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a b s t r a c t

We study the dynamics of bright matter–wave solitons in a Bose–Einstein condensate with negative
scattering length under the influence of a time-periodic ratchet potential. The potential is formed by
a one-dimensional bichromatic optical lattice which flashes on and off so that the time average of its
amplitude vanishes. Due to the broken space and time-reversal symmetries of the potential, the soliton
is transported with a nonzero average velocity. By employing the non-dissipative mean-field model for
thematter waves, we study the dependence of the transport velocity on the initial state of the soliton and
show how the properties of the individual localized states affect the outcome of their collisions. A useful
insight into the transport properties is provided by Hamiltonian theory for the mean field, which treats
the extended matter–wave excitation as an effective classical particle.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The ratchet effect, i.e. rectified average current induced by

an asymmetric potential and unbiased zero-mean driving force,

appears in both classical and quantum systems and has been

extensively studied in dissipative and Hamiltonian regimes [1,2]

due to its relevance to biological systems and nanotechnology [3,

4]. The theory predicts that, in order for a ratchet to work,

the space–time symmetry of the driving potential should be

broken [5], and the experiments with cold atoms [6,7] and

Bose–Einstein condensates in optical ratchet potentials [8,9] have

confirmed this prediction.

The experimental advances in implementing atomic ratchets

for Bose–Einstein condensates [8,9] coincide with the growing

interest in the effect of interaction on ratchet transport [10–

12]. As a physical system with intrinsically present nonlinear

interactions due to atomic scattering, a Bose–Einstein condensate

(BEC) supports the existence of spatially localized, particle-like

collective excitations—matter–wave solitons. It is therefore natural

to consider the possibility that a ratchet potential can not only

provide the means to transport the condensate bulk, but also to

control a directed motion of individual matter–wave solitons.

∗ Corresponding author.

E-mail address: ost124@rsphysse.anu.edu.au (E.A. Ostrovskaya).

The concept of soliton ratchets was introduced more than ten
years ago [13,14] for the driven dynamics of topological (kink)
solitons, and those pioneering ideas have been developed further
in a number of theoretical studies (see, e.g., Refs. [15–22] to
cite a few). In particular, it was shown [14] that the mechanism
underpinning the kink ratchet can be understood through the
existence of an asymmetric internal mode of the kink soliton
that couples, through the damping in the system, to the soliton
translational mode. More recently, it was demonstrated that in
the damped sine-Gordon equation with periodic nonsinusoidal,
additive, and parametric driving forces the ratchet motion of kinks
appears as a consequence of a resonance between the oscillations
of the momentum and the width of the kink [22]. These results
follow from the topological nature of this type of soliton possessing
a finite rest mass.

Unlike the ratchet dynamics of kinks, the effect of the ratchet
potential on bright non-topological solitons has received very
little attention. Until recently, the research in this direction
was restricted to discrete dissipative nonlinear systems [23].
Recently we have studied the ratchet motion of bright solitons in
Bose–Einstein condensates with attractive atomic interactions in
a weak ‘‘flashing’’ optical lattice and revealed many novel features
of their induced dynamics [24]. Importantly, we have shown that
both the ratchet effect and soliton directed transport are observed
in this system even in the absence of losses (damping), which sets
it apart frompreviously studied dissipative nonlinear systems [23],
and also indicates that the mechanism for ratchet transport of

0167-2789/$ – see front matter© 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.physd.2008.10.003

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:ost124@rsphysse.anu.edu.au
http://dx.doi.org/10.1016/j.physd.2008.10.003


D. Poletti et al. / Physica D 238 (2009) 1338–1344 1339

bright solitons differs dramatically from that of kinks. Although

focused on BEC solitons, our work is of general importance as a

first, to our knowledge, study of the ratchet dynamics of a general

class of non-topological, non-dissipative solitons described by a

continuous Gross–Pitaevskii (or nonlinear Schrödinger) equation.

In this paper we briefly overview the main theoretical results

as well as study in more detail the effect of the flashing ratchet

potential on the dynamics of a single matter–wave soliton and

soliton scattering.

