 # 0, it is easier to find the zeros of dF/dy on d2F/dy2 = 0
and use them to evaluate the range of x-coordinates R + where aFlay L 0 on
d2F/dy2 = 0. Assume without loss of generality that fo3 > 0 so that F 1 x=mp is
monotone increasing in y when m, E R +. Thus, we need only test F3 (F 1 X=mp, n,)
when m, 4 R +. We need not find zero crossings of a2F/dy2 as (x, y) moves along
C because such zero crossings do not affect &(F 1 x=X, y) for x fj? R’ since aF/ay
and d3F/dy3 have opposite signs when d2F/dy2 = 0.

Figure 6 shows a cubic curve where R+ is the interval [x1, x2] and the crossing
point occurs at x = x3. These three critical x-coordinates determine four different
forms of the test “(m,, np) is above C “:

i

&(FI.=mp, np) > 2 when m, % x1,

Fh,, np) > 0 when xIsmp(x2,

h(F I r=m,,t np) > 0 when x2smpsx3,

&:3(F I -,, n,) > 1 when x3 I m,.

To find threshold values and critical x-coordinates, we need expressions for the
partial derivatives in terms of difference registers valid at some point
(m,, np). Setting k = 1= 0 and d = 3 in (5) and differentiating, we obtain

dF(m, + X, n, + 9)

dF(m, + X, n, + 7)

=,:“:.,,+(q (- 1) 2 f2,+ Y-2 ~fo2+xh.~+(~+9+$fo3 @)

a2F(mp ;,: np + y, = fo2 + 3cf12 + (7 - l)fo3. (9)

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

272 l John D. Hobby

Fig. 6. The zeros of F(x, y) == -4.x3 + 13+*y -

1211~’ + y3 + 30x* - 4Oxy - 20~’ and the

corresponding critical 3c coordinates. The first

quadrant curve from A to B requires four dif-

ferent versions of the aboveness test.

To evaluate aF/G’y when d2F/dy2 = 0, substitute 3 = 1 + (fo2 - Zfi2)/fo3 into (8):

Thus, we obtain critical x-coordinates by adding m, to each root of (10).
Once we have the critical x-coordinates, we choose the appropriate form of the

aboveness test and run quadrant 1 up to the first critical x-coordinate. Then we
choose the form of the aboveness test to use up to the next x-coordinate and
repeat. When starting in. or entering a region where x E R+, the aboveness test
becomes “foO > 0.” Otherwise, it is “&(F) x=mp, n,) > k,” where we use (8) and (9)
to evaluate K = &(F 1 x q = xi, yi) for some convenient (xi, yi) on the appropriate
part of C assuming that F = 0 and d3F/dy3 > 0 at (Xi, yi). We can always choose
(xi, yi) to be the starting or ending point of C or where C crosses a boundary of
a region where x E R +.

To make this more reliable when the slope is nearly vertical at (rip yi), note
that the gradient of F is perpendicular to C and therefore dF/dx and aFlay
always have opposite signs when C is a first quadrant curve. Hence, we evaluate
dF/ax and aF/ily at (Xi, yi) and look at the sign of whichever has the greatest
magnitude. If dF/ay evaluates to zero or if numerical errors cause a result of the
wrong sign, the proper threshold may be obtained by using -aF/c?x in place of
cYF/b’y when evaluating & (F 1 x=xi, yi).

When C leaves a region where x E R + at some critical x-coordinate Xi, it is
awkward to obtain the corresponding yi where Fxzxi = 0, but we know a priori
that F = 0, dF/dy > 0, and d3F/ay3 > 0 at (Xi, yi). Thus, the threshold
i$(F 1 x=xi, yi) is two or zero depending on whether d’F(xi, yi)/dy2 > 0. Since

