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Abstract—Rate-adaptive optical transceivers can play an impor-
tant role in exploiting the available resources in dynamic optical
networks, in which different links yield different signal qualities.
We study rate-adaptive joint coding and modulation, often called
coded modulation (CM), addressing non-dispersion-managed
(non-DM) links, exploiting recent advances in channel modeling
of these links. We introduce a four-dimensional CM scheme, which
shows a better tradeoff between digital signal processing complex-
ity and transparent reach than existing methods. We construct a
rate-adaptive CM scheme combining a single low-density parity-
check code with a family of three signal constellations and us-
ing probabilistic signal shaping. We evaluate the performance of
the proposed CM scheme for single-channel transmission through
long-haul non-DM fiber-optic systems with electronic chromatic-
dispersion compensation. The numerical results demonstrate im-
provement of spectral efficiency over a wide range of transparent
reaches, an improvement over 1 dB compared to existing methods.

Index Terms—Fiber-optic communications, four-dimensional
set partitioning, non-dispersion managed links, nonlinear channel
model, probabilistic shaping, rate-adaptive coded modulation.

I. INTRODUCTION

THE tremendous growth in the demand for high data rates

in optical networks makes efficient use of available band-

width indispensable [1]–[3]. The spectral efficiency, i.e., the

number of information bits sent in each polarization per sym-

bol period, of these channels can be improved by joint design

of modern coding and advanced modulation formats, so-called

coded modulation (CM). Forward error correction (FEC) [4] has

already become a vital part of optical transport network stan-

dards and has evolved in several generations [5]. CM schemes

are known [6]–[8] to be superior to conventional FEC tech-

niques with independent FEC and modulation designs, in the

sense of requiring less signal power for the same amount of

redundancy and the same bit-error ratio (BER). Also, the joint

design provides more freedom in the trade-off between digital

signal processing complexity and transparent reach.
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In general, fiber-optic channels are non-Gaussian due to the

interplay of noise, dispersion, and nonlinearity. In contrast to ad-

ditive white Gaussian noise (AWGN) channels, there is no stan-

dard framework for quantifying fundamental limits [9] as well

as designing capacity-approaching schemes for such channels.

Recently, however significant advances [10], [11] have been in-

troduced in channel modeling of non-dispersion-managed (non-

DM) fiber-optic links with sufficiently high symbol rates and

sufficiently weak nonlinearity, often called pseudolinear regime,

where the dispersion length is much smaller than the nonlinear

length [1], [12]. The new Gaussian noise-like model introduced

for pseudolinear regime makes it possible to adapt available CM

techniques from AWGN channels to these channels.

Three main categories of CM schemes, namely trellis-coded

modulation (TCM) [7], multilevel coded modulation (MLCM)

[13], and bit-interleaved coded modulation (BICM) [14] have

been studied for fiber-optic links operating in the pseudolin-

ear [1], [12] and nonlinear [15, Ch. 4], [16] regimes. TCM was

first proposed in [17] for fiber-optic systems with an 8-point cu-

bic (three-dimensional) polarization-shift keying constellation.

Later, the simplest 4- and 16-state TCM schemes were applied

to 8-point phase shift keying (PSK) and differential PSK in [18].

The concatenation of TCM with different outer codes, Reed–

Solomon (RS) and Bose–Chaudhuri–Hocquenghem codes, was

studied in [19]. MLCM was proposed in [20] for a memoryless

nonlinear fiber-optic channel with RS component codes. Two

MLCM schemes were introduced in [21] and [22] with staircase

codes and nonbinary low-density parity-check (LDPC) codes,

respectively.

A comprehensive study of BICM was provided in [23]

for fiber-optic communications with different modulation for-

mats. Moreover, multidimensional BICM was studied in [24],

[25]. Furthermore, BICM has been applied to polarization-

multiplexed (PM) iterative polar modulation in [26]. CM

schemes constructed by nonbinary component codes such as

moderate-length nonbinary LDPC codes were proposed for

fiber-optic communication in [27], [28].

