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Ratchet driven by quasimonochromatic noise
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The currents generated by noise-induced activation processes in a periodic potential are investigated ana-
lytically, by digital simulation and by performing analog experiments. The noise is taken to be quasimono-
chromatic and the potential to be a smoothed sawtooth. Two analytic approaches are studied. The first involves
a perturbative expansion in inverse powers of the frequency characterizing quasimonochromatic noise and the
second is a direct numerical integration of the deterministic differential equations obtained in the limit of weak
noise. These results, together with the digital and analog experiments, show that the system does indeed give
rise, in general, to a net transport of particles. All techniques also show that a current reversal exists for a
particular value of the noise parameters.

PACS numbs(s): 05.40.Ca, 05.10.Gg, 02.50.Ey

I. INTRODUCTION balance holds that we can use considerations based on the
second law to decide that no coherent unidirectional motion
The nature of microscopic engines, such as molecular mds possible6].

tors, has been the subject of much research over the last five The classification of different types of ratchets is in fact
or six years. This recent activity was stimulated by the posmost easily carried out with reference to Eda), since the
sibility of noise-induced currentsl—4], and was motivated terminology used to describe ratchét®rrelation, flashing
to a large extent by the desire to model protein motors. Thesg not always applied consistently. Nearly all studies neglect
are proteins which are connected to a biopolymer and catahe inertial term in Eq(1) and scale time by, so that the
lyze the conversion of adenosine triphosph@®P) to ad-  coefficient of thex term is unity. Most studies have focussed
enosine diphosphatéDP). The energy released by this pro- 4, the casesi) V(x,t)=V(x) is deterministic and(t) is
cess is used by the motor protein to generate motion alongqnyhite-noisg(so that detailed balance does not hol)
the biopolymer in one particular direction. This is mOde”edV(x,t):V(x) &(t) where¢(t) may be deterministic or ran-
as a microscopic object moving unidirectionally along a oneyq [7] and £(t) is white noise. Since the main prerequisite
dimensional periodic structufé]. It is this problem of rec- ¢, any ratchet is that the system does not obey detailed
tifying processes at small scales that has stimulated most @fy5nce and, since detailed balance may be violated in many

the theoretical work in this area. A key ingredient is the gigterent ways, it is clear that many other forms are possible.
presence of random Brownian forces. As a consequence itis | this paper we will study a ratchet of the tygie dis-

natural to describe these stochastic ratchets, as they are fig;ssed above, sometimes called a correlation ratchet. In Sec.

que_ntly calleo_l, as a particle moving _in a periodic_ potentialy the model is described in more detail: the potential is
subject_to noise and to formulate this mathematically as Qpecified as is the type of noise—quasimonochromatic noise
Langevin equation (QMN) [8], whose application to ratchets was first discussed

in Ref.[2]. We study the model using analytic techniques in

. . Secs. lll and IV and by the digital and analog simulations
MXx+ax+d,V(x,t)=&(t), (1) which are discussed in Sec. V. We end with an analysis of

results and conclusions. Some of our preliminary work has

, . L - already been reportd@].
wherex(t) is the coordinate of the particley is a friction

constantV(x,t) is a periodic asymmetric potential ag¢t)
is the noise.

Before discussing Ed1) in more detail, we should point !l MODEL
out that there are at least three other reasons for the renewed In this section we will write down an explicit representa-
interest in such systems. The first is a new generation afion for a correlation ratchet acted upon by quasimonochro-
experiments that can be performed in Vi, which has led matic noise. Having said this, it only remains to specify the
to the increased sophistication of the models now studiedpotentialV(x). We have already indicated that this function
The second is the application of these ideas to nonbiologicathould be periodic and asymmetric. A natural choice would
situations at small scales—the realm of nanotechnology. Fitherefore be a sawtooth potential: as shown in R2f, a
nally, this problem throws up fundamental questions consawtooth potential is the one which maximizes the current.
cerning irreversibility and the second law of thermodynam-However, in order to carry out analog experiments we take
ics. These issues are discussed extensively elseWberso  the first few Fourier modes of such a potential leading to the
we will just make the essential point that it is only if detailed form
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2 f(kHz)