The paper is organized as follows. First, in Section 2 we intro-

duce our mean-field model, which is given by a Gross–Pitaevskii

equation with a time-varying periodic potential. In Section 3 we

present details of the effective particle approximation used to an-

alyze the soliton dynamics.Then, in Section 4 we describe the dy-

namics of a single soliton in the presence of the flashing ratchet

and investigate themain features of its cumulative and average ve-

locity. Section 5 is devoted to the study of ratchet-driven soliton

collisions where we consider several cases including the binary in-

teractions between solitons of different effective masses, as well

as multiple soliton collisions. Section 6 discusses the relevant pa-

rameters of the corresponding physical system, and Section 7 con-

cludes the paper.

2. Mean-field model

To simplify the modeling of the system, we consider a strongly

elongated condensate cloud [25] subjected to a flashing one-

dimensional optical lattice (see, e.g., [10]). As long as the energy

of the longitudinal excitations is not sufficient to excite the

transverse modes of the condensate, the system can be treated as

one-dimensional [26] and described by the Gross–Pitaevskii (GP)

equation:

i
∂Ψ

∂t
+

1

2

∂2Ψ

∂x2
+ |Ψ |2Ψ − V (x, t)Ψ = 0, (1)

where the lattice potential,

V (x, t) = V0f (t) [cos(x)+ cos(2x + φ)] , (2)

is driven biperiodically: f (t) = sin(ωt)+sin(2ωt), and V0 depends

on the intensity of the laser beams forming the lattice. The space

inversion symmetry of this potential (x → −x + x̃) is broken for

φ 6= 0, π . In its time-dependent form, the potential (2) is not

invariant with respect to the time inversion (t → −t + t̃). The

importance of breaking these symmetries for the ratchet dynamics

will be discussed in the following sections.

The dimensionless form of Eq. (1) is derived by using the

following energy, length, and frequency scales: E0 = h̄2 k2/m,

a0 = 1/k, and ω0 = h̄k2/m, where m is the mass of the atoms,

and k is the wavevector of the optical lattice. The dimen-

sionality reduction procedure, valid for a quasi-one-dimensional

trapping geometry considered here, allows us to separate the

condensatewavefunction into its transverse and longitudinal com-

ponents [26]: ψ3D(x, y, z) = ψ1D(x)Φ(y, z), where Φ(y, z) is

the ground state wavefunction, of the two-dimensional harmonic

trap with the transverse trapping frequency ω⊥. The dimen-

sionless wavefunction Ψ in Eq. (1) relates to ψ1D as follows:

Ψ = ψ1D

√
g1D, where g1D = 2(asω⊥)/(a0ω0) is the renormalized

coefficient that characterizes the s-wave interaction of the conden-

sate atoms with the scattering length as. The norm of the dimen-

sionless wavefunction, N =
∫

|Ψ |2dx, is directly related to the

actual number of atoms in the condensate or a localized excitation:

N = N/g1D. In the case of a localized matter–wave soliton it may

be referred to as its effective mass [27].

3. Effective particle approach

To understand the effect of the weak flashing potential on

the dynamics of a collective excitation in the BEC, we consider a

single localized excitation in the form of a one-dimensional bright

soliton. In the absence of perturbations, the shape of the soliton is

defined by self-focusing of the matter–wave due to the attractive

interaction between the atoms, and is given by the exact solution

of the one-dimensional GP equation:

Ψ (x, 0) =
N

2
sech

[

N

2
(x − X0)

]

. (3)

Here X0 ≡ X(0) is the initial position of the soliton’s center ofmass

defined as:

X(t) =
1

N

∫ ∞

−∞
Ψ ∗(x, t)xΨ (x, t)dx. (4)

The Hamiltonian description of the mean field [28] allows us to

write an effective energy integral associated with the equation of

motion Eq. (1):

H(x, t) =
∫ ∞

−∞

[

1

2

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

+
|Ψ |4

2
− V |Ψ |2

]

dx. (5)

If the ratchet potential is weak, the soliton shape is preserved

during its evolution and its dynamics is described by themotion of

the center of mass. In this case, the extended collective excitation

can be treated as a classical particle [29] thatmoves in the effective

potential,

Veff(t) =
1

N

∫ ∞

−∞
|Ψ (x, 0)|2V (x, t)dx

=
πV0

N
f (t)

[

cos X

sinh(π/N)
+ 2

cos(2X + φ)

sinh(2π/N)

]

. (6)

Using Eq. (6) the soliton velocity can be obtained by integrating the

classical equation of motion for the soliton center of mass [29,30],

d2X

dt2
= −

∂Veff

∂X
. (7)

The effective particle approach (EPA) allows us to make

intuitive predictions about the transport properties of the soliton

as an effective classical particle in the external potential Veff(t, x).

