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Abstract—Rate adaptation is a critical component that impacts the
performance of IEEE 802.11 wireless networks. In congested networks,
traditional rate adaptation algorithms have been shown to choose lower
data-rates for packet transmissions, leading to reduced total network
throughput and capacity. A primary reason for this behavior is the lack
of real-time congestion measurement techniques that can assist in the
identification of congestion related packet losses in a wireless network.
In this work, we first propose two real-time congestion measurement
techniques, namely an active probe-based method called Channel
Access Delay, and a passive method called Channel Busy Time. We
evaluate the two techniques in a testbed network and a large WLAN
connected to the Internet. We then present the design and evaluation
of Wireless cOngestion Optimized Fallback (WOOF), a rate adaptation
scheme that uses congestion measurement to identify congestion
related packet losses. Through simulation and testbed implementation
we show that, compared to other well-known rate adaptation algorithms,
WOOF achieves up to 300% throughput improvement in congested
networks.

1 INTRODUCTION

The proliferation of IEEE 802.11 networks in recent years

demonstrates a dramatic shift in the primary mechanism for

Internet access. According to a survey conducted by the

Pew Internet Project in February 2007, about one-third of

the population of Internet users in the USA connect via

wireless networks [1]. IEEE 802.11 networks, in the form

of WLANs or city-wide multihop mesh networks, are now

expected to support the connectivity requirements of hundreds

to thousands of users simultaneously.

The increased usage of 802.11 networks and devices,

however, exposes many problems in current networks. IEEE

802.11 is a CSMA/CA based medium access scheme. All the

users in the vicinity of each other share the medium as a

common resource. A large number of users in a network can

lead to excessive load or congestion in the network. Jardosh

et al. present an example case study of a large congested

WLAN and describe the adverse effects of such congestion [2].

In this network, more than 1000 clients attempted to use the

network simultaneously. The network could not sustain this

high load: users obtained unacceptably low throughput, and

many users were unable to even maintain association with

the access points (APs). Eventually the network broke down,

causing frustration among the users.

Congestion has an adverse impact on current rate adap-

tation algorithms, an important aspect of the IEEE 802.11

MAC protocol that determines the network throughput. In a

multi-rate 802.11 network, rate adaptation is the operation of

selecting the best transmission rate, and dynamically adapting

this selection to the channel quality variations. The data rates

offered by 802.11a/b/g networks vary from a low of 1 Mbps

to the high rate of 54 Mbps. This wide range in the choice of

data rates makes the behavior of the rate adaptation algorithm

critical to the throughput performance, especially in congested

scenarios. Current rate adaptation solutions are typically de-

signed for operation in uncongested networks, where packet

loss is more likely to correlate with poor link quality rather

than congestion. These solutions have been shown to exhibit

inferior performance in congested networks [3], [4]. These

solutions do not distinguish congestion-related packet losses

from those caused by poor link quality, and react to all packet

losses by switching to a lower transmission rate. This rate

switch, in turn, increases the channel occupancy time of packet

transmissions and adds to the already existing congestion.

In this work, our goal is to design a rate adaptation scheme

that provides high network performance in congested networks

as well as lightly-loaded networks. In order to design such a

rate adaptation scheme, however, our approach is to develop

mechanisms that can identify and measure the network con-

gestion level in real-time. Traditional metrics, such as network

throughput, do not accurately characterize congestion in a

wireless network because of the locally shared channel and the

use of multiple transmission rates. Current congestion metrics

proposed for wireless networks are processor intensive, and,

therefore, are not suitable for real-time operation. Hence, there

is a need for lightweight congestion measurement solutions

that can identify congestion in a wireless network in real-

time. These mechanisms enable the rate adaptation scheme to

respond to the network congestion levels and make intelligent

decisions about the choice of transmission rate. In summary,

we require congestion measure congestion measurement so-

lutions to assist in the development of of a congestion-aware

rate adaptation scheme.

To this end, we present a measurement-driven approach to

the characterization of congestion in wireless networks and to
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the design of a congestion-aware rate adaptation scheme. Our

two main contributions are as follows. First, we develop two

measurement techniques that can identify wireless network

congestion in real-time. The first technique is active and

measures the channel access delay, the minimum time delay

for a packet transmission in the network. The second technique

is passive and measures the channel busy time, the fraction of

time for which the medium was utilized during some time

interval. We evaluate and compare the performance of these

techniques in a testbed as well as a large WLAN with active

users connected to the Internet. We show that the channel busy

time can accurately measure network congestion in real-time.

Second, we present the design and implementation of a new

rate adaptation scheme called Wireless cOngestion Optimized

Fallback (WOOF). This scheme uses the channel busy time

metric in real-time to probabilistically differentiate between

packet losses due to congestion and those due to poor link

quality. Our testbed evaluations in congested wireless net-

work scenarios show that WOOF obtains significantly higher

throughput (up to a three fold improvement) compared to

current solutions. Simulations further show that WOOF is

able to offer significant performance improvements in large

WLANs with hundreds of users.

In a prior version of this work, we presented the design and

evaluation of the channel busy time metric [5]. Further, we

presented the design and initial results from the evaluation

of the WOOF rate adaptation algorithm. In this work, we

extend our exploration of congestion measurement techniques,

and also perform comprehensive performance evaluations to

understand the robustness and scalability of the WOOF al-

gorithm. In particular, we present Channel Access Delay, an

alternate technique for real-time identification of congestion in

wireless networks. In addition, we compare the performance of

WOOF against that of Collision-Aware Rate Adaptation [6], an

algorithm designed with goals similar to ours. We demonstrate

the utility of incremental adoption of WOOF. Further, we

present results from simulation-based performance evaluations

of WOOF in large scale networks.

The remainder of the paper is organized as follows. Sec-

tion 2 surveys the literature on rate adaptation algorithms for

IEEE 802.11 networks. Section 3 describes the different con-

gestion measurement methods. We evaluate the performance

of these methods in Section 4. Sections 5 and 6 describe the

design and evaluation of the WOOF scheme. We conclude the

paper in Section 7. Throughout the paper, we use the term

data rate to refer to the rate of transmissions in the wireless

network as governed by the physical layer signal modulation

scheme.

2 STATE-OF-THE-ART IN RATE ADAPTATION

Rate adaptation in a multi-rate IEEE 802.11 network is the

technique of choosing the best data rate for packet transmis-

sion under the current channel conditions. The IEEE 802.11

standard does not specify the details of the rate adaptation

algorithm to be used. Thus IEEE 802.11 card vendors and

researchers have proposed and implemented a variety of rate

adaptation algorithms.

The probability of successful transmission of a packet for a

given data rate can be modeled as a function of the Signal-to-

Noise Ratio (SNR) of the packet at the receiver [7]. A packet

can be transmitted at a high data rate if the SNR at the receiver

is high and the packet can be received without errors. On the

other hand, if the SNR is not high, a lower data rate helps

achieve more robust communication. Therefore, one of the

ideal metrics to base the choice of transmission data rate is the

SNR of a packet at the receiver. However, under current IEEE

802.11 implementations, it is not trivial for the transmitter to

accurately estimate the SNR at the receiver because signal

strength exhibits significant variations on a per-packet basis.

This has led to the development of various solutions that

attempt to estimate link quality through other metrics.

Receiver-Based Auto Rate (RBAR) [8] is a rate adaptation

scheme that proposes use of the RTS-CTS handshake by a

receiver node to communicate the signal strength of received

frames. The receiver measures the signal strength of the RTS

message and uses this information to select an appropriate

data rate for transmission of the data frame. The transmitter is

informed of the selected data rate through the CTS message.

A drawback of this scheme is that it cannot be used in modern

802.11 networks where the RTS-CTS messaging is generally

disabled. Additionally, RBAR requires modification to the

format of the CTS message, which in many cases necessitates

modification of hardware and is thus infeasible.

A recent work by Judd et. al. uses the property of channel

reciprocity to estimate the signal strength at the receiver, based

on local measurements of received signal strength [9]. This

approach requires exchange of information such as noise floor,

transmit power among the nodes in the network, similar to the

RTS-CTS messaging of RBAR.