X FIG. 2. Noise power spectrum fony=31.6, '=16.7. The

) jagged line is from experiment, and the smooth one from theory.
FIG. 1. (a Sawtooth potential.(b) “Smoothed sawtooth”  The frequencyf = w/27.

potential.

to be discussed in Sec. V. In the case of the analog simula-
tion, the first task, before simulating the Langevin equation
itself, is to check the quality of the QMN produced by the
analogue circuit. In order to accomplish this, we examine the
The sawtooth and the approximation to it, EB), are both QMN spectrum simulated b§6). Two examples are shown
shown in Fig. 1, where we can see that we are modelling then Figs. 2 and 3.
sawtooth potential by rounding the corners. This not only It is evident that there is good agreement between the
makes it easier to reproduce in an analog experiment, but itoise generated in the simulations and the theoretical result
also removes possible singularities in the theoretical treatgiven by Eq.(5). It is also clear from these figures that the
ment: the “sharp corners” at the top and bottom of the po-shape of the spectrum changes considerably depending on
tential would mean that the force that the particle would feelthe values of the parametefsand w. In fact, these figures
would be not well defined. illustrate the two regimes for QMN noise. The fitBig. 2) is
Therefore the model is defined by the Langevin equatioran example of the case§>21“2. The spectrum has a local

] minimum atw=0, rising to a maximum value abzzwg

X+ V' (x)=§(1), (3)  —2I'?, and then falling off to zero am—x. As we have
remarked already, in the limio3>2T? the peak becomes
narrower and better defined. Moreover, for valuesafuch
that w< wg, the spectrum is essentially flat and approximates

1 1
V(X)=2 cosx+sinx+ §cos(2x) + R)cos(3x). (2

whereV(x) is given by Eq(2) and the noisé&(t) is taken to
be Gaussian with zero mean and correlation function

, , well white noise. On the other hand Fig. 3 illustrates the case
=2D 27 C S(w+ . 4 .
(¢(w)é(w")) 7C(w)doto’) @ w3<2I'?, where the spectrum has a local maximumeat
We chooset to be quasimonochromatic noi¢®@MN) since =0 and falls away to zero as—. So, in summary, if the

it exactly suits our purposes: the noise cannot be white, fof@mping parametel is small enough, the power spectrum
reasons described in the last section and it has the physicalfias @ peak at nonzero frequency. Rsncreases, the peak
appealing feature of having a peak at a nonzero frequency igroadens and moves towards zero frequency.IFgreater

its power spectrunthence the namgg] QMN), while being  than a critical value ofvg/\/2 the maximum of the power
simple enough to allow analytic progress to be made. Spespectrum is at zero frequency. Our aim is to see how the
cifically, the noise is defined by current changes as the noise parameffeend w, vary.

C Y w)=(w’— 03)?+4I%w?. (5)

C(w) is sharply peaked at the frequenay3— 2I'%) 2~ w,

in the limit '< wg, and so we will frequently be working in
this regime. This type of noise can also be viewed as the
result of passing white noise through a harmonic oscillator
filter:

E+2T é+wié=1n (6)

(hence the name “harmonicl10,11], which is also often
used where the white noise has strengttD.

We shall be mounting a three-pronged attack on the prob-
lem posed above: an analytic treatment based a dbnaf- FIG. 3. Noise power spectrum fapy,=31.6, I'=33.3. The
proximation, direct digital simulation of the Langevin equa- jagged line is from experiment, and the smooth one from theory.
tion, to be discussed in Sec. V, and an analog simulation alsthe frequencyf = w/27.

f (kHz)
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IIl. GENERAL FORMALISM

o0

1
In this section we discuss the approach we will use to Alx]= Zf_wdt

explore analytically the generation of noise-induced currents
in the correlation ratchet introduced in the previous section. or . 1 .. . .
The method will involve an asymptotic analysis in the limit + — [X+XV" () ] [X+XV"(x) +X2V"(X)] |

where the noise strength tends to zero. To construct the “o “o

asymptotic expansion it is first necessary to formulate the (12)
problem defined by the Langevin equati(®) in a different