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves 273

(d2F/dy2) [x=xi and F 1 x=xi are both monotone increasing, (d2F/dy2) 1 x=xi > 0 when
F] x=xi = 0 if and only if F] x=xi < 0 when (d’F/dy*)] x=xi = 0; that is, if the registers
are valid for (m,, n,), we test if

c 00
” 5 fij < 0,

i+jS3 ' J

when i = Xi - m, and jj = 1 - (fo2 + ?fi2)/fo3.
The overall process of finding threshold values for cubic curves consists of

solving (10) and then evaluating some partial derivatives in order to find
i(F] x=li, yi) at the appropriate (xi, yi). In terms of total arithmetic operations,
it takes about 17 to find the coefficients of (10) and a few more to solve it. In
addition, about 50 operations are required to find each threshold value using the
techniques given above. These are likely to be floating-point operations that are
more expensive than the nine additions and four comparisons per pixel center in
the inner loop of quadruntl.

3. INITIALIZING THE DIFFERENCE REGISTERS

Just what is meant when the quadrant1 procedure says “Make the registers valid
for (m, n)“? We are given a polynomial of total degree d in x and y expanded
about some point (X, Y), and we are to compute a new form expanded about
(m, n) and rescale if necessary to obtain integer difference registers. In other
words, we choose a scale factor X and base the difference registers on

F(X + 3c, Y + 4) = X 2 cklXky’ = 0. (11)
k+lad

Thus,

F(m + 3c, n + 7) = X C c~Jk~‘,
k+lsd

where

cl1 = i+jzmk-l (” l i)(” z j)cm - XY(n - YIjCk+i,l+j. (12)

To relate F(m + 2, n + p) to the difference registers valid for (m, n), specialize

(5) to

F(m + 2, n + 7) =

Then let

for i + j I d,

(13)

(14)

where (1) denotes the Stirling number of the second kind as given by Knuth [8]:

{‘i}+y}+{;r:) {p}={f zhk,=,i;;.
ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

274 - John D. Hobby

We can verify (14) by substituting it into the right-hand side of (13), giving

= x 2 c&xky’
k+lsd

as required.
For d = 3, (14) reduces to

fm = 6hc&,
foe = al fm = A(2c;, + 6c&) fil = 2bTl
fi0 = xcc:, + c;o + CL) fu = h(ci, + cl1 + CL!) fE = 2xc;2
fOl = A(& + co’2 + CL3 fez = ~@c& + 6~013) fos = 6X&,.

To make the registers valid for (m, n), we use (12) to obtain the necessary values

for cLl and plug these into (14).
Some additional issues arise if F is not given in a form that guarantees integer

values for integer inputs. First of all, it is necessary to round off the right-hand
side of (14) in order to get integer-valued difference registers. The difference
registers then refer to a slightly different function F’ (x, y), and quadrant1
computes the rasterization of F ’ (x, y) = 0. The functions F and F ’ will be quite
similar near the initial point (m, n), but may diverge as (x, y) moves away from
(m, n). Thus, if the curve contains a point where the gradient of F is zero, the
initial (m, n) should be as close to that point as possible. For a cubic curve where
F(x, y) = 0 crosses itself, t.he gradient is zero there, so it is a good idea to divide
the curve in half at that point and process each part separately starting at the
crossing point.

3.1 Choosing the Scale Factor

The purpose of the scale factor h is to limit the errors produced by rounding the
right-hand side of (14) while ensuring that register values remain small enough
to avoid integer overflow. If F(x, y) has integer coefficients and is known to be
small enough to avoid overflow, it is possible to set X = 1 and skip the rest of
this section. This section applies to those applications where X must be set so
that the register values will be as large as possible without danger of overflow.
We give an upper bound t.hat depends on X for the quantities computed when
the quadrant1 procedure is used to rasterize a first-quadrant curve F(x, y) = 0
with starting and ending points (m, n) and (m’, n’). (Alternative techniques
that may yield better bounds when a parametric form of F(x, y) = 0 is known
are discussed in [5].)

The algorithm examines pixel centers (mi, ni) where m I mi < m ’ and
n 5 ni < n ‘, generating registers valid for such points (mi, n;). When F has total
degree d, the register values are Fkl(mi, ni) for 0 5 k + 1 5 d, where Fk, are
the finite differences of 17 as defined in the introduction. Additionally, the
aboveness test requires linear combinations of register values. For d = 3, these
are $-Fo3(mi, ni) + Fol(mi, i?i) and Foz(mi, ni) - Fol(mi, ni).