At the transmitter node, the most commonly used infor-

mation to help in choosing a data rate is the packet loss

information (i.e., when an ACK is not received). Auto-Rate

Fallback (ARF) was among the first rate adaptation schemes

that was practically implemented [10]. ARF interprets patterns

of packet loss (e.g., four consecutive losses) as triggers to

change the data rate. Several other rate adaptation schemes,

such as AARF [11], also use packet loss patterns for rate

adaptation decisions. Most current 802.11 devices implement

ARF or variations of ARF [6]. Recent work such as Sam-

pleRate [12] shows that ARF and AARF perform poorly for

links that are not always 100% reliable. Therefore SampleRate

uses a statistical view of packet loss rates over a period

of time (e.g. 2s in [12]) to choose the rate with the least

expected transmission time. We describe SampleRate in detail

in Section 5.3.

A common feature among all the above described rate

adaptation schemes is that they consider all packet losses to

be due to poor link quality. They do not distinguish between

packet losses caused by channel quality and packet losses

caused by either hidden terminal transmission or congestion.

Ideally, the rate adaptation algorithm should only consider the

packet losses due to poor channel conditions, multipath effects,

fading, etc. Packet losses due to hidden terminals or congestion

should not affect the rate adaptation algorithm. On observing

packet loss, a rate adaptation scheme that does not distinguish

the cause of the packet loss reduces the transmission data
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rate. In the case of packet loss due to congestion or hidden

terminals, such a reduction of data rate is unnecessary. Even

worse, the lower data rate increases the duration of packet

transmission, thereby increasing congestion and the probabil-

ity of a packet collision. Additional collisions result in packet

loss, which leads to further reduction in data rate.

The challenge for a rate adaptation algorithm is to be able

to identify the cause of a packet loss, i.e., whether a packet

was lost because of a bad link, hidden terminal or congestion.

In the absence of such a distinction, rate adaptation algorithms

may actually compound network congestion [4]. In our work,

we attempt to probabilistically identify congestion-related

packet losses and minimize their impact on rate adaptation.

Two rate adaptation algorithms, namely Robust Rate Adap-

tation Algorithm (RRAA) [13] and Collision-Aware Rate

Adaptation (CARA) [6], are designed to minimize the im-

pact of packet losses that are not due to channel errors.

RRAA selectively uses RTS-CTS handshaking to avoid hidden

terminal collisions. RRAA was not designed to explicitly

handle congestion-related losses in the network. On the other

hand, CARA builds upon ARF [10] and suggests the use of

an adaptive RTS-CTS mechanism to prevent losses due to

contention. However, CARA requires turning on the RTS-

CTS mechanism for the first retransmission of a packet, i.e.,

upon failure of the first transmission attempt. Most current

hardware does not support this facility and thus may require

modification. In contrast, our solution is implemented purely

in software. Moreover, CARA is built upon ARF and thus

inherits the problems of ARF, where it uses patterns of packet

loss for adaptation decisions. This has been shown to lead to

incorrect rate selection [13].

An orthogonal approach to address the problem is to

modify the contention resolution mechanism of IEEE 802.11

and minimize the congestion-related losses. The Idle Sense

protocol [14] adjusts the contention-window parameters of

a node to reduce packet collisions. This method enables a

node to estimate collision rate, from which it can estimate the

frame error rate due to poor channel conditions. Idle Sense,

however, requires each node to measure the number of idle

slots between transmissions - this requires a firmware update,

and is not possible on many hardware platforms. Further, Idle

Sense requires modification to the 802.11 DCF mechanism; its

interaction with other existing 802.11 devices is not clear. A

comparison of our solution with that of Idle Sense is beyond

the scope of this work.

Based on the above discussion, we note that while metrics

such as SNR and idle slots provide valuable input for a

rate adaptation algorithm, the complexity of implementation

and the associated overhead makes it difficult to develop a

practical solution. On the other hand, we show that the network

utilization metric can measure congestion locally, in real-time,

and with low overhead. Therefore, it serves as a suitable metric

that can be used in the design of a congestion-aware rate

adaptation algorithm. Our scheme, Wireless cOngestion Opti-

mized Fallback (WOOF) is implemented on existing hardware,

and we show that WOOF can coexist with current 802.11

implementations.

We next discuss two techniques to measure congestion

levels in a wireless network in real-time. Later, in Section 5,

we describe the design of a rate adaptation scheme that uses

these measurement techniques to adapt to congestion.

3 CONGESTION MEASUREMENT

Congestion on the wired Internet is caused when the offered

load on a link approaches the capacity of the network link.

Similarly, congestion in IEEE 802.11 wireless networks may

be defined as a state where the shared wireless medium is close

to being fully utilized by the nodes, because of given channel

conditions and/or external interference, while operating within

the constraints of the 802.11 protocol [4].

Identification of congestion in wireless networks presents

new challenges as compared to wired networks. The shared

nature of the wireless medium causes a node to share

the transmission channel not just with other nodes in the

network, but also with external sources of interference. Unlike

wired networks, where throughput degradation on a network

link is indicative of congestion, throughput degradation in

wireless networks can occur due to a lossy channel, increased

packet collisions during congestion or external interference.

In addition, throughput of a wireless link is also directly

influenced by the rate adaptation algorithm through its choice

of transmission data rate. Clearly, if a lower data rate is in

use, the throughput for a given time interval will be lower

than with a high data rate. Traditional rate adaptation schemes

for 802.11 networks fail to identify congestion related packet

losses from poor channel quality and resort to the use of

lower data rates. In the case when the medium is heavily

utilized by a large number of users, packet losses occur

primarily due to congestion. The use of a lower data rate

increases the transmission time for the same packet size,

further degrading network performance [3], [15].

For the above reasons, the time available to a node for

transmission, governed by the current medium utilization

level, characterizes congestion in a wireless network better

than the observed throughput. Several studies have proposed

the use of medium utilization as a measure of congestion in

the wireless medium [4], [16], [17]. Jardosh et al. show that

medium utilization can be used to classify network state as

uncongested, moderately congested and highly congested [4].

Hu and Johnson suggest the use of MAC layer utilization

information as one of the metrics for route selection in

a multi-hop wireless network [16]. They also suggest use

of the utilization metric to trigger the Explicit Congestion

Notification (ECN) feature of TCP for better throughput in

congested wireless networks. AQOR is an admission control

scheme for multihop wireless networks that uses medium

utilization information for flow admission decisions [17].

There are two possible approaches to measuring medium

utilization in real time: active probing and passive measure-

ment. While an active approach relies on sending probe pack-

ets to determine the state of the network, a passive approach

monitors a system variable, and then uses that to determine

the current network state.

In this paper, we implement and evaluate two real-time con-

gestion measurement techniques for wireless networks. The

first is an active technique that measures the channel access

delay, the minimum time delay for a packet transmission in
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(a) Channel access delay (b) Total delay experienced by an 802.11 node

Fig. 1. Per packet channel access delay vs total delay for an 802.11 node.

the network at any instant. The second technique is passive in

nature and measures channel busy time, the fraction of time

for which the medium was utilized, during some time interval.

3.1 Channel Access Delay: An Active Approach

Channel Access Delay (CAD) refers to the minimum delay

between the time a packet is delivered to the 802.11 hardware

by the device driver and the time when the medium is

first detected to be idle for transmission. Intuitively, if the

medium is heavily utilized, the probablity that the probing

node experiences a higher channel access delay will be higher

as compared to a scenario when the medium utilization is low.

Thus, CAD values in a given time period can provide useful

insight into the cause of packet loss experienced by a node

and may be used in network debugging, rate adaptation and

congestion measurement. We evaluate the utility of channel

access delay to obtain an estimate of the current congestion

level in the vicinity of the node by monitoring the CAD values

for transmitted probe packets sent at regular intervals.

As shown in Figure 1, the definition of the channel access

delay is different from the total delay an 802.11 node ex-

periences to transmit a packet successfully. The latter value

includes the time spent by the node in the random backoff

phase and the delays experienced by the packet in the device

driver and hardware queues. Thus it is necessary to isolate the

individual backoff and queuing delay values before calculating

channel access delay.