form. There are at least two different ways to proceed. One is{aving discussed the reformulation of the problem expressed
to write down an equivalent Fokker-Planck equation. Sinceas the Langevin equatioi3) as a Fokker-Planck equation or
the noiseé(t) in Eq. (3) is not white, it is first necessary to as a path integral, we are now in a position to discuss the
convert the process into an equivalent Markovian one witrD —0 asymptotics. In the case of the Fokker-Planck equa-
three degrees of freedomx,€,£), say. Thus the Fokker- tion one may perform a WKB-like analysis, while in the case
Planck equation will have the form of time-dependent partialof the path-integral one may evaluate H@) by steepest
differential equation in three dimensions. We shall not purdescents, the paths which dominate the integral being those
sue this method here, instead we will use the approach gbr which

expressing the conditional probabilifyp(x—x(t))),c as an

average over all possible patkasr realizations of the pro- SA[X]

ces$ with given initial conditions, denoted here by IC. These 0 (13

initial conditions specify not only the initial values aft),
but also of£(t) and ofé(t) att=t,. The explicit form for the
path-integral i§12]

[x+V'(x)]

2

From Eq.(12) it can be seen that a sixth-order nonlinear
differential equation is obtained. The solutions of this equa-
tion, subject to the appropriate boundary conditions are the

P(x,t IC,t0)=<5(x—x(t))>,C=f DXP[x]5(x—x(t)), instantons or optimal paths,(t) of the model. Substituting
Ic this solution back into the action givesramber S=S[x,]

@) zwéA[xc]. In either case, the WKB treatment or the steep-
where Dx is the appropriate measure defined so thas est descent evaluation of the path integral, an analysis of the
correctly normalized and conditional probability(7) leads to a rate of escape from one

potential well to another which has the characteristic form
Px]=J[x]exp— 9 x]/D. (8) Nexp—SD, where N will be termed the prefactor. In the

ratchet we are interested in the currénivhich is propor-
Hereg[ x] is the action functional, which will be discussed in tional to the difference between the rates of escape from a
more detail below, and[x] is the Jacobian of the transfor- particular potential well to the neighboring wells on the right
mation from #(t) to x(t), for which we will not require an and on the left. It is therefore reasonable that it should have

explicit form. the form[2]
The method for finding] x] is discussed in some detail in
Ref. [13], but we can obtain it relatively quickly from Eqgs. j=NN,exp(—S, /D)—N_expg—S_/D)], (14

(3) and(6) by first writing
where the plus and minus symbols denote right and leftward
transitions respectively and is the well spacing.

In the next section we will calculate the actions in Eq.
(14), by solving the sixth order equation obtained from Eq.
(13), numerically. However, in order to get some intuition

. 2r . .
[X+ V' (X) ]+ — [x+XxV"(X)]
@o

1 . . .
+—2[x+xV”(x)+x2V”’(x)] for what may happen we will end this section by assuming
) thatw is large(compared to the scale set by the curvature of
—m’zn(t) ©) the potential at the bottom of the welland obtaining the
=wy )

action as a power series in, 2. In order to do this, we first

Since the noisey is Gaussian, white, with strengfh, and ~ reWrite the noise correlatab) in the generic form

has zero mean, the probability functior®fl»] has the form

exp—(1/4D) fdt 5%(t). A naive substitution of Eq(9) into C )= wg[ 1+ k7?0’ + kot 0?], (19
this expression is sufficient to give the correct functional
form for P[x] to leading order irD, namely, where
Pix]=J[x]exp— A[x]/A, (10 T2
=y, ki=—2| 1-— |, k=1, (16)
where ®q
Ax]=9x]/wg, A=Dlwj (11)  With the form (15), the action for a path, starting at the

bottom of a well ax=a and ending at the top of an adjacent
and barrier atx=b, is given by[14]
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TABLE I. Numerical values of the integrals in E(L7) for the  spectively. So we see that= wo/\/i is a reasonable esti-
potential (2). mate for the value at whicll, and.A_ become equal when
wq has the larger valugd1.6), but it is considerably different
in the case whemwg is smaller:wy=10.5. We shall discuss
the interpretation of the point where the actions for the left-
n 4.62 2258 681.41 751.48 and right-moving transitions become equal in more detail in

the concluding section.