To get bounds on the above-mentioned functions at the relevant pixel centers
(mi, ni), it suffices to bound the functions on the rectangle m 5 x I m’ - 1,

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves 275

n5ySn’ - 1. The computations are somewhat simplified if we use the fact
that Fkl(mi, ni) is equal to dkfLF/dxkdy’ evaluated at some point (n, y) where
mi < x < mi + k and ni < y < mi + 1. (This follows by repeated application

of the Mean Value Theorem.) Thus, we can bound Fkl by finding the extremes of
dk+‘F/dxkdy’ on the rectangle m 5 x 5 m’ + k - 1, n I y 5 n’ + 1 - 1.

In the special case k = 1 = 0, we can take advantage of the fact that we are
trying to track zeros of F (x, y); that is, we need only consider F(mi, ni) for
pixel centers (mi, ni) where the curve F(x, y) = 0 crosses from 9(mi, ni) to
\k(mi + 1, ni) or \k(mi, ni + l), where \k is as defined in Section 1.1. Thus, there
exists t in the interval [0, l] where either F (mi - t, ni) = 0 or F(mi, ni - t) = 0.
Hence, we can bound] F(mi, ni)] by maximizing] aF/dx] on the line segment
((mi-t’,ni))Ort’~l)andmaximizingIdF/axIon((mi,ni-t’)IO~t’~l).
In other words, we get bounds of] F] for free by slightly extending the rectangle
over which we maximize] dF/dx] and] dF/dy I.

When F has total degree d = 3,

Fo2h, ni) - Fol(mi, ni> = J’dm, n;) - @‘02(m, ni - 1) + Folh, ni - 1))

= Fos(mi, ni - 1) - Fol(mi, ni - 1).

Hence, each of] F,,, I,] Fo3 I,] $FoB + F,, I, and] F,,, - F,,,] never gets larger
than

3

I I

aF +
dF

w3 ,52Y-1 by . I I

(15)
n-15y5n

The overall bound on all quantities computed by quadrant1 is the maximum of

(15),] d3F/dx3 I,] a3F/dx2dy I,] d3F/dxdy2 1, and

When F is defined via (11) with d = 3, each partial derivative of F is X times a
known polynomial. The third partials are independent of x and y, the second
partials are linear functions of x and y that can easily be maximized over the
required rectangles, and the first partials are quadratic functions that are only a
little harder to maximize. Thus, we can find F,,, such that the maximum of (15),
(16), and the third partials is XF,,,. Hence, if we allow integers of maximum
magnitude M, we set X = M/F,,,.

4. CONCLUSION

We have introduced general techniques for the rasterization of algebraic curves
given in implicit form with particular attention to curves of degree three. The
techniques can be applied to parametric curves by first converting them into
implicit form as explained in [7] and [141. The main reason for concentrating on
cubic curves is that the degree-two case has already been well studied [El.

Since we compute the rasterization according to the definition given in
Section 1.1, our results are mathematically precise. They are compatible with
Freeman’s rule for generating one-pixel-wide lines as well as the “pixels whose

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

276 l John D. Hobby

centers lie inside” rule for rasterizing spline-bounded regions. The properties of
these rules and the resulting rasterized images have been well studied by works
such as [15].

A major contribution of this work is a general solution to the undersampling
problem, which in the cu.bic case involves two extra additions and two extra
comparisons per pixel center examined by the quadrant1 procedure. Of course,
there is also the overhead. required to find critical x-coordinates and threshold
values as explained in Section 2.2, but the actual operation counts suggest that
this overhead is quite reasonable for cubits.

Alternatively, the overhead disappears if we regard the threshold values as part
of the problem instance. This may be reasonable because it avoids certain
problems that are especially troubling for curves of degree higher than cubic: The
integer difference registers define a precise function F(X) y), but it might not be
clear without the thresholds which solutions to F(x) y) = 0 give the desired curve.
After all, the given starting and ending points may be rational or floating-point
approximations that do not lie precisely on F(x) y) = 0. In fact, the curve could
begin at one crossing point and end at another.