To this end, we developed a tool to accurately compute

the channel access delay, based on the framework provided

by MadMAC [18], an extension to the open source Mad-

Wifi driver for Atheros chipset-based 802.11 devices. Using

MadMAC, we control the random backoff by setting the

CWmin and CWmax parameters to one (minimum allowed for

data queues) and disable retransmission of packets. Queuing

delay at the hardware queues is avoided by limiting the

queue size to one. This is achieved by controlling the rate at

which the device driver delivers the packets to the hardware

for transmission. We measure the channel access delay by

timestamping two network events for the transmission of each

probe packet:

1) The local time (Tx) at a node when the device driver

delivers a packet to the 802.11 card for transmission.

2) The local time (TxStart) at a node when an interrupt is

received from the 802.11 device indicating successful

initiation of transmission of the probe packet by the

hardware.

The channel access delay can then be computed as:

CAD = TxStart − Tx (1)

We use fixed-size broadcast packets (to prevent retransmis-

sions) for probing that are transmitted at a fixed bit-rate. The

absolute value of CAD also depends on the Distributed Inter

Frame Spacing (DIFS) interval and the slot time which may

differ based on the 802.11a/b/g mode of operation.

It is important to note that channel access delay for any

probe packet is dependent on the instantaneous network activ-

ity in the wireless medium. For instance, if a packet is deliv-

ered to the hardware for transmission during an ongoing neigh-

boring transmission, the channel access delay will depend on

the time it takes for the neighboring transmission to finish.

Thus individual values are susceptible to high variability and

are unlikely to accurately reflect current medium utilization

levels. However, the distribution of a number of CAD values

measured within a short time interval enables us to estimate the

current congestion level of the network. While on one hand,

the distribution of CAD values obtained from a large number

of samples yields a more representative statistical view of the

current channel conditions, this also adds to the overhead due

to probe packets. Clearly, such an active probing technique

has an inherent tradeoff between the estimation accuracy and

the overhead of probe packets in a time interval further adding

to congestion.

We use the Baumgartner-Weiß-Schindler (BWS) statistical

test [19] to estimate if the medium utilization is above

a given threshold. This is achived by comparing the em-

pirical distribution of CAD values obtained during a live

experiment with a known distribution for different medium

utilization levels and data rates at which the packets are

sent, obtained during the training session on our testbed.

The BWS test is a well known nonparametric statistical

technique used in the field of biometrics to determine the

probability that two individually collected sets of empirical

data belong to the same underlying distribution. This nonpara-

metric test uses the difference between empirical distribution

functions, and this quantity is weighed by its variance. Such

a test avoids any assumptions on the distribution under-

lying the observed data. It also performs well even with

small sample sizes in complex systems where there is no

a priori information available about the distribution from

which the measured data originate. Section 4.3.1 describes

our methodology and the performance of the BWS test in

detail.
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3.2 Channel Busy Time: A Passive Approach

Channel Busy Time (CBT) refers to the fraction of time for

which the wireless channel is busy within a given interval.

As measured at a wireless device, it includes the time for

transmission of packets from the device, reception of packets,

packet transmissions from neighbors, the delays that precede

the transmission of data and control frames called Inter-Frame

Spacings, and environmental noise.

Jardosh et al. outline a method to calculate medium uti-

lization by adding the transmission duration of all data,

management, and control frames recorded by a sniffer [4].

However, one drawback of this approach is that it involves

significant processing overhead for each received packet, as it

requires sniffing the network in monitor mode and accounting

for transmission delays of data and ACK packets, and the SIFS

and DIFS intervals that precede frame transmissions. These

complexities make it unsuitable for congestion identification

in real-time.

In this paper, we present a practical light-weight imple-

mentation of the CBT metric for 802.11 networks using a

feature provided in Atheros chipset-based wireless devices,

and compare its performance with the technique proposed by

Jardosh et al. [4].

To measure the channel busy time, we use the reverse-

engineered Open HAL1 implementation of the MadWifi driver

for Atheros AR5212 chipset radios. Atheros maintains 32-

bit register counters to track “medium busy time” and “cycle

time”. The cycle time counter is incremented at every clock

tick of the radio, and the medium busy counter represents the

number of clock ticks for which the medium was sensed busy.

The medium is considered busy if the measured signal strength

is greater than the Clear Channel Assessment (CCA). For

Atheros radios, the CCA has been found to be -81dBm [20].

time” counter,

The ratio of the “medium busy time” and the “cycle time”

counters gives the fraction of time during which the channel

was busy. We found that the counters were reset (to a random

value) about once every minute. In our implementation we

expose an interface in the /proc filesystem to read the

counter values from the registers periodically at an interval

of one second.

Our implementation of channel busy time measurement

is based on the Atheros chipset. The CBT functionality is

now supported for all Atheros chipsets via the open-source

ath5k Linux driver [21]. Based on a study of open-source

code and SNMP MIB specifications, we believe that chipsets

from other vendors such as Prism and Cisco support CBT-

like functionality [22], [21]. Further, the 802.11h Radio Re-

source Management extension recommends APs to support

measurement of ChannelLoad, a metric similar to channel

utilization [23]. Therefore we expect the CBT functionality

to be supported by a large number of hardware vendors. As

we show later in this paper, the CBT metric can provide very

useful information for network protocol designers. We believe

that other hardware vendors should also expose a similar

interface and facilitate cross-layered wireless protocol designs

that maximize network performance.

1. http://madwifi.org/wiki/OpenHal (Dec 2006)

Delay Component Duration (µsec.)

DIFS 50
SIFS 10

Preamble (short) 96

Frame Preamble + 8·frame size
rate

TABLE 1
Delay parameters for calculation of medium utilization.

4 EVALUATION OF CONGESTION METRICS

In Section 3, we proposed two techniques to measure con-

gestion in a wireless network in real time. While channel

access delay is an active technique that requires the node to

actively transmit data packets in the network, channel busy

time involves passive measurements without actually requiring

data transmission.

To evaluate the performance of the two techniques, we use

as a benchmark the medium utilization as seen by a sniffer

operating in monitor mode. In order to calculate medium

utilization, we use the methodology proposed by Jardosh et al.

to account for the transmission duration of all management,

control and data frames, along with the SIFS and DIFS du-

rations preceding each transmission [4]. This helps determine

the accuracy of our low overhead implementations of channel

access delay and channel busy time by comparing against a

fairly comprehensive but high overhead mechanism.

We first describe the experimental setup used to measure

medium utilization using the two proposed techniques as

well as the benchmark technique, which relies on analysis

of packets captured by a sniffer. We then describe in detail

the two test environments where we conduct our experiments.

Next, we present the performance results of the two techniques

in each of the test environments. Finally, we discuss the

relative merits and limitations of the two techniques.

4.1 Experimental Setup

In our experiments, we use four Linux laptops equipped with

Atheros chipset IEEE 802.11a/b/g cards, and an access point to

evaluate both the active (CAD) and passive (CBT) congestion

measurement techniques as described below.

Sniffer: One laptop acts as the sniffer and is placed close to

the AP to perform vicinity sniffing [24]. As part of vicinity

sniffing, the radio on the sniffer laptop operates in mon-

itor mode and captures all packet transmissions using the

tethereal utility. This technique allows us to study the

wireless network activity in the vicinity of the AP. The traffic

trace from the sniffer is used for the offline calculation of

medium utilization values during the experiment. The calcu-

lated value of utilization is then used to compare against the

CAD and CBT values during the corresponding time interval

of the experiment.

We calculate the medium utilization value using the method-

ology proposed by Jardosh et al. [4]. In the interest of

space, we briefly summarize the technique as follows. The

medium utilization for a given time interval is the sum of the

time required for all data, management, and control frames

transmitted in the interval and the necessary MAC delay

components for each frame. The time required for a frame
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transmission is determined by the data rate and the size of the

frame in addition to the fixed duration preamble. The delay

components include the Inter-Frame Spacings such as SIFS

and DIFS. Table 1 lists the parameters used for our calculation

of medium utilization. We use the short preamble delay of

96µs to estimate the minimum such delay in a network with a

mix of devices that use a short preamble of 96µs and devices

that use a long preamble of 192µs.