A dynamic or heterogeneous structure of optically switched

mesh networks demands adaptive transceivers to operate with

different signal qualities. In other words, the required error pro-

tection provided by a CM scheme is varying with the uncoded

link performance. Therefore, a CM scheme with the possibility

of adapting the data transmission scheme to the channel state in-

formation (CSI), a so-called rate-adaptive scheme, is needed in

these networks. To this end, a rate-adaptive CM scheme was pro-

posed in [29] using three nonbinary LDPC codes with different

rates together with three 4-, 8-, and 16-ary constellations. In [28],
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Fig. 1. A non-DM fiber link including a CM encoder at the transmitter, a non-DM fiber-optic channel with N spans, each consisting of an SMF and an EDFA,

and the CM decoder and EDC at the receiver (U is the input information bit sequence and Û is the decoded bit sequence).

the authors designed a rate-adaptive scheme with six nonbinary

LDPC codes to provide a transmission bit rate between 100 Gb/s

and 300 Gb/s in steps of 26.67 Gb/s at a fixed symbol rate. In a

more practical scenario, a rate-adaptive scheme [30] is proposed

exploiting six combinations of binary LDPC and RS codes to-

gether with three modulation formats. This scheme was capable

of operating within 2.9 and 3.9 dB from the AWGN capacity in

long and short non-DM single-channel fiber-optic links, respec-

tively, showing 50% increase in transparent reach compared to

the rate-adaptive system introduced in [31] with hard-decision

FEC.

The aim of this paper is to introduce a low-complexity rate-

adaptive CM scheme based on the recently introduced channel

model for non-DM fiber-optic links [11], [32]. To this end, we

introduce a new four-dimensional (4D) CM scheme to reduce the

complexity of the nonbinary LDPC CM introduced in [28]. More

precisely, we change the bit-to-symbol mapper using a new

constellation labeling inspired by the polar coding approach [33]

to reduce the order of the Galois field (GF), and hence the

complexity, of the exploited nonbinary LDPC code.

A distinct contribution of the new CM scheme is in providing

a flexible 4D structure, using a new 4D mapper and a probabilis-

tic shaping method based on the shell-mapping algorithm [34].

This flexibility is used to obtain a rate-adaptive scheme with

a single LDPC code. Simulation results are provided for a 4D

nonbinary LDPC CM scheme with probabilistic shaping over

a non-DM PM single-channel fiber-optic link. According to

the numerical results, the proposed scheme can operate within

2.7 dB from the AWGN capacity for bit rates between 178 Gb/s

and 343 Gb/s, showing 1 dB performance improvement com-

pared to [30]. Finally, the performance of the proposed system

is compared with other rate-adaptive schemes in the literature

as well as AWGN bounds.

II. SYSTEM MODEL

The system model including the transmitter, the non-DM

fiber-optic link, and the receiver is depicted in Fig. 1.

A. Transmitter

As shown in this figure, the CM unit encodes the information

bit sequence U to a sequence of 4D symbols, each of which is

a pair of two-dimensional (2D) standard quadrature amplitude

modulation (QAM) symbols in two polarizations. The symbol

period is T . This encoding is represented by the matrix S. Then,

the coded symbols are sent through the non-DM fiber-optic link

after performing pulse shaping. The code rate R is defined as

the ratio of the spectral efficiencies of the coded system to the

uncoded system. Moreover, the system redundancy overhead is

defined as OH = 1/R − 1. If we represent the 4D symbol by

(Sxi, Sxq , Syi, Syq) at a specific time instant, its energy is com-

puted as Es = S2
xi + S2

xq + S2
yi + S2

yq . The energies in polariza-

tion x and y are represented by S2
xi + S2

xq and S2
yi + S2

yq , respec-

tively. The energies of the four available dimensions are given

by S2
xi, S2

xq , S2
yi , and S2

yq . It is assumed that the signals in po-

larizations x and y have the same average transmitted power P .

B. Non-Dispersion-Managed Fiber-Optic Link

The non-DM fiber-optic link has N spans, each consisting

of a single mode fiber (SMF) and an erbium-doped fiber am-

plifier (EDFA) with single-wavelength data transmission. Elec-

tronic chromatic-dispersion compensation (EDC) is used at the

receiver. Moreover, we assume that each EDFA compensates

for the attenuation in each fiber span of length L and adds an

amplified spontaneous emission (ASE) noise. This noise is mod-

eled as a circular white complex Gaussian vector with variance

σ2
ASE = GFnhν/(2T ) in each polarization [35, Eq. 8.1.15],

where G is the required gain to compensate for the attenuation

in a span, Fn = 2nsp(1 − G−1) is the noise figure, in which nsp

is the spontaneous emission factor, and hν is the photon energy.