It can be seen that if the lattice potential is a simple single-period

function of space and time, V (x, t) ∼ cos(x) sin(ωt), then due

to the symmetries of the potential the dynamical system (1) is

invariant with respect to the symmetry transformations: x →
−x + x̃, t → −t + t̃ . Such transformations simultaneously

change the sign of the soliton velocity, v(t) = dX/dt , and hence

the velocity averaged over all initial conditions in time and space

is zero. In contrast, when both of these symmetries are broken,

as is the case with the potential (2), according to the symmetry

analysis [5], we expect that a nonzero average velocity and hence

a directed transport of matter–wave solitons may occur under the

influence of the driving. The significance of the symmetry breaking

and the dependence on the initial conditions are examined in

detail below.

We note that the instantaneous shape of the effective potential,

Veff, shown in Fig. 1 (red solid line) becomes closer to the

asymmetric shape of the optical lattice, V (x, t), as N grows and the

soliton becomes more localized. Therefore, the spatial asymmetry

of the ratchet potential is most pronounced for strongly localized

excitations, containing a large number of atoms, and as a result
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Fig. 1. Effective potential Veff at f (t) = 1 vs. initial position of soliton’s center

of mass, X0 , for N = 1 (black dashed line) and N = 5 (red solid line), and the

time-averaged potential Vs at N = 5 (blue dotted line). Parameters are: V0 = 0.3,

φ = π/2, ω = 10.

we expect larger values of time-averaged (cumulative) velocity
defined as:

v̄ = lim
T→∞

1

T − t0

∫ T

t0

dX

dt
dt. (8)

In contrast, for small N the second term in (6) becomes
exponentially smaller than the first one, and hence the effective
potential becomes practically symmetric, as demonstrated by a
black dashed line in Fig. 1. The loss of spatial asymmetry should
translate to the suppression of the average current for weakly
localized solitons with low peak densities. At large driving
frequencies the dynamics of the classical particle in the effective
potential, Veff, is regular. There are two basic types of trajectories:
transporting (in position) and non-transporting or oscillating,
whereas themomentumalways remains bounded [24]. The soliton
engaged in the near-ballistic motion will then exhibit acceleration
and deceleration on a short time scale, as shown in Fig. 2(b),
with a constant non-zero average momentum which will result
in the overall transport [see Fig. 2(a)]. The simulations of ballistic
motion in Fig. 2 are performed with periodic boundary conditions,
however we make sure that the tails of the soliton never overlap.
From these simulations we infer that the typical soliton motion
is characterized by two different time scales, T0 = 2π/ω, the
period of fast driving, and Ts, the timeof slowmotion. Following the
standard averaging technique for rapidly driven classical nonlinear
systems (see [31,32] and also [5]) we decompose the motion
of the center of mass into a sum of slowly and rapidly varying
parts, X(t) = Xs(t) + ξ(t), where the mean value of the fast
oscillations, ξ(t), is zero over the period of driving. Substituting
this decomposition into Eq. (7), expanding the right hand side in
powers of ξ , and performing the averaging over T0, we obtain in
the lowest order of the small parameter of the system, ε = T0/Ts,
the explicit expression for the fast variable:

ξ(t) = −g(Xs)
V0π

Nω2

[

sin(ωt)+
1

4
sin(2ωt)

]

, (9)

and an equation of motion for the slow variable:

dvs

dt
=

d2Xs

dt2
= −

dVs

dXs

. (10)

The conservative effective potential of the slow motion in Eq. (10)
is:

Vs(Xs) =
5

16

(

V0π

Nω

)2

g2(Xs), (11)

Fig. 2. (a) Soliton center of mass position and (b) velocity as a function of time

corresponding to the near-ballistic motion. Parameters are: V = 0.3, φ = π/2,

ω = 10, t0 = 0.

where

g(Xs) = s1 sin Xs + s2 sin(2Xs + φ), (12)

and s1 = 1/ sinh(π/N), s2 = 4/ sinh(2π/N). The typical form of
Vs is shown in Fig. 1 (blue dotted line).