Channel Access Delay: To accurately measure the channel

access delay, two laptops run our CAD measurement tool using

MadMAC [18] as their driver. Both nodes broadcast fixed size

probe packets (98 bytes each) at a fixed bit-rate (54 Mbps) and

measure the channel access delay for each probe. These nodes

are not connected to the AP and hence are not part of the

wireless network under test. We fix the contention parameters

to a minimum (CWmin = CWmax = 1).

Channel Busy Time: A fourth laptop, also placed close to

the AP, continuously measures and records the channel busy

time as described in Section 3.2.

In order to compare CAD and CBT values with medium

utilization values during the corresponding time intervals, the

laptops are time synchronized to a millisecond granularity

using NTP. Note that both laptops are tuned to the same

channel as the AP.

We next describe the two test environments where the above

described experimental setup is used for the performance

evaluation.

4.2 Testing Scenarios

We evaluate the CAD and CBT congestion measurement tech-

niques in two different environments. The first is a controlled

testbed involving eight client laptops connected to an access

point. The other is a real world large scale deployment of a

wireless network providing connectivity to more than 1000

clients. We choose the two environments because of their

vastly different characteristics. The controlled environment

of a testbed allows us the flexibility to vary network load

to generate a range of medium utilization values and limit

external sources of interference. A real world deployment,

on the other hand, serves to verify the performance of our

tools in an environment characterized by live Internet traffic,

a large number of heterogeneous wireless devices, dynamic

user behavior and other environmental factors.

4.2.1 Testbed

We conduct two phases of experiments on an indoor wireless

testbed of eight client laptops connected to an access point.

Each client initiates a bidirectional UDP traffic flow with the

AP. The rate of data traffic is controlled at each client to

generate a range of medium utilization levels.

In the first phase we generate the training data set for the

BWS test, based on the CAD values observed for different

medium utilization levels, as described in Sections 3.1 and

4.3. This training data is then used to estimate the medium

utilization level in the second phase of experiments on the

testbed as described in Section 4.3.1, as well as the IETF

experiments as described below.

We use UDP traffic as opposed to TCP in our testbed

experiments because TCP’s congestion control and backoff

mechanisms prevent us from controlling the rate at which

data is injected in the network. Each client exchanges UDP

data with the access point bidirectionally. This creates both

incoming and outgoing traffic from the AP and provides us

with a mechanism to create a range of medium utilization and

congestion levels in the testbed.

4.2.2 IETF Wireless LAN

To verify the performance of the two congestion estimation

techniques in a real world scenario with live Internet traffic, we

conducted experiments at the 67th IETF meeting held in San

Diego in November 2006. The network at the IETF meeting

consisted of a large WLAN connected to the Internet with 38

physical AP devices that provided connectivity to more than

1000 clients. The APs were dual-radio devices with one radio

tuned to the 802.11a spectrum and the other to the 802.11b/g

spectrum. The APs were tuned to orthogonal channels to

enable spatial reuse. We chose to perform our experiments

with 802.11b/g as there were approximately three times as

many users on the 2.4GHz spectrum as the 5GHz spectrum of

802.11a. The APs advertized the following as accepted data

rates (Mbps): 11, 12, 18, 24, 36, 48 and 54. This restriction on

acceptable data rates enables limiting the cell-size of each AP.

We conducted experiments during several sessions at the

IETF, each characterized by a different number of clients

connected to the AP. For example, a working group meeting

is typically held in a small room and is attended by about 50-

100 people on average. On the other hand, a plenary session

is attended by approximately 1000 people. The room for the

plenary session at the 67th IETF was serviced by eight dual

radio physical AP devices. The 2.4GHz APs were tuned to the

three non-overlapping channels of the 802.11b/g spectrum. For

the evaluation of our congestion measurement techniques, we

focused on Day 3 of the meeting, a day that included a plenary

session.

4.3 Congestion Estimation Results

We now present performance results for both the congestion

measurement techniques in each of the two test environments.

There are four sets of results, corresponding to each combi-

nation of the two measurement techniques, CAD and CBT,

paired with the two test environments, testbed and IETF.

The active probing technique of calculating channel access

delays requires sampling of a set of values within a short

time interval, following which this set is compared with a

known distribution, to determine whether the current medium

utilization is above or below a specified threshold value.

Channel busy time measured during an interval bears a direct

correlation with the medium utilization, and predicts a range

for the current medium utilization level.

Due to the difference in the nature of results obtained

from each of these techniques, we do not compare the two

quantitatively. We first present the results for CAD in both

test environments followed by those for CBT.



7

 10

 100

 1000

 10000

 100000

 1e+06

 0  0.2  0.4  0.6  0.8  1

C
h
a
n
n
e
l 
A

c
c
e
s
s
 D

e
la

y
(m

ic
ro

s
)

Medium Utilization Fraction
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(b) IETF: CAD vs medium utilization.

Fig. 2. Correlation between CAD (active probe technique) and medium utilization.
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Fig. 3. Correlation between CBT (passive measurement technique) and medium utilization.

4.3.1 Channel Access Delay

As explained in Section 3, the channel access delay for a

packet depends on the instantaneous state of the network

when the measurement was made. For example, if the device

driver delivers a packet to the hardware for transmission

during an ongoing packet transmission in the channel, then

the CAD value depends on the time required for the ongoing

transmission to finish. As can be seen in Figures 2(a) and

(b), for a given medium utilization level, individual CAD

values observed show no obvious trends. The exception is the

lower bound on the measured CAD values (≈80 µs), which

corresponds to the minimum channel access delay observed

if the medium is idle at the instant when the probe packet is

delivered to the hardware for transmission. Figures 2(a) and (b)

show average CAD values over one second intervals for four

probe packets (98 bytes each) sent at a data rate of 54 Mbps.

While individual CAD values are susceptible to noisy esti-

mates, the BWS technique allows us to estimate the channel

conditions based on a distribution of samples taken during an

interval. The BWS test compares two distribution samples and

assigns a probability measure (p-value) to the event that the

two samples originate from the same underlying distribution.

We first train our prediction system during a training phase,

in which we obtain an expected distribution for each 10%

bin of medium utilization values ranging from 0 to 100%

(bin(0,10), bin(10,20), ..., bin(90,100)). In the real-time experi-

ment, we obtain a distribution d of the CAD values from

the active probe packets and use the nonparametric BWS test

to obtain a p-value for the event that d and bin(i,j) have

the same underlying distribution. Next, we choose the bin

bin(a,b) with the highest p-value and determine whether the

range (a, b) is above or below the specified threshold (Tc)

for medium utilization that defines congestion. If the range

(a, b) lies above the threshold Tc, we declare the medium to be

congested and un-congested otherwise. We verify the accuracy

of our threshold-based congestion estimation by determining

whether the value of medium utilization obtained from the

sniffer during post-analysis was also observed to be above or

below the medium utilization threshold Tc.

Medium Utilization BWS accuracy (%)

Threshold (%) Testbed IETF

10 64.69 67.63
20 70.39 65.89
30 76.09 63.58
40 77.50 57.51
50 83.22 57.22
60 88.11 69.79
70 92.78 81.21
80 94.23 85.84
90 95.65 94.50

100 100 100

TABLE 2
BWS test prediction accuracy with varying medium

utilization threshold values.

Table 2 shows the accuracy of the real-time made by the

the CAD congestion estimation tool, in both test scenarios,

for varying CAD values collected over one second intervals.

The accuracy of the BWS test predictions was slightly higher
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in the testbed environment as compared to the IETF. This is

because the number of CAD samples collected in the testbed

was higher (10 packets/second) than the IETF experiment (4

packets/second).

In conclusion, the accuracy of the BWS test results varies

depending on the number of CAD samples available during an

interval. In a general setting, we expect a node to calculate the

channel access delay for a majority of its transmitted packets,

which will yield a sufficiently large number of CAD values

within a short interval. However, in our experiments at the

IETF meeting, we limited the number of packets sent by the

test nodes to a maximum of 4 packets/second to limit the

impact of our experiment on the network.