The Gaussian noise model introduced in [11] is used for the

calculation of prior information of the CM decoder. According

to this model, the received signal Y in a PM fiber-optic channel

with EDC (as shown in Fig. 1) is represented by

Y = ζS + Z (1)

where Z represents the PM complex zero-mean circularly sym-

metric AWGN in each polarization, and

|ζ|2 ≈ 1 − 3N 1+ǫγ2α−2 tanh
(α

4
LD

)

P 2 (2)

in which γ is the nonlinear coefficient, α is the attenua-

tion coefficient, β2 is the dispersion coefficient, and LD =
T 2/(|β2 |). Here, the linear growth of the nonlinear noise with N ,
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introduced in [11], has been changed to N 1+ǫ , where

ǫ =
3

10
log

(

1 +
6

αL asinh
(

π 2

2αLD

)

)

.

As discussed in [10], this takes into account the partially cor-

related rather than entirely uncorrelated accumulation of non-

linear noises from different spans. The variance of the AWGN

noise in each polarization is given by σ2
Zx

= E{Z
H

Z}/2 =
Nσ2

ASE + σ2
NL , where

σ2
NL = (1 − |ζ|2)P ≈ 3N 1+ǫγ2α−2 tanh

(α

4
LD

)

P 3 (3)

where P is the transmitted power per polarization. In contrast

to conventional AWGN channels with a noise variance inde-

pendent from the input power, the variance of this equivalent

AWGN is proportional to the cube of the transmit power.

C. Receiver

The coded modulation decoder extracts the sequence Û from

the received signal Y after EDC. According to (1), it needs the

variance of the AWGN Z in each polarization to compute the a

posteriori probabilities of the coded symbols1. We assume per-

fect clock and carrier synchronization, and perfect compensa-

tion of chromatic dispersion, polarization-mode dispersion and

polarization rotation. The signal-to-noise ratio (SNR) is defined

as |ζ|2P/σ2
Zx

. The optimum power for each transparent reach is

computed by ∂SNR/∂P = 0 analytically. Our numerical eval-

uation using the SSFM to determine the power that minimizes

the SER is in good agreement with the analytical results.

There is a minimum SNR γ (in dB) to obtain a BER of

10−15 at the output of the CM decoder, which is usually com-

puted by numerical simulations. The gap ∆γ between γ and

the minimum SNR obtained using the Shannon formula for

an AWGN channel with the spectral efficiency η is a use-

ful measure to compare different CM schemes2. This gap, re-

ferred to as gap from AWGN capacity [30], can be expressed as

∆γ = γ − 10 log10 (2η − 1) dB.

III. DESIGN OF THE CODED MODULATION SCHEME

The transmitter of the coded modulation scheme can be rep-

resented as a mapper transforming the sequence of information

bits to a sequence of symbols from a 4D constellation. As shown

in Fig. 1, the scheme maps m bit sequences V1 , V2 , . . . , Vm to

a 4D symbol sequence S. The symbol sequence S is trans-

mitted through a non-DM fiber-optic channel and received as

the distorted symbol sequence Y after the EDC. The additive

noise Z represents the added linear ASE noise and nonlinear

noise-like interference. The channel capacity of a discrete-time

memoryless channel is

max
p(V1 ,...,Vm )

I(V1 , . . . , Vm ; Y ),

1An alternative analytical result was introduced in [10] for the same model
as |ζ |2 ≈ 1 − 32/(27π)N 1+ ǫ γ2 α−1L−1

D asinh(π2 /(2αLD ))P 2 , which is in
a good agreement with (2) numerically.

2This AWGN capacity, although popular as a benchmark, does not represent
the capacity of the nonlinear fiber-optic channel [9], [36].

Fig. 2. A schematic example of bitwise conditional MIs together with the
range of MIs for the ‘good’, ‘intermediate’, and ‘bad’ groups.

where I(A;B) denotes the mutual information (MI) between A
and B [37, Eq. (7.1)]. The maximum is taken over all possible

input vector distributions p(V1 , . . . , Vm ).