The worst difficulties are avoided for cubic curves where it appears possible to
derive reasonable thresholds from approximate data. When used with floating-
point arithmetic, the techniques of Section 2.2 are intended to “do the right
thing” except in degenerate cases where it makes very little difference. This is
borne out by practical experience, but would be difficult to prove.

The problem of approximate data is compounded when it is necessary to round
the initial register values to integers. An implicit form with floating-point
coefficients is inherently imprecise, but the errors may be magnified when we
enforce the same standard of absolute accuracy on all registers regardless of the
magnitude of their initial values.

One way to control such errors is to apply a special linear transformation that
maps pixel centers to pixel centers. Such “unit determinant transformations” are
discussed in [5]. They work by modifying the quadrant1 procedure to use
difference registers based on the transformed coordinate system while computing
the canonical rasterization in the original coordinate system. This eases the
problems caused by rounding initial register values.

In any case the initial register values and threshold choices determine a
precisely defined curve, and the algorithm computes the canonical rasterization
of this curve with no errors of any kind. Rounding the initial register values can
cause the curve actually rasterized to differ from the desired curve, but the
difference is usually fairly small; for example, errors on the order of a few hundred
thousandths of a pixel are typical for curves 100 pixels long computed with
32-bit arithmetic.

REFERENCES

1. BOROFSKY, S. Elementary l’heory of Equations. Macmillan, New York, 1950.

2. FREEMAN, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron.

Comput. EC-lo, 2 (June 1961), 260-268.

3. FREEMAN, H. On the quant.ization of line-drawing data. IEEE Trans. Syst. Sci. Cybern. 5, 1
(Jan. 1969), 70-79.

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

Rasterization of Nonparametric Curves 277

4. HOBBY, J. D. Digitized brush trajectories. Ph.D. dissertation, Dept. of Computer Science,

Stanford Univ., Stanford, Calif., 1985.

5. HOBBY, J. D. Non-parametric digitization algorithms. Comput. Sci. Tech. Rep. 125, AT&T Bell

Laboratories, Murray Hill, N.J., 1986.

6. HOBBY, J. D. Rasterizing curved lines of constant width. J. ACM 36,2 (April 1989), 209-229.
7. HOBBY, J. D. Numerically stable implicitization of cubic curves. ACM Trans. Graph. To be

published.
8. KNUTH, D. E. The Art of Computer Programming. Vol. 1, Sorting and Searching. Addison-

Wesley, Reading, Mass., 1973.
9. KNUTH, D. E. Computers and Typesetting. Vol. D, Metafont: The Program, Addison-Wesley,

Reading, Mass., 1986.

10. PATTERSON, R. R. Parametric cubits as algebraic curves. Cornput-Aided Geom. Des. 5, 2 (July

1988), 139-159.
11. PITTEWAY, M. L. V. Algorithm for drawing ellipses or hyperbolse with a digital plotter. Comput.

J. 10,3 (Nov. 1967), 282-289.

12. PRATT, V. R. Techniques for conic splines. Comput. Graph. 19, 3 (July 1985), 151-159.

13. SEDERBERG, T. W. Implicit and parametric curves and surfaces for computer aided geometric

design. Ph.D. dissertation, Dept. of Mechanical Engineering, Purdue Univ., West Lafayette, Ind.,

1983.

14. SEDERBERG, T. W., ANDERSON, D. C., AND GOLDMAN, R. N. Implicitization, inversion and

intersection of planar rational cubic curves. Comput. Vision Graph. Image Process. 31, 1 (July

1985), 89-102.
15. VAN AKEN, J., AND NOVAK, M. Curve-drawing algorithms for raster displays. ACM Trans.

Graph. 4,2 (Apr. 1985), 147-169.

Received October 1986; revised August 1988, and May and June 1989; accepted July 1989

Editor: Daniel Bergeron

ACM Transactions on Graphics, Vol. 9, No. 3, July 1990.