As pointed out in [5], all the asymmetries of the system are now
concealed not only in the spatial asymmetry of Vs (see Fig. 1) but
also in the initial conditions (at t = t0) for the slow variable and its
velocity:

Xs(t0) = X0;

vs(t0) = g(X0)
V0π

Nω

[

cos(ωt0)+
1

2
cos(2ωt0)

]

(13)

where we assumed, as is the case throughout this paper, that the
soliton is initially at rest. Given these initial conditions, Eq. (10) can
be integrated once to give:

v2s = v2s (t0)+ 2 [Vs(X0)− Vs(Xs)] . (14)

As we will demonstrate in the following sections, even though
the main Eqs. (10) and (13) of the time-averaged EPA do not
offer an analytical dependence vs(t; X0, t0) in a simple form, they
nevertheless allows us to make intuitive predictions about the
properties of the soliton current in the ratchet potential, which is
not easy to do with the aid of the GP model (1) or EPA alone.

4. Dynamics of a single soliton

To describe the properties of the non-zero soliton current
caused by the ratchet potential, we first consider the cumulative

velocity of the single soliton. As can be seen in Fig. 3, wherewe have
used T ≈ 103 × 2π/ω, X0 = 0 and t0 = 0, the EPA predictions
(dashed line) obtained by integrating Eq. (7) are in qualitative
agreement with the numerical results obtained from the GPmodel
(solid line). As shown in Fig. 3, for a given initial position of a
soliton, its cumulative velocity is a function of its norm, N . Clearly
as T → ∞ the main contribution to the cumulative velocity
comes from near-ballistic trajectories, for which v(t) = vs(t) ≈
vs(t0). Consequently, the cumulative velocity for large N can be
estimated from the equations for the slow solitonmotion to be v̄ =
vs(t0) = 6V0π/(Nω) sinh

−1(2π/N), which is in good agreement
with numerical solutions (dotted line in Fig. 3). As N → ∞ the
velocity of the ballistic motion tends to a constant value, which for
the parameters in Fig. 3 is equal to vs(0) ≈ 3V0/ω = 0.09.

In the absence of the transporting motion in the system the
cumulative velocity is zero. This is reflected in the sharp cut-off for
the cumulative velocity at low values of N seen in Fig. 3. According
to the time-averaged EPA theory, the soliton acquires transporting
motion if its initial energy, Es, is greater than the peak amplitude
of the effective confining potential Vmax

s , otherwise the soliton
oscillates. Given the explicit form of the effective potential for the
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Fig. 3. Cumulative velocity v̄ vs. norm of the BECwavefunction,N , calculated using

Eq. (1) (solid line), Eq. (7) (dashed), and vs(t0) given by Eq. (13) for N ≤ 3 (dotted);

v̄ = 1 corresponds to 3.5 mm/s. Parameters are: V = 0.3, φ = π/2, ω = 10,

X0 = 0, t0 = 0.

slowmotion Vs and the soliton velocity, vs(t0), the critical ratio for
t0 = 0 and φ = π/2 is:

Es

Vmax
s

=
23

5

(

s1 sin X0 + s2 cos 2X0

s1 + s2

)2

. (15)

The solution of the equation Es = Vmax
s with respect to N

determines the cut-off value of the norm,which for the caseX0 = 0
is Ncr = 2.13 (c.f. Fig. 3).

As suggested by Eq. (15), the type of soliton motion (transport-
ing or oscillating) will strongly depend not only on N , but also on
its initial position relative to the lattice potential. The illustration
of this drastic dependence is given in Fig. 4, where solitons with
the same N = 2 but different X0 are shown to be trapped (a, b) or
transported (d) by the flashing lattice. We note that Eq. (15) cor-
rectly predicts the behavior of the soliton for the given X0 in all
cases, giving Es/V

max
s = (23/5)s22/(s1 + s2)

2 < 1 in the case (a),

Es/V
max
s = (23/5)(s1 − s2)

2/(s1 + s2)
2 ≪ 1 in the case (b), and

Es/V
max
s = 23/5 > 1 in the transporting case (d).

In addition, transported solitons starting off at different
positions, X0, can move in different directions, as shown in Fig. 4(c,
d). The direction and speed of the transport as a function of X0 and
N are readily predicted by the expression for the initial velocity
vs(t0) of the slow motion (13). The qualitative correspondence
between the value of the initial velocity vs(t0) and that calculated
by numerical solution of the GP model (1) is clearly illustrated in
Figs. 4(c, d) and 5.