a® a® a® a®

- 4.62 5.61 59.06 70.15

IV. CALCULATION OF LEADING CONTRIBUTION

b b In this section we calculate the leading snialtontribu-
AEA[XC]ZJ dx V'+K172f dx V' (V)2 tions S.. (or alternatively the leading small contributions
a a A.) to the currenf in Eq. (7) for the case of the potential
b (2). In the preceding section we illustrated the general idea
+ KzT“f dx V'[(V")2+V'V"]? by evaluating these actions for largg, but a general ana-
a lytic treatment is not possible and we will have to resort to a
b numerical calculation of their values. From Eg2), the gen-
— Kf#f dx(V")3(V")2+0(7%). (17 eral form of the action functional is
a

t o
The O(7°) terms are also known, they are given in Ha#], A[x]zf dt L(x,x,X;t). (20
and are proportional ta; and «; k. to
First of all, suppose that the spectrum is sharply peake

w(2)>2F2, then bothx, and k, have magnitudes of order dThe variation(13) leads to an Euler-Lagrange equation of

one. In this case the expansi@tv) is simply one in powers sixth order

of =w, 2. TheO(7?) corrections are necessary, otherwise 3 j

A simply depends on the height of the barrigrV > (_1)jd_'((9_|‘.) =0, (21)
=f2dxV'(x) and the asymmetry of the potential does not =0 dt | ox®

manifest itself. An interesting special case is wheg is S

large, butw3=2I"2. Then «; is zero, and the second and wherex(=d!x/dt'. A numerical solution will involve the
fourth terms on the right hand side of E4.7) vanish, as do decomposition of this equation into six first-order differential
all of the O(7°) terms. So in this case equations. A systematic procedure for achieving this is pro-
vided by the Hamiltonian formulation for the generalized
mechanics given by Eq$20) and (21) [15].

b
— 4 " "\ 2 nymi2
A=AV T Ja dx V[(VI)"+V'VT] If we carry out this procedure starting from the Lagrang-

ian given by
+0(7% [for w3=2I?]. (18
) S N 2r . .
If there were ndD(7*) terms, it would be the case that when L(X,X,X,X)= 2 [X+V (X)]+ —[x+xV"(x)]
w§= 2I'2, the action only depended on the barrier height, and @o
so if the height of the barrier was the same to the right or to 2
the left, we should not expect any net current. Moreover, if FXHXV(X) XV ()], (22)
we plot the spectrum of the noise, for the particular value of w%

w§=21“2, we can see that it is very flat: the particle effec-

tively is feeling a white noise which gives no ratchet effect atwe find the following Hamiltonian:

all. Since there ar®(7*) corrections in Eq(18), this is not

quite so however. In order to investigate this point in a little  H(x, 5): P1Xo+ p2X3+wépg—pg{wS(X2+V’)+2F(X3
more detail, we have calculated the integrals in @4) [and

Eq. (18)] usingV(x) given in Eq.(2). We find +XV") + XgV" + X5V, (23
Ar=aP+aPr P +alk,r*—alrir*+0(7), wherex=(X;,X»,Xs) and p=(p;,P2,ps). The action turns
(19 out to be[15]
where the coefficienta!) are given in Table I. .
Let us focus on the particular values,=10.5 andw, A= pgdt. (29

= 31.6 which we will use later. A short calculation using Eq.
(19) and the values dod{" given in Table | above shows, that . _ ,
to O(79), A,=A_ whenT=6.84 (for wo=10.5) andl Hamilton’s equations have their usual form:
=22.13(for wy=31.6). If we had used the resuliz=2I"2 ’ ’

— valid for small 7 as indicated by Eq(18) — the corre- X, J 0. — J =

=—, -, 1,...,3; 25
sponding values of’ would have been 7.42 and 22.34, re- ap’ IXi 9
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they are, by construction, equivalent to the Euler-Lagrangaions on the boundaries from~ to —T and from O to.
equationg21). Using the Hamiltoniari23), the six equations WhenT is chosen to be large enough, the result is indepen-

(25) yield dent of its value.
_ The results of this calculation will be discussed in Sec. VI
X1=Xz, (26) where they will be compared to the simulations that we have
also carried out on this problem. We now turn to a discussion
X=X, (27)  of these simulations.