4.3.2 Channel Busy Time

In Figures 3(a) and (b), we plot the CBT metric against

the medium utilization calculated based on sniffer data

for each second, for experiments conducted on the testbed

and at the IETF meeting, respectively. Every point in the

graph represents the measured CBT value compared to the

calculated medium utilization value during the correspond-

ing time interval. Both Figures 3(a) and 3(b) (b) show

a strong linear correlation between CBT and medium uti-

lization, with a linear correlation coefficient of 0.97 for

the testbed network and 0.925 for the IETF network.

This high degree of correlation indicates that channel busy

time estimates the medium utilization with high accu-

racy.

From the graphs, we observe that the CBT metric some-

times indicates a higher value than medium utilization. This

behavior is because CBT accounts for the time during which

the medium was busy, but a packet was not necessarily

received (e.g., channel noise, packet collisions). Therefore

CBT represents a more accurate picture of the channel in

such scenarios. Also, it can be seen from Figure 3(b) that the

CBT metric sometimes under-estimates the channel utilization

value. The specification for the Atheros chipset quotes the

radio sensitivity for some data rates (e.g., -95dBm for 1Mbps)

to be lower than the CCA threshold. Thus, some low data rate

packets are received correctly at the sniffer at a signal strength

that is below the CCA threshold.

4.4 Discussion

The results in the previous section indicate that channel busy

time is an effective technique to determine channel utilization

at a low overhead. Channel access delays experienced by a

node can be used to estimate whether medium utilization is

high or low depending on a specified threshold value. While

the results of the CAD technique do not provide us with the

exact value of medium utilization, the decision on whether the

medium utilization is above or below any specified threshold

is sufficient for most applications involving rate adaptation,

admission control and network debugging. On the other hand,

the CBT metric provides a medium utilization estimation with

high accuracy, using a feature exported by the Atheros-based

802.11 devices.

For its ease of use and low overhead, we use the CBT metric

in the rest of the paper to design a novel congestion-aware

rate adaptation scheme for wireless networks. However, in

scenarios where the CBT metric functionality is not available

in the 802.11 cards, the scheme could be easily modified to

use the channel access delay metric.

5 WIRELESS CONGESTION OPTIMIZED

FALLBACK (WOOF)

We now demonstrate the utility of real-time congestion

metrics in improving the performance of wireless networks

in congested scenarios. Our focus is on rate adaptation in

wireless networks. In the following sections, we analyze the

performance of rate adaptation schemes in a large WLAN con-

nected to the Internet. Based on this analysis, we then describe

the design of our congestion-aware rate adaptation scheme.

5.1 Rate Adaptation during Congestion

We now analyze the behavior of current rate adaptation

schemes in a congested network. Our focus is on the packet

loss rates in such networks and their impact on rate adaptation.

In addition, we explore the relationship between packet loss

and congestion levels in the network. The traffic traces from

the 67th IETF are used for this analysis.

We focus on the Wednesday plenary session of the IETF

meeting. This session had more than 1000 attendees in one

large room with 16 APs. We choose this session in order

to study the packet loss behavior in a network with a high

number of users and a high load on the network. We assume

the original transmission of a packet to be lost if, in the trace,

we observe a packet transmission with the retry flag set. This

technique, however, does not account for retransmitted packets

that were not captured by the sniffer. Thus the estimate is a

lower bound for the number of packet losses. The fraction

of lost packets is calculated as the ratio of the number of

retransmitted packets to the sum of the number of packets

transmitted and the number of packets lost.

Figure 4 plots the medium utilization levels and the fraction

of data frames that were lost during the Wednesday plenary

session. The medium utilization fraction is calculated with the

same technique as used in Section 4.1. During periods of high

utilization, the number of packet losses also increases. This

can be attributed to the losses caused by contention for the

medium (i.e., when the backoff counters of two or more nodes

expire at the same time.) Alarmingly, the percentage of lost

packets is as high as 30%. With such a high number of packet

losses, any rate adaptation scheme that relies on packet loss

as a link quality metric is highly likely to lower the data rate,

often to the minimum possible transmission rate.

To analyze the impact of such high packet loss rates on

rate adaptation schemes, we study the distribution of data

rates used for transmissions. The access points at the IETF

meeting advertized only the following data rates (in Mbps)

as supported: 11, 12, 18, 24, 36, 48, and 54. A client that

supports IEEE 802.11b only is limited to use the 11 Mbps

data rate alone and thus cannot perform rate adaptation. To

study the distribution of data rates, we consider only the

data packets sent to/received from clients that support IEEE

802.11g. We consider a client to be 802.11g-enabled if a) it

specifies an 802.11g data rate in the association message, or
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Rate (Mbps) Percentage of Data Packets

1 0%
2 0%

5.5 0%
6 0%
9 0%
11 72.94%
12 3.95%
18 1.53%
24 2.76%
36 3.90%
48 3.59%
54 11.51%

TABLE 3
Data rate distribution for 802.11g clients during the

Wednesday plenary session.

b) in the entire traffic trace, we observe at least one packet

to/from the client using an IEEE 802.11g data rate. Table 3

shows the distribution of data rates for only the 802.11g clients

observed during the session. We see that a majority of the

transmissions (73%) used the lowest possible data rate2. This

behavior can be attributed to the rate adaptation schemes used

by the wireless devices in the network. The high rate of packet

loss forces the rate adaptation scheme to consider the link to

be of poor quality and, thus, use lower data rates. A study of

the SNRs shows that during this period 67% of the 11Mbps

transmissions had higher SNR than the average SNR of a

54Mbps transmissions. This shows that higher data rates could

be used in this scenario.

Previous work has also observed a similar effect of conges-

tion on rate adaptation [3], [24]. In a congested network, a ma-

jority of the 802.11 transmissions occur at the lowest possible

rate. Such transmissions also consume a large fraction of the

medium time, since the packets take longer to be transmitted.

Switching to a lower rate as a result of contention losses is not

only unnecessary but also increases the medium utilization.

The packet transmissions take longer to complete and are

more susceptible to collisions (e.g. from hidden terminals).

The above problem of rate adaptation is similar to the behavior

of TCP reducing its congestion window in response to all

2. An 802.11g capable client may have been incorrectly classified
as an 802.11b client if it used only the 11 Mbps data rate and
the association message was not captured by the sniffer. Accurate
classification of such clients would increase the fraction of data
packets at 11 Mbps.
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Fig. 5. Relationship between channel busy time and
packet loss rate during the Wednesday plenary session.

types of packet losses, which leads to reduced throughput even

though the losses are not related to congestion [3]. Thus, it is

important to understand the cause of a packet loss, and respond

appropriately in the rate adaptation algorithm.

Based on the above discussion, we conclude that rate

adaptation schemes must identify the cause of a packet loss

and account only for packet losses that are not congestion-

related. To this end, we now discuss the design and implemen-

tation of Wireless cOngestion Optimized Fallback (WOOF),

a rate adaptation scheme that identifies the cause of packet

losses. Packet losses related to congestion are omitted in the

determination of an appropriate transmission data rate. Thus

the decision relies only on losses due to poor link quality.

5.2 Identification of Congestion-related Packet Loss

In Section 4 we noted that channel busy time was a good

predictor of network congestion levels. We now explore the

relationship between the channel busy time metric and packet

loss rate.

Figure 5 plots a graph of the packet loss rate as a function

of the Channel Busy Time during the corresponding time

interval of the Wednesday Plenary session. The plotted rates

are averaged over 30s time windows. In other words, a point

(x,y) represents a 30s window wherein the with x Channel

Busy Time and y packet loss rate. We observe a strong linear

correlation with the packet loss rate and the observed channel

busy time values. In other words, as the channel busy time

increases, the probability of a packet loss due to congestion

also increases.