The detailed examination of the dependence of the cumulative
velocity v̄ on the initial position of the center of mass, X0, shows
that the predictions of the EPA (7) and the numerical solution of the
GP model (1) disagree for small values of N . As shown in Fig. 6(a,
b) for both N = 1 and N = 2 the numerical results show that
the soliton has either no cumulative velocity, or moves in only one
direction. In contrast, the cumulative velocity calculated using the
equation of motion (7) arising from the EPA is almost symmetric
with respect to X0 = 0 as expected in the limit of smallN due to the
symmetry of the effective potential (see Fig. 1). These discrepancies
are due to the fact that for N < 2.5 the soliton’s size is comparable
with or larger than a period of the optical lattice, and hence it
is more accurately described as a wavepacket than an effective
particle.

For larger values of norm, e.g., N ≈ 5, corresponding to
a strongly localized matter–wave soliton, the dynamics is well
described by the EPA. Accordingly, in Fig. 6(c) we see a good
agreement between the numerical solution of the GP model (1)
and the EPA equation (7) in the details of the cumulative velocity
dependence on X0.

Fig. 4. Density plots of the mean-field evolution, |Ψ (x, t)|2 , shown for (a) N = 2

and X0 = 0, (b) N = 2 and X0 = π/2, (c) N = 4 and X0 = 0, and (d) N = 2 and

X0 = −π/2 Parameters are: V = 0.3, φ = π/2, ω = 10, t0 = 0.

Fig. 5. Initial velocity of the soliton center of mass, vs(t0) as a function of initial

position for N = 4 (black) and N = 2 (red). The marked points correspond to the

ballistic motion shown in Fig. 4(c, d). Parameters are: V = 0.3, φ = π/2, ω = 10,

t0 = 0.

5. Average current

Despite the strong dependence of the dynamics on the initial
position of the soliton, since the space inversion symmetry of
the lattice is broken, we can expect that averaging over all initial
soliton positions, X0, will lead to a nonzero averaged velocity:

〈v̄〉X0 =
1

2π

∫ π

−π
v̄dX0, (16)

and thus signal the true ratchet effect. Indeed, even the rough
analytical estimate of the soliton velocity obtained from (14):

v̄s ∼
√

17

8

V0π

Nω

g3(X0)

g2(X0)+ (5/68)(s21 + s22)
, (17)

is non-zero when averaged over X0. However, this expression
underestimates the absolute value of the cumulative (and hence
averaged) velocity and the numerical solution of the equations
of motion (7) and (10) can be employed to obtain more accurate
dependence. In Fig. 7 we plot the soliton velocity calculated using
the model GP equation, EPA (7) and time-averaged EPA (10)
averaged over all initial positions as a function of the number of
atoms. Indeedwe observe that the average velocity is non-zero and
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Fig. 6. Cumulative velocity, v̄, vs. soliton initial position, X0 , for (a) N = 1;

(b) N = 2; (c) N = 5; calculated from the numerical solution of the GP equation

(solid line) and EPA (dashed). Parameters are: V0 = 0.3, φ = π/2, ω = 10, t0 = 0.

Fig. 7. Average velocity 〈v̄〉 vs. number of atoms in the soliton, N , calculated

using the GP model (solid line), EPA (dashed), and time-averaged EPA (dotted).

Parameters are: V0 = 0.3, φ = π/2, ω = 10, t0 = 0.

therefore the ratchet transport is present in this system, as long as
the number of atoms (or the norm, N) of the solitons is large.

As expected and seen in Fig. 7, the EPA results obtained by
solving Eq. (7) and numerical solution of Eq. (1) agree for large
values of N , but disagree both on the onset of the ratchet effect
and on its magnitude at small N . In particular, as demonstrated in
Fig. 6(a, b), for N < 2.5 a soliton attains a much larger average
velocity than that predicted by the EPA theory due to the fact
that the potential experienced by effective particle, Veff, loses its
spatial asymmetry. It is especially remarkable that the ratchet
works much better for a weakly localized soliton than it does for a
strongly-localized particle-like excitation, achieving larger average
velocities in the case when the extended nature of the excitation
cannot be ignored.