A. Probabilistic Signal Shaping

Probabilistic shaping changes the uniform distribution of the

equivalent binary channels inputs V1 , . . . , Vm such that the dis-

tribution of the generated 1D symbols (elements of the matrix S)

from these bits better approximates a Gaussian distribution. In

other words, instead of 4D symbols with uniformly distributed

1D elements, the 1D symbols (elements) close to the origin

(with small amplitudes) are sent more often than 1D symbols

far from the origin of the constellation (with large amplitudes).

For a system without probabilistic shaping, the input bits are

equally likely or uniformly distributed. Thus, we use the MI be-

tween the channel input and output I = I(V1 , . . . , Vm ; Y ) with

uniformly-distributed Vis, i.e., p(Vi) = 0.5, i = 1, . . . , m for a

system without probabilistic shaping.

B. Information-Theoretic Design Framework

The MI I can be decomposed [13] as I =
∑m

i=1 Ii , where

Ii = I(Vi ; Y |V1 , . . . , Vi−1) is the conditional MI of the sub-

channel i, provided that the transmitted bits of the subchannels

1, . . . , i − 1 are given. Since according to (1), a non-DM fiber-

optic link with EDC can be approximately modeled as a mem-

oryless discrete-time AWGN channel [11], the MIs of the bi-

nary subchannels can be calculated by a numerical method [37,

Ch. 9]. We exploit the efficient numerical method introduced

in [38, Appendix] to evaluate the MIs using Gauss–Hermite

quadratures for AWGN channels. This design framework, based

on equivalent parallel binary subchannels Iis [13], can be used

to analyze the design of different CM schemes. For a non-DM

fiber optic link, as shown in Fig. 2, the subchannels may have

different MIs for different transparent reaches (or SNRs). Hence,

to approach the channel MI, an unequal error-protecting tech-

nique [13] needs to be applied over the m binary subchannels.
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To this end, one may exploit several binary component codes,

similar to [39], to devise a capacity-achieving CM scheme, or a

single nonbinary code as in [28], which is the approach taken in

this paper. We propose a new mapper to reduce the number of

binary codes or the order of the corresponding GF for mitigating

the complexity of the schemes introduced in [28], [39].

C. Polar Code Technique

If we consider a mapper with an arbitrary number of di-

mensions, the goal is to design this unit such that the equiva-

lent binary subchannels are categorized in two groups, namely

‘bad’ and ‘good’ subchannels, with MIs 0 and 1, respectively,

known as polar coding. Unfortunately, this ideal grouping can

be reached only in an asymptotic case for very large dimensions,

at the cost of a high decoding complexity. For a 4D mapper, we

need to add a third group, namely ‘intermediate’ subchannels,

with MIs between 0 and 1, as illustrated in Fig. 2. We consider

two thresholds, shown with horizontal dashed lines in Fig. 2, to

categorize the subchannels into the three groups. Our criterion in

the design of the 4D mapper is to minimize the number of ‘inter-

mediate’ subchannels. We notice here that for a given transparent

reach, or SNR, the sum of the MIs of the subchannels yields the

total MI between the channel input and output, independent from

the mapper employed [13]. Thus, reducing the number of ‘in-

termediate’ subchannels leads to increasing the number of bad

and good subchannels, which decreases the system complex-

ity. In general, for a one-dimensional (1D) constellation with a

large number of symbols, this discrete optimization of labeling

to obtain the minimum number of ‘intermediate’ subchannels

is very complicated, and even more so for 4D constellations.

Therefore, we solely performed the optimization over the 1D

labelings including the binary reflected Gray code, the natural

binary code, and the folded binary code [38, Ch. 1]. We found

that the natural labeling provides the minimum number of ‘in-

termediate’ subchannels in the region of interest, i.e., moderate

SNRs, with PM 16- and 64-QAM constellations.

IV. BIT-TO-SYMBOL MAPPER

In this section, we introduce a channel-aware 4D bit-to-

symbol mapper, often called constellation labeling, which re-

duces the number of ‘intermediate’ subchannels for non-DM

fiber-optic links and provides a suitable structure to add proba-

bilistic shaping. We consider the 4D constellation as the Carte-

sian product of two square QAM constellations or equiva-

lently four 1D PAM constellations denoted byA×A×A×A,

where A is a PAM constellation.