Unfortunately, a similar study of packet loss versus channel

busy time values for other sessions in the 67th IETF did not

exhibit such strong correlation. However, we note that the

average packet loss rate was higher during periods of high

utilization in these sessions. These observations lead us to

conclude that the channel busy time information can be used

as a good indicator of packet loss caused by the congestion

level in the network. However, the exact relationship of

channel busy time (and therefore medium utilization) may

vary depending on the environmental factors in the wireless

network. A rate-adaptation scheme that uses channel busy time

as a heuristic to identify congestion-related packet losses must

therefore be dynamic and capable of adapting to changes in

the wireless network environment. In the design of our rate

adaptation scheme WOOF, we initiate our prediction heuristic
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with the initial setting of a linear relationship between packet

loss and observed utilization level. We then dynamically adapt

the weight of this relationship based on the observed network

performance to model the current environment in the wireless

network.

The channel busy time metric only helps in identifying the

cause of packet loss, i.e., whether it was congestion-related.

The rate adaptation scheme must continue to deal with packet

losses caused by other factors such as poor link quality. Thus

we claim that Channel Busy Time provides supplementary

information that a rate adaptation scheme can use in addition

to packet loss information. We, therefore, borrow the basic

framework of the design of SampleRate [12] scheme in order

to handle the packet loss information in WOOF. WOOF builds

on SampleRate through the incorporation of channel busy time

and its relationship with congestion related packet loss. We

now outline the operation of SampleRate, and then discuss

the design of WOOF.

5.3 SampleRate

SampleRate is a rate adaptation scheme that accounts for the

time required for successful transmission of a packet [12]. The

underlying idea of SampleRate is to choose the data rate that

is expected to require the least time for transmission, i.e., the

data rate with maximum throughput. Note that this rate need

not always be the highest possible rate (i.e., 54 Mbps) because

of poor link SNR and variable link quality. SampleRate uses

frequent probing of different data rates in addition to the

currently used data rate to calculate the Expected Transmission

Count (ETX) [25] for each data rate. The ETX represents the

average number of transmission attempts required for success-

ful reception of a packet. A link has ETX=1 if a packet can be

successfully received on the first transmission attempt. On the

other hand, if the packet is lost and subsequent retransmissions

are required for successful packet delivery, then ETX>1. The

ETX is calculated using either a sliding-window time average

or using EWMA. The Expected Transmission Time (ETT) is

calculated using ETX information at a given data rate and

accounts for the backoff times when the ETX metric predicts

that a retransmission is required (i.e., ETX>1). SampleRate

then chooses to transmit data packets using the data rate with

the lowest expected transmission time.

While SampleRate is able to successfully adapt the data

rate in the presence of link variability, it does not respond

appropriately when congestion occurs. In particular, it does

not distinguish the cause of packet loss; all packet losses

contribute towards the calculation of ETX. Previous research

has observed this phenomenon of SampleRate’s data rate

reduction [26]. Congestion losses impact SampleRate’s

estimation of ETX at the different data rates and lead to a

sub-optimal choice of transmission rate.

5.4 Design of WOOF

We base the design of the WOOF scheme on the design of

SampleRate. In particular, we build on SampleRate’s frame-

work of calculation of Expected Transmission Time and use

this information to choose an appropriate data rate for trans-

mission. In addition, we incorporate the ability to discern the

cause of packet loss, in order to enable operation in congested

networks.

In Section 5.1 we observed that channel busy time can be

used as a metric to predict congestion-related packet loss. We

incorporate this insight into the design of WOOF with the

following enhancement to SampleRate. We use effective packet

loss instead of the observed packet loss for calculation of ETX

and the resulting calculation of ETT. Whenever we observe a

packet loss, we associate a probability PCL that the loss was

due to congestion. We then account for the fraction of packet

loss that was not due to congestion in the calculation of ETX.

In other words, we weigh every packet loss proportionally to

the probability that it was not a congestion-related loss.

EffectiveLoss = ObservedLoss · (1 − PCL)

For the calculation of PCL, we use the following equation

to capture the relationship between Channel Busy Time and

packet loss:

PCL = β · CBT

where CBT represents Channel Busy Time fraction and β

represents the confidence factor, 0 ≤ β ≤ 1. The Channel

Busy Time values are measured over intervals of time of size

W seconds.

The confidence factor β is a measure of the degree of corre-

lation between CBTF and congestion-related packet loss. The

confidence factor is adaptively varied based on the observed

network performance. The value of β is calculated as follows.

At the end of each measurement interval, W , we compare

the performance of rate adaptation in the current interval to

that during the previous interval. The metric for performance

comparison is the transmission time consumed during the

interval. To enable comparison of transmissions using a diverse

set of data rates, we normalize the measured transmission

time with respect to the corresponding time using a fixed

data rate on a reliable channel, e.g., 54 Mbps. In other words,

the metric is analogous to the transmission time required per

byte of successfully transferred data. If the metric indicates an

improvement in performance in comparison with the previous

interval of measurement, the value of β is increased in steps

of 0.05. This increase in β models the increased confidence in

using CBTF to distinguish packet losses due to congestion.

Similarly, when the metric indicates a drop in network perfor-

mance, β is decreased in steps of 0.05. The confidence factor

β enables WOOF to adapt to different network environments.

In particular, this enables WOOF to ensure good performance

(at least as good as SampleRate) in situations of low SNR

links and high congestion. In Section 6.5, we examine the

impact of the measurement window, W , and its effect on the

convergence time for β values. In Section 6.3, we evaluate the

performance of WOOF under different combinations of link

SNR and congestion

5.5 Implementation

We implemented WOOF as a rate adaptation module for

the MadWifi driver v0.9.2 for Atheros chipsets on Linux.

We choose W = 1s as the window of observation and

recalibration. A large value of W reduces the responsiveness

of WOOF to changes in the environment utilization. Smaller
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values of W increase the load on the driver due to the need

for frequent recalibration. We set the initial value of β to

0.5. At each interval of W seconds, the driver reads the

Atheros registers described in Section 3.2 to calculate the

Channel Busy Fraction. In addition, the normalized network

performance is calculated as described in Section 5.4. The

β values are also updated at each interval. In the following

section we use our implementation of WOOF to study the

benefit of WOOF in a congested wireless network.

6 EVALUATION

We evaluate the performance of WOOF in two testbed net-

works as well as through simulation. The testbed networks

represent two scenarios, a WLAN and a multihop mesh

network. These testbeds help us to evaluate WOOF on real

802.11 devices and networks. The simulations enable us to

scale the performance evaluation to networks larger than the

testbed networks. We first present results from the testbed

experiments, followed by the simulation-based experiments.

Among the two testbeds, we first use the WLAN scenario

since it allows us to control the experiment parameters and

the environment. The WLAN consists of one laptop acting

as an AP and eight laptops as client devices. Each laptop is

equipped with an IEEE 802.11b/g radio based on the Atheros

chipset. The laptops use Linux (kernel version 2.6) as their

OS. The wireless radio is controlled by the MadWifi driver

v0.9.2 along with the WOOF rate adaptation module.

We compare the performance of WOOF against that of Sam-

pleRate. Previous work has shown that SampleRate performs

better than ARF and AARF in most network scenarios [12],

[13]. Thus we expect WOOF to provide better performance

than ARF and AARF in all cases where WOOF performs

better than SampleRate3. We also compare the performance

of WOOF with that of CARA [6]. As described in Section 2,

CARA is built upon ARF, and uses RTS-CTS to combat

collision losses. We implement CARA for Madwifi and use

it for our comparison. In addition, for the WLAN scenario,

we also compare performance against a scenario wherein the

data rate of the client-AP link is fixed at the best possible

rate. This scenario, called the StaticBest scenario, gives us an

estimate of the upper-bound on the network performance. The

best static rate is determined by running a simple performance

test at each data rate immediately prior to the corresponding

tests with SampleRate, CARA, and WOOF.

