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Ratchet-like motion of a shaken drop

Xavier Noblin, Richard Kofman, and Franck Celestini∗

Laboratoire de Physique de la Matière Condensée ,UMR 6622, CNRS,
Université de Nice Sophia-Antipolis, Parc Valrose 06108 Nice Cedex 2, France

(Dated: March 23, 2009)

We study the motion of a drop lying on a plate simultaneously submitted to horizontal and vertical
harmonic vibrations. The two driving vibrations are adjusted to the same frequency, and according
to their relative amplitude and phase difference ∆Φ, the drop experiences a controlled directed
motion with a tunable velocity. We present a simple model putting in evidence the underlying
mechanism leading to this ratchet-like motion of the drop. Our model includes the particular case
∆Φ = π corresponding to the climbing of a drop on a vertically vibrated inclined substrate, as
recently observed by Brunet et al. (Phys. Rev. Lett. 99, 144501 (2007) ). This study gives insights
in the fundamental issue of wetting dynamics and offers new possibilities of controlled motion in
droplet microfluidics applications.

PACS numbers: 47.55.dr,68.35.Ja,68.08.Bc

Microfluidics has recently motivated both fundamen-
tal and applied researches [1]-[2]. The challenge is to find
an optimal process to manipulate small liquid quantities,
down to the nanoliter scale, in order to study chemical re-
actions, biological molecules and processes, or to perform
biomedical tests in a rapid and repetitive way. Two main
ways have emerged in order to handle drops: two-phase
flows in microchannels [1]-[3] and sessile drops displace-
ment on surfaces [4]-[6]. For the latter, the existence of a
contact angle hysteresis prevents the motion of the drop.
Nevertheless this difficulty can be overcome using drop
oscillations modes induced by vibrations. More than a
century ago, Rayleigh [7] and Kelvin [8] found a gen-
eral expression for these modes due to surface tension, in
the case of free liquid drops. In the 1980’s, microgravity
experiments have motivated studies on sessile drops os-
cillations [9] and several works have then focused on the
forced vibrations of supported drops [10]-[12] for which
the contact line is fixed. A drop behaves like a spring with
different resonant frequencies at which a small vibration
induces a significant deformation. Locally, the contact
angle can become respectively higher or lower than the
advancing (θa) or receding (θr) contact angles, the criti-
cal values of the wetting hysteresis inducing contact line
motion.

Such a reduction of the effect of contact angle hystere-
sis [13, 14] to induce drop motion has been first illustrated
by Daniel et al. [15]. They performed experiments on a
drop deposited on a substrate with a continuous wetta-
bility gradient and demonstrated that parallel vibrations
applied to the substrate helped the drop to move toward
its more wettable part. These authors with de Gennes
[16] also put in evidence the possibility to use asymmetric
horizontal vibrations to control the drop motion without
any external force. Vertical vibrations have also demon-
strated their ability to overcome contact angle hysteresis
effects [17], allowing contact line motion, but not a net
drop motion. It comes out that horizontal or vertical

symmetrical vibrations alone do not provide the ratchet-
like asymmetry necessary to induce a net drop displace-
ment. Brunet et al. [18] observed recently the surprising
climbing of a drop on a vibrated inclined plane. This
forced motion can be decomposed into parallel and per-
pendicular vibrations of the substrate, as being a par-
ticular case of the present study with a phase difference
∆Φ = π.

In this letter, we demonstrate that the combination
of horizontal and vertical vibrations induces an asymme-
try and a net drop motion. By simply tuning the phase
difference between the two vibrations, a direction or an-
other is chosen at a given controlled velocity. We put in
evidence the unexpected rich relation between ∆Φ and
the average velocity of the drop V . We first describe
the experimental apparatus used to combine horizontal
and vertical vibrations in a way to reduce their possible
coupling. The method used to obtain the relation be-
tween the phase difference and the drop velocity is then
presented together with the results obtained for differ-
ent horizontal and vertical vibrations. A simple analysis
and a mechanical model are finally proposed to explain
how the combination of vertically and horizontally ex-
cited modes leads to a net motion of the drop and the
fundamental role of the phase difference ∆Φ.

The experimental apparatus depicted in Fig. 1. con-
sists in two independent vibration exciters. The vi-
brations induce substrate motion in the horizontal (h)
and vertical (v) directions : ah(t) = Ahcos(2πfht) and
av(t) = Avcos(2πfvt+∆Φ). The main difficulty has con-
sisted in reducing the mechanical coupling between both
vibrations. Our setup allowed to minimize this coupling
to roughly 5 %. The experiments are performed under a
laminar flow hood in order to reduce dust contamination
of the substrate. A water drop of radius 1.3 mm is de-
posited on a cross-linked PDMS substrate (Sylgard 184).
We measured a wetting angle of 96 o and an hysteresis
θa − θr ≈ 19o. The drop has a first resonant frequency
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FIG. 1: a) Experimental setup used to combine vertical and
horizontal vibrations of the substrate. b) Images taken from
different vibrations cycles at various oscillation phases. Here
fv = fh = 70Hz, φ = π/4 Av = 140µm and Ah = 300µm. c)
Position of the triple line on the right versus time. The lines
are guide to the eyes to put in evidence the stops of the triple
line.

at f0

h
= 46Hz corresponding to the ”rocking mode” as-

sociated to parallel vibration of the substrate. This ex-
perimental value is in good agreement with the semi-
analytical expression proposed recently [19] and predict-
ing a resonance at 43 Hz. At f0

v
= 96Hz the second

resonant frequency corresponds to the ”pumping mode”
which is induced by perpendicular vibration of the sur-
face. Even if the pumping mode is somehow related to
the n = 2 Lamb’s mode, its value is different since the
contact angle value of the supported drop strongly influ-
ences its resonance [9]-[12], [17], [20], [21].