A. Four-Dimensional Mapper Without Probabilistic Shaping

Without loss of generality, we proceed by describing the 4D

mapper using the PM 16-QAM constellation for the sake of

simplicity. For a 4-PAM constellation A = {−3,−1, 1, 3} with

a natural labeling {00, 01, 10, 11}, the set of four symbols is

split into two sets A0 = {−3, 1} and A1 = {−1, 3}, where the

first bit (the least significant bit) of the binary labeling is 0 and 1

for symbols in A0 and A1 , respectively. This partitioning of the

signal set based on a specific bit in the binary labeling is called

set partitioning with respect to the corresponding bit. Here, the

1D constellation A with a minimum Euclidean distance (MED)

of d0 is set partitioned into two subsets A0 and A1 with MEDs

of 2d0 .

As mentioned above, the 4D constellation is represented as the

Cartesian product of four 1D 4-PAM constellations. We use this

property and the method proposed in [40], which is a generalized

version of the technique in [41] for an arbitrary dimension, to

develop a 4D set partitioning based on the set partitioning of

its constituent 4-PAM constellations. As seen in Table II(a),

each step (one labeling bit) in the set partitioning of the 4-PAM

constellation A is used in four steps (four labeling bits) of set

partitioning of the 4D constellation A×A×A×A. Using the

partitioning of the 1D constellation, the 4D constellation is split

into 16 subsets as shown in Table II(a). We define the inter-

MED between 4D sets as the MED between the 4D symbols

of the two sets. As seen in Table II(a), the bit v1 partitions

the set A×A×A×A into two sets with an inter-MED of

d0 (vi , 0 < i ≤ m, represents a bit from the sequence Vi at a

specific time instant). Provided that v1 is known, v2 splits the

corresponding subset into two sets with inter-MED of
√

2d0 .

In an analogous way, set partitioning with the bits v3 and v4

result inter-MEDs of
√

2d0 and 2d0 , respectively, as illustrated

in Fig. 3. Each of the subsets A0 and A1 can be further set

partitioned into subsets A00 , A01 , A10 , and A11 and so on

(the same notation as in [13], [42]). The 4D set partitioning

can be analogously continued for the labeling bits v5 , v6 , v7 ,

and v8 .

Since the first step of the set partitioning of the 4-PAM con-

stellation yields two sets A0 and A1 with the same average

energy of 5, the distributions of the first four bits of the 4D la-

beling given in Table II(a) have no effect on the average energy

of the corresponding 4D constellation. In other words, after per-

forming set partitioning by the labeling bits v1 , . . . , v4 , we are

left with 16 subsets with the same average 4D symbol energy.

Each subset has 16 4D symbols, as shown in Table II(b) for the

first subset. Moreover, as shown in Fig. 3, the inter-MED of the

subsets resulting from the 4D set partitioning in each step for

a given bit shows a nondecreasing behavior from the least to

the most significant bit. Since the corresponding neighboring

multiplicities can increase from v1 to v8 , the inter-MED is not a

good measure to categorize the channels into ‘good’, ‘interme-

diate’, and ‘bad’. Hence, we use the MIs of binary subchannels

for this purpose. As mentioned in the previous section the nat-

ural labeling provides the minimum number of ‘intermediate’

subchannels for the 4D mapper among the labelings introduced

in Section III-C. This conclusion was observed by a numerical

brute-force search.

Example: The MIs of binary subchannels v1 , . . . , v8 are plot-

ted in Fig. 4 for different transparent reaches of a non-DM

fiber-optic link. The AWGN model (1) with the system param-

eters given in Table I is used to compute these MIs numerically

[38, Appendix]. For each transparent reach NL, the SNR is cal-

culated as |ζ|2P/σ2
Zx

with ζ and σ2
Zx

given in Section II-B and

the optimum transmit power P given in Section II-C. As seen

in this figure, one may exploit the 4D mapper to categorize the
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Fig. 3. First four steps of the 4D set partitioning of PM 16-QAM. Black circles represent the subsets given in Table II(a). The first four bits of the binary labeling
for this constellation are represented by v4 v3 v2 v1 .