6.1 Impact of Network Load

In the following set of experiments, we examine the impact

of network load on the rate adaptation schemes. The clients

implement either SampleRate, CARA, WOOF or use the fixed

data rate (StaticBest). The load on each of the eight clients is

varied from 100 Kbps to 7 Mbps to vary the overall load on the

network from 800 Kbps to 56 Mbps. The AP operates using

802.11b/g and thus the maximum theoretical raw bandwidth

3. Implementation of RRAA [13] requires a specialized pro-
grammable AP platform. Therefore, we are unable to compare WOOF
against RRAA. However, we note that RRAA was designed for better
performance in hidden terminal scenarios and not specifically for
congested networks.
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Fig. 6. Impact of network load.

of the network is 54 Mbps. However the mandatory MAC and

PHY layer overheads limit the achievable network throughput

to lower values. The network performance for each offered

load is measured using the iperf utility and UDP traffic

with 1500 byte packets for 5 minutes. For each trial of the

experiment, the drivers on the AP and clients are reset. This

is followed by an initial warm-up period of 60 seconds for each

client during which clients transmit low-rate traffic (10Kbps)

to the AP.

Figure 6 graphs the total network throughput as a function

of the offered load. Each data-point is an average based

on five trials of the experiment. The error-bars indicate the

minimum and the maximum throughput values over different

experiment trials. We observe that the network throughput for

StaticBest saturates at about 32 Mbps and for Sample-Rate

at 7 Mbps. The throughput for WOOF is around 29 Mbps,

close to that of Static-Best. From the graph, we observe

that for non-congested scenarios (offered load <8 Mbps),

all four schemes are able to sustain the offered load. In

other words, WOOF matches the performance of the other

schemes in low congestion environments. With the increase

of congestion (offered load >8 Mbps), SampleRate is affected

by the congestion-related packet losses and, thus, begins to

use lower data rates. WOOF correctly identifies these packet

losses as congestion-related and continues to use high data

rates, resulting in better throughput. CARA provides higher

throughput than SampleRate, but less than that of WOOF.

CARA identifies congestion-related losses, uses RTS-CTS

to protect transmissions at higher data rates, and obtains

more throughput than SampleRate. However, the additional

overhead of the RTS-CTS handshake restricts the network

throughput to less than that of WOOF.

Figure 7 plots a CDF of the data rates used in a representa-

tive trial of the experiment with an offered load of 40 Mbps.

The graph shows that a majority of the packet transmissions

with WOOF use high data rates of 48 Mbps and 54 Mbps. On

the other hand, SampleRate transmits about 50% of the packets

using 11 Mbps or lower data rates. We note that although

CARA uses higher data rates for transmissions, the overall

throughput is less than that of WOOF. This, again, points to

the overhead of the RTS-CTS handshake at the 1 Mbps data

rate to avoid the collision of a data packet at a higher data

rate.
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6.2 Impact of the Number of Clients

We now examine the impact of contention in the network

and study the network performance as the number of clients

increases. The experimental configuration is similar to the one

described in the previous section. In this case, however, we

incrementally increase the number of clients associated with

the AP from one to eight. Each client offers a load of 10 Mbps

UDP traffic.

Figure 8 plots a graph of the total network throughput versus

the number of clients in the network. At low contention levels

(<4 clients), we observe that the throughput of SampleRate in-

creases almost linearly to reach a maximum of about 24 Mbps.

Once the network starts to become congested (≥4 clients),

however, the average throughput for SampleRate starts to drop.

With eight clients, the throughput for SampleRate is 7 Mbps.

This drastic reduction in network throughput (about 70%) is

because, with increased contention, SampleRate reduces the

data rate and adds to the congestion. In contrast, the drop in

throughput for WOOF is from 33 Mbps to 30 Mbps, i.e., only

a 10% reduction. We observe that the throughput reduction

for StaticBest is also about 10%. Therefore, we conclude that

the reduction in throughput is primarily due to actual packet

losses. WOOF is successful in identifying congestion-related

packet losses and omitting them from the ETX calculations.

On the other hand, SampleRate does not attempt to identify

these losses as congestion-related and accounts for them in its

ETX calculations, thereby lowering the transmission data rates

and actually increasing the amount of congestion. On the other

hand, the use of RTS-CTS limits the throughput improvement

for CARA.
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Fig. 9. Network throughput with a mix of WOOF and
SampleRate clients.

6.3 Performance in Poor Link Conditions

We now conduct experiments to understand the performance

of WOOF under different network conditions. In particular, we

are interested in the scenarios wherein the links are weak i.e.,

the SNR of received packets is low. We conduct experiments

similar to that in Section 6.2. We consider four different

combinations of link SNR and congestion levels. The good

SNR link scenario has all client links with sufficient SNR to

operate at 48 and 54Mbps. The low SNR scenario is acheived

by increasing the physical distance between the clients and the

AP, and decreasing the transmit power of all the radios. The

StaticBest rates for the clients in this scenario range between

2Mbps and 18Mbps. We chose two congestion levels: low

congestion corresponds to two clients with an offered load of

5Mbps each; high congestion corresponds to eight clients with

offered load of 5Mbps each.

Table 4 lists the network throughput in each of the scenarios

for both SampleRate and WOOF. We see that the performance

of WOOF under low congestion is comparable to that of

SampleRate. During high congestion, we observe that WOOF

improves the network throughput for both SNR scenarios.

Therefore, we conclude that WOOF provides performance

gains in congested networks while having minimal impact in

uncongested networks. Further, WOOF responds appropriately

when the link quality is poor by decreasing the data rate to a

rate more suitable to the poor link quality.

Low SNR High SNR

Low Congestion
SampleRate: 0.79 SampleRate: 7.67

WOOF: 0.73 WOOF: 7.45

High Congestion
SampleRate: 0.55 SampleRate: 10.63

WOOF: 0.79 WOOF: 23.04

TABLE 4
Network throughput (in Mbps) under different
combinations of SNR and congestion levels.

6.4 Performance in a Mixed Network

In this next experiment, we evaluate the gains obtained through

incremental deployment of WOOF. The experimental config-

uration is similar to the one described in Section 6.1. We

hold the number of active clients constant at eight and we
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vary the number of these clients that use WOOF. The non-

WOOF clients in the network use SampleRate. Each client

has a fixed offered load of 10 Mbps, and therefore, the overall

load exceeds network capacity. Figure 9 plots the network

throughput as a function of the fraction of clients that use

WOOF. The left-most point on the curve (zero WOOF clients)

represents the scenario where all the clients use SampleRate.

We observe that the overall network throughput improves as

the fraction of WOOF clients increases, i.e., the incremental

use of WOOF provides network performance gains. We also

note that the change in throughput of the individual WOOF

clients (not shown in the figure) does not always account for

the increase in overall network throughput. In a few cases,

the SampleRate clients obtained more throughput than the

WOOF clients. This behavior is due to the medium contention

mechanism in IEEE 802.11. Nodes in a 802.11 network

contend for the medium on a per-packet basis, irrespective

of the data rate or size of the packet. A WOOF client that

transmits at a higher data rate consumes less medium time

for a packet transmission. The extra time available enables

contention resolution for more packets in the network, for

both WOOF clients and non-WOOF clients. Thus we see an

increase in the overall throughput of the network.

6.5 Choice of Parameter W

We now explore the impact of using different values for W , the

interval of recalibration for WOOF. We use the same experi-

mental configuration as in Section 6.1. Each of the eight clients

has an offered load of 10 Mbps for a five minute duration.

Table 5 shows the average network throughput for different W

values. We observe that for low W values, between 0.25s and

2s, the network throughput remains high and fairly stable. For

W > 2s, we see that the throughput values decrease. At high

values of W , the throughput is comparable to that obtained

by SampleRate. A low value of W enables WOOF to adapt

to network conditions quickly and obtain better performance.

However, a low value of W also increases the processing load

due to the rate adaptation algorithm. On the other hand, a high

value of W makes WOOF less responsive to the environment.

Based on these tradeoffs, we recommend a value of W = 1s.

W (seconds) Throughput (Mbps)

0.05 17.68
0.10 21.43
0.25 28.77
0.5 27.63
1 28.85
2 27.72
4 21.98
8 16.44

16 14.92
32 10.30

TABLE 5
Impact of measurement interval W.