)-(3=2wgp3—{wg[X2+V'(X1)]+2F[X3+X2V"(X1)] V. ANALOG AND NUMERICAL SIMULATIONS

In this section we study our correlation ratchet using ana-
log and digital simulations. We have measured the variation
) 2 " " o of the current withl" in two ways: analog simulation experi-
P1=Pa{@oV"(X1) + 21V (X1) + X3V (X)) +X5V™ (X)), ments on an electronic circuit and Monte-Carlo simulations

(29 on a digital computer.
: 5 The first of these techniqu¢47—19 involves the build-
P2=—P1+Ps{wg+ 20 V" (X)) +2x,V” (X))}, (30 ing of an electronic circuit to model the system under study,
. the application of appropriate forces, and analysis of the re-
p3s=—po+ps{2'+V"(xq)}. (31)  sponse by means of a digital computer. The absence of trun-
cation errors makes analog simulations especially valuable
For an escape problem, we are searching for solutions th#ér use, e.g., with fast oscillating systems where the integra-
provide the minimum of the action. Imposing the conditiontion time (the time over which data are accumulated and
that the variation with time of the action is zero, as before perhaps ensemble-averagsdbstantially exceeds the vibra-
H=0, and following previous wor{15], we choose as tion period, as occurs with QMN. Digital techniques have the
boundary conditions for the “uphill” solutior(going from  advantage that they can alwaiys principle be made more

+ X3V (X1) + X5V (X1)}, (28)

the bottom to the top of the potential accurate than analog methods, which typically achieve
2—-3 % accuracy, but the relative simplicity of analog simu-
X1(— %) =Xmin,X1(%) = Xmax, lations and their realisrtbeing much closer to a real experi-
ment than a digital simulatiorrepresent significant advan-
Xo( £0)=0, (32  tages.
The electronic circuit used to mod@) and (6) is shown
X3(+%)=0. as a block diagram in Fig. 4. The lower section is the har-

) . monic oscillator used as a “filter” to convef8] quasiwhite
In order to solve Eqs26)—(31) in practice we have to trun- ise from a feedback shift-register noise generf20r19
cate them to a large, but finite, time interval and use thg.;, QMN. The QMN is then applied to the input of the

boundary conditions upper part of the circuit, which models the ratchet potential
(=T)= X X4(0) = itself. Although the basis of the circuit is stand4f®], sev-

X1 = Xmin, X1(8) = Xmax, eral points of detail deserve amplification. The force corre-
%o = T)=0.%,(0) =0, (39) sponding to the trigonometric potential of E®) is created

using trigonometric identities to write it as

Xa(—T)=0,x3(0)=0, 29 4 6
V/(x)=— ToSinX+Cosx— Zsinx cosx+ gsmf‘x, (35)
where we have used the time translation invariance of the

equations. so we can build the force using only two AD639 ICAL].
The TwpBVvP subroutines developed for solving two-point An inherent limitation of the AD639 IC is that it can only
boundary value problem were usgkb]. In order to get con-  treat a restricted range of angles $00°). To prevent its
vergence we used the following procedures. We linearizeghput from straying outside this range, provision is made for
Egs.(26)-(31) at the initial point, and changed the boundary resetting the circuit using DG303A{22] switches (they
conditions at that point, perturbing them in the direction ofhayve not been plotted in the block diagnafd7—19. The
the unstable manifold given by eigenvectors with eigenvalvyoltage in the circuit corresponding to coordinateas digi-
ues having positive real part. We took as an initial guess gzed with a 12-bit Microstar ADG23], model DAP 3200a/
straight line joining the boundary points, and the solution 0f415. Data analysis exploited the on-board 100 MHz Intel
this modified problem was used as initial guess to the Orlglﬂ_SGDX coprocessor, which was opera[ed within a MatLab-

nal problem, leading to a solution for the optimal path. based PC software system developed by Kauffia
Having found this solution, the action The digital simulations were done using a specialized al-
o gorithm, described in Ref8], which we will briefly recall
A:f p§dt (34) here. The particular structure of Eg8) and (6) poses, in
-T principle, a problem if a simple minded algorithm is used in

the integration: Eq(6) is characterized by two time scales
was calculated, and to minimize the effect of the cutoff effect(w, andI') and the integration time stefgall it h) used in
we added the correction from integrating the linear expresthe
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digital simulations would be chosen in such a way that bothwhere

woh<<1 andl'h<1. Also, if 7, is the typical relaxation time

in Eq. (3), we should also satisf/7,<1. This latter in- W3=B317; + B3zy+ Bagzs, (39)
equality, for the typical parameters which are of physical