Fig. 4. The bitwise conditional MIs for a 4D mapper with PM 16-QAM. The
fiber-optic link is implemented with the parameters given in Table I.

TABLE I

SYSTEM PARAMETER VALUES

binary subchannels into three types, namely ‘bad’, ‘intermedi-

ate’, and ‘good’ subchannels, at a specific transparent reach.

As an example, for transparent reaches less than 20000 km in

Fig. 4, we solely have ‘intermediate’ and ‘good’ subchannels,

while for transparent reaches greater than 20000 km, the binary

subchannel are categorized in ‘intermediate’ and ‘bad’ subchan-

nels only.

B. Four-Dimensional Mapper With Probabilistic Shaping

Here, we describe how the 4D set partitioning, constructed

based on a 1D constellation with the natural labeling, can be

modified to devise this 4D mapper, which accounts for proba-

bilistic shaping. Indeed, we manipulate the introduced 4D label-

ing in the previous section such that the average transmit power

can be reduced by changing the distributions of zeros and ones

at the input of the ‘good’ subchannels.

The second set partitioning of the 4-PAM constellation gen-

erates subsets with energies of 1 and 9. Therefore, the average

energy of the 4D constellation can be reduced by manipulating

the distributions of the second set of four bits. As will be dis-

cussed in Section V-B, we change the distribution of zeros and

ones solely in ‘good’ subchannels from uniform to a nonuniform

distribution, to obtain binary streams with higher prior probabil-

ity for zeros. For the selected PM 16-QAM constellation, we can

consider v5 , . . . , v8 as ‘good’ subchannels, which are nonuni-

formly shaped by the binary shaping algorithm introduced in

Section V-B. Now, the labeling of 4D symbols inside each sub-

set of A×A×A×A needs to be modified to account for

signal shaping. Intuitively, the labels of the 4D symbols in each
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TABLE II

THE 4D BINARY LABELING OF THE PM16-QAM CONSTELLATION

(A0 = {−3, 1} AND A1 = {−1, 3}). (a) THE ‘BAD’ AND ‘INTERMEDIATE’
SUBCHANNELS. (b) THE ‘GOOD’ SUBCHANNELS DEVISED TO ACCOUNT FOR

PROBABILISTIC SHAPING IN SUBSET A0 ×A0 ×A0 ×A0

(a)

(b)

subset can be obtained by assigning binary labels with small

Hamming weights to 4D symbols with small symbol energies

as outlined in the following steps.

1) Create a table of all 24 binary labels of length 4. Sort the

table from the lowest to highest Hamming weights. Order

labels with the same weight lexicographically, considering

the bit on the right as the least significant bit.

2) Sort the 4D symbols of each subset from lowest to highest

energy. Symbols with the same energy are ordered based

on their energies in polarization x. If the symbols have

the same 4D and 2D symbol energies, they are ordered

based on their 1D energies, starting from S2
xi to S2

yq (as

introduced in Section II).

3) Assign the table generated in 1) as the indices of the table

generated in 2), in the same order.

This approach yields the labeling bits v5 , . . . , v8 (‘good’ sub-

channels) shown in Table II(b) for the first subset A0 ×A0 ×
A0 ×A0 . We observe that labels with low weights correspond

Fig. 5. The labeling bits v5 v6 v7 v8 of ‘good’ subchannels shown in Table II(b)
for the first subset A0 ×A0 ×A0 ×A0 of PM 16-QAM. This labeling is
suitable for probabilistic signal shaping.

Fig. 6. The encoder for the proposed CM scheme, consisting of a block code,
a 4D mapper, and a probabilistic shaping unit.

to symbol with low energies, as intended. This approach is il-

lustrated in Fig. 5 for a subset consisting of 4D symbols with

energies of 4, 12, 20, 28, and 36.

