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Abstract. Formal languages are increasingly used to describe the functional re-
quirements of circuits. Although formal requirements can be hard to understand
and subtle, they are seldom the object of verification. In this paper we present
our requirement analysis tool, RAT. Our tool supports quality assurance of for-
mal specifications. A designer can interactively explore the requirements’ seman-
tics and automatically check the specification against assertions (which must be
satisfied) and possibilities (which describe allowed corner-case behavior). Using
RAT, a designer can also investigate the realizability of a specification. RAT was
successfully examined in several industrial projects.

1 Introduction

Formal specifications are becoming increasingly important, not only for verification,
but also to describe design intent.

Traditionally, the verification effort focuses mainly on the design. A design is verified
using either a golden model or a set of properties. This can be done either by simulation
or by static verification. Either requires a large amount of effort on behalf of the user
and is a time consuming part of the design cycle. Requirements, however, are seldom
the object of verification. This is somewhat surprising, since industrial data show that
about 50 percent of product defects originate in flawed requirements and that around 80
percent of rework effort can be traced back to requirement defects [12].

The use of formal requirements is a first and substantial step towards high qual-
ity specifications, but is obviously not enough to ensure the desired quality. RAT, our
requirements analysis tool, supports the designer in the crucial task of writing high
quality formal requirements of circuits. (We use specifications as a synonym for for-
mal functional requirements.) RAT can be downloaded from http://rat.itc.it.
It supports PSL [1], and provides a convenient graphical interface for the develop-
ment, analysis, and management of a specification. Our current version draws from
complementary techniques to explore requirement semantics, assure system traits, and
check for realizability: property simulation [10], property assurance [10], and property
realizability.

In the remainder of this paper we show how these techniques integrate, present a
methodological guideline, give technical details, and report feedback from industry.
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2 Requirements Analysis

Property Simulation provides the designer with an interactive method to understand the
semantics of formal requirements by exploring their behavior one trace at a time. A
designer can ask for an example behavior, constrain it by fixing the value of any signal
for any given time step, and then check whether the altered trace is still allowed by
the requirements. If not, the designer can ask for a different trace that is correct and
adheres to the user-specified constraints. Although a property does not differentiate be-
tween inputs and outputs, the designer may do so. Based on such a classification she
can perform a “what-if” analysis by setting inputs and asking to be presented with cor-
responding outputs. Dually, a “how-can” analysis can be performed by setting output
signals and asking how, if at all, these outputs can be achieved. We provide an expla-
nation of derived traces in the form of the property syntax tree plus the truth values of
each subformula at every step. This helps the designer to understand how the subformu-
las and the property itself are evaluated along the trace. In a way, property simulation
allows for a reverse-engineering of the property semantics much like a hardware design
would be simulated.

Property Assurance provides the designer with a general means to assess whether
she has written the right set of properties. First, property assurance can check that the
requirements are consistent and do not contain a contradiction. Second, the designer
can provide two sets of properties: ΦA, a set of assertions that must be guaranteed,
and ΦP , a set of possibilities that describes corner cases that must be allowed by the
requirements. Using assertions, a designer can check whether the requirements are strict
enough to exclude any undesired behavior. With possibilities, she can check that they
are not overly strict, and desirable behavior is allowed.

Property Realizability aims to verify whether there is a system that behaves accord-
ing to the specification for any provided input sequence. To decide realizability, we split
the requirements into assumptions on the environment and guarantees on the system
behavior. Then we check for the existence of a system which can provide correct out-
puts for any inputs that are consistent with the environment assumptions. This problem
can be seen as a two player game (the players being the environment and the system),
where we have to determine a winning strategy (an implementation) for the system. Re-
alizability is much more demanding than logical consistency. Indeed, there are logical
consistent specifications that are unrealizable.

Figure 1 depicts a requirements analysis process that integrates the three proposed
techniques. First, the designer comes up with initial approximations of the requirements
Γ , assertions ΦA, and possibilities ΦP . We propose an iterative approach, checking
whether the requirements are consistent, whether they allow for all possibilities stated
in ΦP , and whether they do not contradict any assertion in ΦA. For any problem, the
designer is presented with diagnosis information, and consequently refines Γ , ΦA, and
ΦP to fix it. After any change, the requirements are verified again for consistency and
for adherence to ΦA and ΦP . Finally, realizability of the specification is checked. If the
requirements are unrealizable, the designer is requested to revise the specification.
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Fig. 2. RAT architecture

3 Technical Aspects

Property simulation and assurance rely on Automata-based and Bounded Model Check-
ing (BMC) techniques [9,3]. For both approaches we derive an automaton and check its
language for emptiness, for a (bounded) witness or counterexample for the task at hand.

To decide the realizability of a specification we construct a two-player game between
the system and the environment [11]. The goal of the system is to satisfy the specifica-
tion by delivering correct outputs considering the so far encountered input, regardless
of the input sequence provided by the environment. Realizability can be decided by
checking whether this game is winning for the system or the environment. For a winning

Fig. 3. RAT’s GUI
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environment, the specification is unrealizable and must be modified. If the system wins,
the specification is realizable: an implementation can be constructed.

The concepts presented in the previous sections have been used in the design and de-
velopment of RAT [10]. Figure 2 depicts a high level architecture of RAT. An example
of the graphical user interface can be found in Figure 3. RAT’s verification capabilities
currently rely on the NUSMV [7] and VIS [6] model checkers, extended to provide
the devised functionalities [4,8]. However, RAT has been designed and implemented
for an easy plug in of other verification engines, to support further languages and ver-
ification algorithms. Additional information on RAT can be obtained from its web site
http://rat.itc.it

4 Experimental Analysis

In [2] IBM, Infineon, STMicroelectronics, and OneSpin examined several new tech-
niques and tools for property-based requirements specification, including a RAT proto-
type supporting property simulation and assurance. The case studies included transport
frontends, protocols, a bridge, SOC interconnects, and other industrial design blocks.

Although our tool was a prototype when the case studies were done, our technol-
ogy appeals to designers: “We found the concept of property simulation attractive as it
allows a developer to debug her/his own PSL code easily, quickly and independently”.
Several bugs in the properties were found, and property assurance has been “used effec-
tively in specific cases to prove that one set of properties can be substituted by another”.
The interface and usability features provided by RAT “make the development process
easier and provide an enjoyable development experience”. IBM’s experience with the
tool prompted them to start “to design and develop a feature similar to property sim-
ulation in RuleBasePE soon after starting this case study”. One of the projects also
quantified an economical benefit; estimated 1.5 person months for property debugging
shrank to 0.5 person months using RAT.

Regarding realizability, in [5] the realizability proof of real system-on-chip designs
has been shown using the same algorithms implemented in RAT [8].
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