. , - L .~ .and wherez; are uncorrelated Gaussian deviates of average
interest, is normally satisfied as soon as the former one is: in

other words, in a simple minded algorithm the constraint o ¢ero and standard deviation one. Note that the quanifiy

the integration time step comes from E6) rather than from "tums out to be. a I|ne§icoznib|r;at|on of iafssia?/%es' as
Eq. (3), because the time scales involved by andI" are expected. Definind)*=wp—T'" and A . =—T'= JI'"— wy,
(much smaller thanr, . From the point of view of the prob- W& have

lem we are trying to solve, however, this would not be very i\ N

efficient: we would be using most of the CPU time integrat- A31=—[—(em+— 1)__*(ehk__1)], (40)

ing the noise equatio(6) rather than integrating the dynami- 2Q [\ A

cal equation representing the model under study.

The particular structure of Eq&3) and(6) suggests that a
specialized algorithm could be more efficient: the point is
that Eq.(6) is a linear filtering of an uncorrelated Gaussian ]
noise. This means that the output of this equatibie vari- 1 he expressions fdB;; are very cumbersome, and we refer
able ¢) is itself a Gaussian variable, of unknown intensity the reader to Re{.8]:2note that Ref[8] contains a misprint,
and correlation: hence, it may be possible to integrate(8q. the quantity 4TT/§Q on the right hand side of EqA14)
directly, working out the appropriate integration algorithm, Should read™T/Q°. . ,
using the statistical properties of the Gaussian varigble A warning is in order concerning the random noise gen-
The algorithm used to integrate E@) is the Heun algorithm erator. The n0|se_|nten3|t|es of mter_est are falrly small com-
[25] which prescribes that we integrate E8) with a couple pared to the barrier that the Brownian particle has to over-

A2=5q - (41)

i (e™-—1 eM+—1
N N, |

of elementary steps, namely we first predict come to diffuse and generate a net current. It is then of great
importance to make sure that the rare activation events are

X(h)=x(0)+h[ =V (x(0))]+r(h), (36)  correctly generated, which implies that the noise generator

should be particularly accurate in generating the tails of the

and then correct as distribution. The generator used works by generating a

Gaussian random variable, using the Ziggurath algorithm
x(h)={x(h)+x(0)+h[—V'(x(h))]+r(h)}/2. (370  [26], from flat random distributions obtained with a subtract
and carry algorithnj27,28|.
In the expression above, we need to evaluate the quantity The actionsA. were calculated from the slope of plotting
r(h)zfgg(s)ds, which can be writteh8] as the logarithm of the mean escape time, calculated as the total
_ time of observation divided by the number of transitions to
r(h)=~Az(0)+ Az¢(0) +wsy, (38)  the left or right, versus D). The current in the experiments is
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right. Symbols are from numerical integration, solid lines from ana-SYMPbols are simulations, curves theory.

Iytic calculations.

analytical results, but there is a large amount of scatter. Nev-
easily obtained by keeping track of the distance moved bgrtheless, the value df at the point whered, =A_ pre-
the random walker and dividing it by the total simulation dicted by the digital simulations is in reasonable agreement
time. These results can be observed in the figures. with the theoretical value.