In most of our experiments fh = fv = f , with a value
just in between f0

h
and f0

v
that leads to the largest drop

motion. For lower or higher frequencies, only the rocking
or pumping modes are respectively excited and no motion
is observed. We used a high-speed camera (Photron Ul-

tima 512) to visualize the drop from the side, looking at
its deformation and its trajectory at a frame rate ranging
from 1000 to 8000 images per second. The pictures in Fig.
1b represent the shapes of the drop at different phases of
its motion, recorded during 1s with f = 70Hz. The drop
therefore experiences seventy cycles of oscillations. Dif-
ferent phases are taken from different cycles to make the
overall displacement more visible. The average velocity
is 0.68 cms−1 which corresponds to a displacement of 8%
of the drop radius during each vibration cycle. The dot-
ted line is a Lissajous curve representing the trajectory of
the small drop at rest on the side of the substrate. This
figure leads to the measurement of ∆Φ, Ah and Av. The
ratchet like motion of the drop is evidenced in the Fig.
1c representing the position of the triple line on the right
recorded during three periods.
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FIG. 2: Displacement of the droplet center of mass for two
different frequency shifts ∆f = 1 and 2 Hz. In inset: deducted
drop velocity as a function of ∆Φ. The two data sets fall on
the same curve.

Instead of making several measurements for each value
of the phase difference, we determine the relationship be-
tween the drop velocity V and ∆Φ directly by applying
two slightly different frequencies fh = f = 70Hz and
fv = f + δf . The phase is therefore time dependant,
∆Φ(t) = 2πδft and periodically takes all values between
0 and 2π. In Fig. 2, we represent the position of the
center of mass of the drop as a function of time for two
values of the frequency shift δf = 1 and 2Hz. As ex-
pected, since the phase is varying, the drop experiences
a periodic motion on the substrate. The amplitude of
this motion decreases with the frequency shift. For each
curve we have extracted the drop velocity as a function
of ∆Φ. This is represented in inset of the Fig. 2 : the
two data sets collapse on the same curve, validating our
measurement procedure.

In Fig. 3a , we plot the velocity as a function of ∆Φ
for different values of Ah. The amplitude of vibration
in the perpendicular direction is fixed to Av = 140 µm.
As function of ∆Φ the drop undergoes a motion to the
right (V > 0) or to the left (V < 0). We illustrate here
that such combined parallel and perpendicular vibrations
allow to control of the motion of the drop. We verify
that the function V (∆Φ) satisfy V (∆Φ+π) = −V (∆Φ),
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FIG. 3: a) Droplet velocities as a function of the phase dif-
ference for various parallel vibration amplitudes Ah. In inset,
for a weak parallel vibration Ah = 130µm the two maxima
are clearly visible. b) Velocity as a function of the Ah.

small deviations being due to the presence of defects on
the substrate. As expected, the velocity maximum V1

depends on the amplitude of vibrations. We can also
observe the existence of a second relative maximum V2 in
the V (∆Φ) curve. It is smaller than V1 but nevertheless
clearly visible whatever the value of Ah. For a weak
vibration amplitude, the velocity is zero except around
both maxima V1 and V2. In Fig. 3b , we plot V as a
function of Ah for ∆Φ = 0 and 90◦. Below a threshold
in amplitude the drop is at rest on substrate.

These observations can be understood by looking at
the effect of vibrations on the drop dynamics. Consider
a drop with a forced horizontal vibration. In that case,
the drop presents the rocking mode corresponding to high
value of the contact angle θH on a side and low value θL

on the other side. When θH > θa and θL < θr, the two
sides of the drop start to move in the same direction in-
ducing drop motion in the direction of the force. When
the oscillation goes on, the drop moves back in the other
direction so that the net motion over one period is null.
Nevertheless, if at the same time a vertical vibration is
imposed when the drop is deformed by the rocking mode,
the deformation is different wether the vertical force is
upward or downward. This leads to different variations
in the contact angle, and nonsymmetric driving forces on
the contact line between the right and left phases of the
rocking mode. Finally, the motions to the left and to the
right do not compensate each other. At each cycle the
drop is displaced by the same amount in one direction,
leading to a net motion. Depending on the phase differ-
ence between the two modes, the velocity will be positive,
negative or null. We present a minimal model aiming at

a better understanding of the V versus ∆Φ relationship.
As depicted in Fig. 4a, a mass m is attached to two ver-
tical and two horizontal springs of respectively stifnesses
mω2