We note that the time-averaged EPA (10) [dotted line in Fig. 7]
makes a correct prediction about the order of magnitude of the
nonzero average current for smaller N , but is not reliable for larger
N , where chaotic trajectories occur for certain X0.

Finally, we discuss the the importance of the time-reversal
symmetry breaking for the ratchet dynamics of a matter–wave
soliton. So far, we have discussed the averaging over the initial
positions of the soliton, X0 assuming that the soliton is loaded into
the lattice at the time t0 = 0. However, in an experiment both
X0 and t0 would be difficult to control. Therefore any attempt to
detect an average current would involve the averaging over many

Fig. 8. Cumulative velocity, v̄, vs. initial time, t0 , calculated using the GP model

(1) and the time-varying lattice amplitude, f (t), which includes either one (solid

line) or two (dashed) harmonics. Parameters are: V0 = 0.3 for a biperiodic and

V0 = 0.528 for single-harmonic driving, ω = 10, N = 2.5, and X0 = −π/2.

experimental realizations, i.e. effectively over both X0 and t0. Fig. 8
shows the cumulative velocity of the soliton computed using the
GP model over the range of initial conditions at t0 sampled over a
single driving period. Importantly when the time-reversal (shift)
symmetry {t → −t + π/ω, Ψ → Ψ ∗} is preserved, as is the case
for a single-harmonic drivingwith f (t) = sin(ωt), the dependence
v̄(t0) is completely symmetric (solid line in Fig. 8) and averaging
over all t0 produces zero total current (〈v̄s〉t0 = −1.75 × 10−5

in Fig. 8). In contrast, the biperiodic in time potential (2) with
f (t) = sin(ωt) + sin(2ωt) breaks the symmetry and produces a
non-zero average velocity (〈v̄s〉t0 = 5.14 × 10−3 in Fig. 8).

Remarkably, this result can be also confirmed in the time-
averaged EPA picture, where the potential confining the effective
particle is both time-independent and does not depend on
t0. Instead the critical information about the time-dependence
of driving and hence time-reversal (shift) symmetries in this
approach is contained in the initial condition vs(t0) [see Eq. (13)].
We have checked that averaging of the cumulative velocity v̄s over
all t0 with the parameters used to produce Fig. 8 yields 〈v̄s〉t0 =
−2 × 10−6 and 〈v̄s〉t0 = 5.37 × 10−3 for a single-harmonic and
biperiodic vs(t0), respectively.

6. Ratchet-induced soliton collisions

The dependence of the soliton velocity on N means that
dissimilar solitons placed at the same positions (i.e. at X0 +
2πm, where m is an integer) relative to the ratchet potential will
move at different speeds and engage in collisions. Conversely, if
the solitons are identical, collisions can occur only if they have
different initial positions in the lattice (and therefore different
cumulative velocities). The difference between the two scattering
scenarios is in the interaction energy, which for a pair of solitons 1
and 2 is proportional to N1N2 (see, e.g., [27]). For a fixed N1 ≥ N2,
the interaction is stronger in the case of solitons with equal norms.
This leads to different scattering patterns in the cases of N2 6= N1

and N1 = N2.
A single collision event is nearly elastic in the case of strongly

dissimilar solitons. The driving has little effect on the soliton
collisions because of its small amplitude and fast variation, and
each collision event leads to small incremental changes in the
soliton’s position in the phase space. In order to detect the effect of
the ratchet potential, multiple soliton collisions should be realized.
This would be possible in an experiment if the ratchet potential
was combined with a toroidal trap [33]. Numerically, toroidal
geometry is easily simulated by adopting periodic boundary
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Fig. 9. (a) Collision between two soliton, one with N = 4 with initial position

X0 = 0 and the other one with N = 2.2 and initial position X0 = 4π . (b) Collision

between two soliton with N = 4 located at X0 = 0 and x0 = 3π + 1.2. Parameters

are: V0 = 0.3. φ = π/2, ω = 10, t0 = 0.

conditions. As can be seen in Fig. 9(a), in a multiple scattering
process of in-phase solitons, a larger moving soliton can induce
the transport of a smaller soliton which would otherwise not be
transported by the ratchet. This is due to the fact that incremental
changes in the soliton’s position and momentum eventually move
the smaller soliton from a non-transporting to a transporting
trajectory in the phase space.