Closely related to the choice of value of W is the number

of recalibration cycles required for the β value to stabilize

in response to a change in the environment. In our WLAN

testbed we found that the median number of cycles for β to

stabilize is six. Similarly, in the MeshNet environment that we
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Fig. 10. Impact of β parameter.

describe in the next section, the median number of cycles was

five. Together with W , the number of cycles for β to stabilize

impacts the time delay for WOOF to respond to a change in

the environment (e.g. arrival of a new node in the network).

6.6 Impact of parameter β

We now demonstrate the importance of the confidence factor

β in adapting to different network conditions. We use the

experiment setup of Section 6.2. We increase the number of

clients associated with the AP, and each client offers a load

of 10Mbps. We repeat the exeriment with fixed values of β

as well as adaptive β. Figure 10 shows the results of these

experiments. We observe that the throughput of each β value

peaks with different number of clients. On the other hand,

adaptive β is able to provide the best throughput with the

different number of clients. Therefore, we conclude that the re-

lationship between CBT and congestion-related packet losses,

as captured by the factor β, varies with the network scenario.

Further, the results highlight the importance of varying β based

on observed network performance.

6.7 Performance in a Mesh Network

Having obtained insight into the different performance aspects

of WOOF in the WLAN environment, we conduct a set of

experiments in an uncontrolled mesh network. The purpose of

the experiments is to understand the performance of WOOF

in real multi-hop network deployments. We conduct our

experiments on the UCSB MeshNet testbed [27]. The MeshNet

is an indoor multihop IEEE 802.11 network with 25 dual-radio

devices. For our experiments, we use a subset of these nodes

connected to a single gateway node. We use only one radio

of each node operating in the 802.11b/g mode. SRCR [28] is

used as the routing protocol. The physical distance between

the nodes and the presence of barriers in the form of walls

and doors result in a majority of the links operating at low

data rates, even in the absence of competing traffic. The

median number of neighbors for MeshNet nodes is three.

We study the performance of the network by measuring the

sum of throughputs achieved by the individual nodes in the

network. To model the flow behavior in a mesh network, all the

flows originate from the gateway node. The number of flows

and the destination node for each flow is chosen randomly,

but we ensure that there are a minimum of three flows in the

network at all times. A combination of the selected number
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Fig. 11. Network throughput with UDP and TCP for
different flow topologies in the UCSB MeshNet.

of flows and the corresponding destination nodes constitutes a

flow topology. The experiment is conducted for seven different

flow topologies, and for both SampleRate and WOOF. We

repeat the experiment for both TCP and 10 Mbps UDP flows.

Figure 11 compares the throughput of SampleRate and

WOOF for these experiments. From the graph we see that

WOOF provides higher network throughput for both UDP

and TCP as compared to SampleRate. The median increase in

throughput for UDP is 54.49%. The throughput gains for TCP,

however, are less pronounced, with a median improvement

of 20.52%. This behavior can be attributed to the dynamics

of TCP congestion control mechanisms and its sensitivity to

packet loss.

6.8 Simulation-based Evaluation

To better understand the performance of WOOF in a wider

variety of networks, we use the Qualnet simulator [29]. In par-

ticular, we are interested in the performance of WOOF in sce-

narios similar to those found in the IETF network, e.g., the ple-

nary session with hundreds of clients connected to a single AP.

Our implementation of WOOF for Qualnet consists of three

main components. First, we extend the 802.11 MAC imple-

mentation to consult a rate adaptation module to select a data

rate for packet transmissions. We implement SampleRate as

the base rate adaptation algorithm. Second, we implement the

Channel Busy Time metric by tracking the durations of packet

transmissions, packet receptions, and busy channel scenarios

at each node. Third, we implement WOOF by extending the

base SampleRate module.

We first validate our Qualnet implementation of Sam-

pleRate and WOOF by simulating a scenario similar to our

experimental setup in Section 6.2. A key difference in the

simulation setup is that Qualnet supports only pure 802.11b

or pure 802.11g networks. In other words, the 802.11b/g

mixed mode operation of the Atheros radios cannot be fully

captured by the simulator. Therefore, we choose to perform

rate selection among the eight data rates of 802.11g (6 Mbps to

54 Mbps) rather than the 12 data rates of 802.11b/g (1 Mbps to

54 Mbps). We use the default parameters provided by Qualnet

for all the 802.11g nodes in the simulation, as listed in Table 6.

We disable the use of RTS-CTS to mimic our testbed network.

Similar to the experiment in Section 6.2, we simulate a WLAN

environment with one AP and an increasing number of clients,

each with 10 Mbps offered load.
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Fig. 12. Simulation-based evaluation of network perfor-
mance with increasing number of clients.

Parameter Name Value

PHY IEEE 802.11g
DIFS 40µs
SIFS 16µs

Slot Time 9µs
Data Rates 6, 9, 12, 18, 24, 36, 48, 54 (Mbps)

Transmit Power @6Mbps 20 dBm
Receiver Sensitivity @6Mbps -85 dBm

TABLE 6
Simulation Parameters.

Figure 12 plots the average network throughout for 10 trials

of these experiments. From the graph, we observe that the

overall trends obtained from the simulation are similar to that

of the testbed. WOOF consistently provides higher network

throughput, even in the presence of 20 contending clients. For

example, WOOF provides about 6.2 Mbps more throughput

than SampleRate. We note that the drop in throughput for

SampleRate is not as steep as observed in the testbed exper-

iments. This is because the lowest possible data rate in the

simulation is 6 Mbps compared to 1 Mbps in the testbed. In

the testbed, the use of lower data rates decreases the effective

network capacity, and results in reduced throughput.

Next, we evaluate the scalability and performance of WOOF

in a large WLAN with hundreds of clients. In this experiment,

we characterize the gains obtained with the use of WOOF in

terms of the reduction in channel utilization. For this purpose,

we refer to the Wednesday plenary session of the 67th IETF

meeting described earlier. We consider the traffic on one

particular channel (channel 6), and use it as a traffic trace

to input to the simulator. In other words, for every packet

found in the trace we schedule an equivalent transmission in

the simulation. However, the traffic trace was captured by a

single sniffer from actual transmissions on the channel. The

trace therefore is the result of contention-resolution algorithms

used by the devices in the network and therefore represents a

perfect collision-free transmission schedule. In order to create

contention among the packets in the trace, we perturb the

packet generation time to be a random value within a time

window of 5ms before the actual time found in the trace. We

choose a representative one hour of the meeting for simulation.

Each MAC address in the trace (except broadcast and multicast

addresses) is represented by a node in the simulation. There

were 592 unique MAC addresses in the chosen trace. The

location of the nodes is chosen randomly. However, we ensure
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that all the nodes are in communication range of each other,

at least when communicating using the lowest rate of 6 Mbps.

We conduct the experiment with both SampleRate and WOOF

as the rate adaptation algorithms.

We observe the data rates used by each algorithm. We

also record the total time used for transmissions, i.e., the

medium utilization of each algorithm. Figure 13 plots the

CDF of the data rates used by SampleRate and WOOF. We

observe that WOOF uses higher data rates more often than

SampleRate. This is because WOOF is able to incorporate

the CBT information in decision-making and avoid switching

to lower data rates during congested periods. The medium

utilization for WOOF was 82% of that for SampleRate. We

conclude that WOOF provides savings in network resource

consumption, and therefore reduces congestion.

7 CONCLUSION

Congestion in an IEEE 802.11 wireless network causes drastic

reduction in network performance. Critical to tackling this

problem is the ability to identify and measure congestion. In

this paper we presented two techniques, an active technique

(CAD) and a passive technique (CBT), that measure the

utilization of the wireless medium in real-time. We then used

the CBT measurement technique to develop a rate adaptation

scheme, WOOF, for IEEE 802.11. Performance evaluation

show up to a three-fold gain in throughput in a congested

network. Simulations demonstrated the utility of using WOOF

in a large WLAN. In addition to our congestion-aware rate

adaptation algorithm, we believe that the measurement tech-

niques proposed in this paper can be used to design new

protocols or solutions that perform well under congested

scenarios. For example, the CBT metric can be used for

bandwidth estimation to facilitate effective flow admission

control in wireless networks.
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