V
/2 and mω2

h
/2. The springs are attached to a box

deposited on an horizontal plane and submitted to verti-
cal and horizontal vibrations. We denote x1 the position
of the box in the laboratory reference frame and x and y
the mass coordinates in the box reference frame. We can
write the following differential equations for x and y:

ẍ(t) = −Ahω2cos(ωt) − ω2

h
x − αẋ (1)

ÿ(t) = −Avω
2cos(ωt + ∆Φ) − ω2

vy − αẏ (2)

α is the dissipation coefficient associated to the mass
motion in the box, representing internal dissipation in
the fluid. The amplitudes Ah and Av are due to the
plane vibrations and ∆Φ is the phase difference between
these two excitations. We assume a solid friction between
the box and the plane that gives rise to a large energy
dissipation. Neglecting the box inertia, we can therefore
write :

ẋ1(t) = Γ1(x − xc) if x > xc (3)

ẋ1(t) = 0 if |x| < xc (4)

ẋ1(t) = Γ1(x + xc) if x < −xc (5)

Γ1 is the mobility of the box and xc is the displacement
threshold value above which the box starts to move. It
corresponds to a force through the spring stiffness, ω2

h
xc.

Above this critical force in the x direction, the friction
does no longer completely compensate the driving force.
We assume that xc = a + b y, a being a constant related
to the load on the plane and b y its modulation due to the
vertical mass displacement. This mechanical system is a
simple model of a drop shaken in the perpendicular and
parallel directions. The two springs model the rocking
and pumping modes of the drop. The solid friction mim-
ics the effect of the wetting angle hysteresis. A similar
analogy [16] has been successfully proposed, and latter
numerically solved [22], to understand the motion of a
drop under the action of non symmetrical vibrations.

We numerically solve this set of differential equations
with the following parameters : ωh = 1, ωv = 2,ω = 1.5,
α = Γ1 = a = b = 1, Av = 0.5 and we vary Ah in be-
tween 1 and 1.5. As seen on Fig 4b the box undergoes
a ratchet-like motion qualitatively similar to the one ob-
served experimentaly. The box velocity is represented in
Fig4c as a function of ∆Φ and in Fig4d as a function
of Ah. The numerical results compare qualitatively well
with the experiments represented in Fig 3 : We recover
the same trend for V (Φ) as well as for V (Ah). The asym-
metry required for a net motion is introduced through the
relation xc = a + b y. For a real drop, a is linked to the
contact angle hysteresis, x to the lateral motion induced
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FIG. 4: a) Mechanical model. b) Position of the box as a
function of time. c) Box velocity as a function of ∆Φ. d) Box
velocity as a function of Ah.

by the rocking mode and b y to the modulation associated
to the pumping mode. The minimal assumptions used do
not allow to observe a second maximum in the numerical
V (Φ) while it clearly appears in experiments. This un-
expected behavior should be due to nonlinearities of the
drop oscillations and to a more complex force-velocity re-
lationship that are not taken into account in our model.

In [18], Brunet et al. have observed the upward mo-
tion of a drop on an inclined substrate vertically vibrated.
Our present study provides a direct explanation for their
observations. Considering an inclined substrate present-
ing an angle θ with the horizontal plane, a drop is de-
posited and static due to the contact angle hysteresis.
A vertical acceleration is induced on the substrate. By
projecting it over the parallel and perpendicular direc-
tions of the plane, this corresponds to our system with
∆Φ = π, tan(θ) giving the ratio between our ”horizontal”
and ”vertical” vibration amplitudes. As it can be seen
on our curves, V (π) corresponds to a highly negative ve-
locity, hence a climbing drop. The difference is that the
driving force has to overcome gravity and that the drop
is vibrated around an already asymmetrical-shape due to
gravity, but this does not change the qualitative analysis.
Finally we would like to point out the conection between
our study and the one of Linke [23] et al on the self-
propelled motion of a Leidenfrost droplet. In that case
the motion is due to the combined effects of the droplet
pumping and to the asymetry substrate morphology pre-
senting inclined slopes as for Brunet et. al.

To summarize, we have studied the effects of combined
horizontal and vertical vibrations on a sessile drop. By
varying the phase and relative amplitude between both
vibrations, a net motion of the drop is possible. The
corresponding average velocities have been measured as
function of ∆Φ and vibration amplitudes. At each vibra-

tions cycle, a drop advances as much as 10 % of its radius,
leading to velocities of the order of 1 cm/s. This study
leads to a better understanding of drops dynamics under
vibrations and offers new possibilities to move them on
a substrate. This could find applications in the droplet-
based fluidics domain. Further studies are needed to un-
derstand the appearance of a second maximum for V (Φ).
We plan to perform fluid dynamic simulations as recently
done by Dong et al. [24] to understand the ratchet mo-
tion of a drop submitted to asymetric vibrations. These
simulations should be useful to investigate the effect of
the contact line force-velocity relation as well as nonlin-
earities in supported drop oscillations.
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