In the case of identical in-phase solitons, each collision event
can induce a sudden shift fromanon-transporting to a transporting
trajectory in the soliton’s phase space, and vice versa. This is
evident in Fig. 9(b) where we can see dramatic changes in the
soliton velocities after collisions. In this scenario, the spatial
shift that solitons acquire during each collision may lead to an
effective averaging over X0 after multiple collisions. As a result, a
nonzero average density current can, in principle, be observed for
a sufficiently large number of collisions or for a sufficiently large
number of interacting solitons. An example of this effect is shown
in Fig. 10(a), which displays the collision of seven solitons with
different norms. Such a distribution of solitons can be prepared,
for example, if a ground state of an attractive condensate in a
harmonic trap is fragmented by a deep optical lattice. We show
the details of the profiles of the wavepackets at time t = 0
[Fig. 10(b)], t = 300 [Fig. 10(c)] and t = 600 [Fig. 10(d)]. One
can see that the collision event strongly affects the solitons with
large peak densities which are strongly transported by the ratchet
and as a result spatially separated from the smaller wavepackets.
This suggests the possibility of spatial filtering of solitons by soliton
particle number.

7. Physical parameters

To relate our dimensionless quantities to the typical experi-
mental parameters, we consider, as an example, the experimen-
tal setup of Ref. [25] employed to observe a bright matter–wave
soliton in a strongly elongated 7Li condensate cloud. In order to
observe the one-dimensional soliton, the scattering length of 7Li
was modified to be as ≈ −0.21 nm, and the condensate was
trapped in a quasi-one-dimensional atomic waveguide with ω⊥ =
2π × 710Hz. We note that, for this value of the transverse fre-
quency, the chemical potential corresponding to a BEC soliton is

Fig. 10. (a) Density plot of the mean-field evolution, |Ψ (x, t)|2 of 7 solitons with

N = 5 and X0 = 0, N ≈ 4.01 and x0 = ±4π , N ≈ 2.1 and X0 = ±8π and N ≈ 0.7

and X0 = ±12π . (b)-(c)-(d) Density of thewave-function |Ψ |2 versus x respectively
at time t = 0, t = 300 and t = 600. Parameters are: V = 0.3, φ = π/2, ω = 10,

t0 = 0.

always smaller than the transverse excitation energy, which justi-
fies the dimensionality reduction in the mean-field model.

To realize an optical ratchet potential in a similar setup,
an additional optical lattice can be superimposed along the
waveguide axis. The realization of the flashing lattice is within
current experimental capabilities and the stationary form of
the potential (2) was recently realized in the experiments
with ultracold rubidium vapor in a Fourier-synthesized optical
lattice [34]. If the lattice is formed by light beams derived from a
CO2 laser with wavelength λ = 10.62µm, crossed at an angle θ =
38◦, then our scaling units of length and frequency take the values
a0 = λ/[4π sin(θ/2)] = 2.52µm andω0 = 2π ×224Hz. A stable
bright soliton typically created in the experiment [25] contains
N ≈ 5 × 103 atoms, which corresponds to the soliton norm N ≈
2.62 in our units. We note that, due to the nature of our scaling,
the same value of the atom number, N , may correspond to larger
or smaller values of a0 (and hence N), depending on the angle θ .

8. Conclusions

We have studied the dynamics and transport of bright
matter–wave solitons in a weak flashing optical ratchet potential.
The important feature of the ratchet-induced transport is the
dependence of the soliton cumulative velocity on both number
of atoms and the initial position of the soliton. For small atom
numbers, the soliton transport occurs in one direction only, while
larger solitons may be transported in either direction. As a result,
the averaging over all initial positions results in a strong ratchet
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effect for solitons with small peak densities. The results obtained
by direct numerical integration of the one-dimensional mean-field
model showgood qualitative agreementwith the effective-particle
approximation.However, the ratchetworks best for solitonswhose
width is comparable with the spatial period of the perturbing
potential, in the regimewhere the effective particle approximation
is less applicable.

Finally, we have investigated the scattering of thematter–wave
solitons moving under the influence of a ratchet potential.
Depending on the size of the interacting solitons, their collisions
can cause either gradual or instantaneous transitions between
transporting and non-transporting trajectories in the phase space.
We have demonstrated that for multiple solitons of different sizes,
initially formed in a harmonically trapped condensate, this effect
could result in directed transport or spatial filtering of solitons.
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