The prefactors are, unfortunately, difficult to calculate. In
fact, a calculation for QMN has not yet been carried out. The
prefactors are, however, known for white noise and exponen-

In this section we wish to compare the theoretical predictially correlated noiséfor small noise correlation timg29]),
tions of Sec. lIl, IV with the experiments. Our main aim is to and we use these in the expectation that they are a reasonable
understand the structure of the currébd). This is made up approximation to the true result. In Fig. 7, the current calcu-
of actionsS. and prefactorsV. . For smallD, the action lated from Eq.(14) using these prefactors together with an
dominates, so we begin by comparing the actions calculatedction calculated as in Sec. IV, is plotted with the data from
from Eq. (17) with the numerical method discussed in Sec.the digital simulation. A possible interpretation of the devia-
IV. For a typical value ofwy=10.5, the results are shown in tion of the theoretical from the experimental results could be
Fig. 5. This shows reasonable agreement between analyticdle approximate prefactor. However, it is clear that the ex-
and numerical results of solving the full set of equations ofponentially correlated prefactor is an improvement over the
Sec. IV. This fully justifies the approximation of Sec. Ill, White noise one, and this suggests that the correct QMN
which is very useful given the difficulty of carrying out the prefactor might give even better agreement. In any case, it is
numerical integrations in the method of Sec. IV. clearly demonstrated that a ratchet consisting of an asymmet-

Now we are in a position to compare the theoretical prefic periodic potential plus quasimonochromatic noise forcing
dictions with the digital simulation of Sec. V. This is shown can indeed give rise to a net transport of particles.
in Fig. 6. The digital simulation shows the same trends as the Table Il displays the current obtained far,=10.5 in

both the analog experiment and the digital simulation. In this

VI. ANALYSIS OF RESULTS AND CONCLUSIONS

TABLE II. Analog (j,) and digital (p) currents forwy=10.5.

1 T
3

r A ia io oox10Y g
— 4 —3 ) 1] % —
0.938 0.564 2.1% 10 1.53x 10 o o
1.346 0.591 2.3%10°4 1.26x10°° Al - T |
2.386 0.617 214104 8.10x10 4 o 4
5.250 0.654 128104 1.74x<10°* o °o , " o o
6.402 0.670 43210°° 1.03x10°°
7.721 0.673  —1.29x10°° —~1.78<10°4 3 e * 4
9.375 0681  —1.25<10°° ~3.15¢10°4 b e
11.170 0.693 —3.84x10°° —4.64x10°4 -4 | | | ol L
13.462 0.713 —1.20x10°4 —6.54x10 4 20 40 60 80 100
17.500 0.737 —2.13x10°4 —7.78x10°* r
21.000 0.796 —3.60x10°4 —-1.12x10°3 FIG. 7. Current forw,=31.6 andA =D/wi=0.87. The squares
26.250 0.832 —4.33<10°4 —1.28x10°3 are from digital simulation; the circles represent theory for a white
29.167 0.863 —5.44x10°4 —1.42x10°3 noise prefactor; the triangles represent theory with the improved

prefactor.
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case, although actions can be calculated analytically, the pdhe authors found that the current should change sign for at
rameter in the expansion for the prefactor is no longer smalleast two different values df.
and one is unable to obtain an analytic expression for the Our aim has been to study how the current changed as the
current. The values,=10.5 andw,=31.6 were chosen for noise parameteds andw, varied, for finitelI'/ wo. We found
technical reasons connected with carrying out the analog exhat that the change in the spectral density curvature at
periment. =0 mentioned above is still the main effect in determining
There is no reason to assume that the current reveysal {he current direction, in agreement with RE2]. We have
—0) necessarily occurs whe#, =.A_, because the prefac- ncluded in the theoretical treatment higher order terms in
tors may cause some deviation from this leading order resulf./@o: our result coincides with the result of R¢2] in the
However, from Fig. 7 and Table Il it seems that they do in@PPropriate limit, with a small shift in the transition point if
fact occur at the same point — even though the magnitude df/ wo is finite. The S|mulat|9ns which were carried out sup-
the analog current is consistently less than that of the digitdf©'t the theoretical conclusions. We have not observed more
current. This may be because, Bs-0, the action com- than one current reversal experimentdllith fixed wy and

pletely dominates or because the prefactors happen to B@TYingI'), but examination of Eq(19) shows that there is

approximately equal at this point.

In the literature, this problem has been already discusse

in Refs.[2] and[30]. In Ref.[2] it was found that there is

indeed a net current in the system, and, working in the limit

another solutiofito O(7*)] for which A, =A_ . It would be
[pteresting to explore this regime in more detail experimen-
tally.
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