V. POLAR CODED MODULATION

Since the 4D mapper introduced in Section IV is inspired by

the polar code concept, we call the devised CM scheme ‘polar

CM’. As seen in Fig. 6, the 4D bit-to-symbol mapper described

in the previous section performs the role of a polar code [33] in

our scheme. It divides the bit positions of the binary labeling of

constellation symbols into ‘bad’ (V1), ‘intermediate’ (V2), and

‘good’ (V3) subchannels. Since the MI of ‘bad’ channels is close

to zero, the input of these channels is frozen to zero or one. The

matrix V1 is an all-zero matrix of size d × n representing the

dropped bits, which do not carry any information. The sequence

of information bits U of length ℓ is split into two groups. The

first group U1 is a matrix of size q × k, which is encoded by

a block code. The block encoder generates a matrix V2 of size

q × n by adding (n − k)q bits or n − k symbols from the GF of

order 2q , denoted by GF(2q ), as redundancy. Finally, the second

group U2 consists of h row vectors with lengths ri , 0 < i ≤ h.

It is encoded by a probabilistic shaping unit to generate a matrix

V3 of size h × n. The 4D mapper unit maps the (d + q + h) × n
binary matrix V = {V

T
1 , V

T
2 , V

T
3 }T at the time instant i to the

4 × n real matrix S. Each column of S is a 4D symbol taken

from a constellation of size 2d+q+h .

A 2q -ary nonbinary LDPC is used as the block code in the

simulations. However, one may instead consider a binary LDPC

code provided that iterative decoding is exploited between the

log-likelihood ratio (LLR) calculator and LDPC decoder. The

decoding of the binary subchannels with MI close to 1 is per-

formed after the detection of ‘intermediate’ subchannels (i.e.,
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coded by the nonbinary LDPC code). This is because the MI

of these subchannels are conditioned on the input bits of the

‘intermediate’ subchannels, as discussed in Section III-C.

A. LDPC Coding and Decoding

Since the ‘intermediate’ subchannels are dependent (the de-

tector of ‘intermediate’ subchannel i needs the transmitted bits

on subchannels 1, . . . , i − 1), they should be decoded jointly

for optimal performance, provided that a nonbinary encoder is

used in the encoder. Independent bit-wise decoding would give

rise to performance degradation of the CM scheme. Hence, the

nonbinary LDPC code performs on a vector of input bits of ‘in-

termediate’ subchannels. The main shortcoming of nonbinary

LDPC codes is their decoding complexity, which increases with

the order of the GF employed [43]. Since the error protection

using the nonbinary LDPC code is solely performed over ‘in-

termediate’ subchannels, the proposed 4D mapper reduces the

number of ‘intermediate’ subchannels and consequently the re-

quired order of the GF for the nonbinary LDPC code. Hence, the

complexity of the CM scheme compared to [28] is reduced with-

out performance degradation. The introduced channel model in

Section II for the non-DM fiber-optic channel simplifies the

computation of the a posteriori information required for the de-

coder of the LDPC code. In other words, according to this model

the additive noise is white, hence the a posteriori probabilities

of the received symbols are computed using the noise variance

given in Section II and no iterative equalization [44, Ch. 7] is

needed.

B. Probabilistic Shaping

Shell-mapping [34], [45], [46] and trellis shaping [47] are

two well-known algorithms for performing probabilistic shap-

ing over a constellation with uniformly distributed symbols.

Since the shell-mapping algorithm and the LDPC code can be

implemented jointly with lower complexity than trellis shap-

ing, we exploit shell-mapping in our CM scheme. Indeed, the

new 4D mapper introduced in Section IV allows us to exploit a

binary shaping encoder over ‘good’ subchannels. Interestingly,

the major part of the shaping gain is obtained by applying proba-

bilistic shaping over the ‘good’ (uncoded) subchannels V3 . This

approach not only allows us to exploit a hard-decision decoder

for the shaping unit but also avoids using concatenated (or joint)

signal shaping and channel coding schemes, resulting a scheme

with low complexity.

As shown in Fig. 6, the exploited binary shell-mapping is

simply described as h parallel binary encoders, where the en-

coder i maps the input vector of length ri to an output vector

of length n. The shaping encoder i can be simply described

as a look-up table consisting of 2r i binary vectors of length n.

To construct this table, all 2n binary vectors of length n are

first sorted from lowest to highest Hamming weights. Vectors

with the same weight are ordered lexicographically. Then, the

last 2n−r i vectors are discarded. Therefore, it is readily seen

that ri ≤ n and we define Ri = ri/n as the shaping rate of the

‘good’ subchannel i.

To find the rates of the shaping encoders, we first use the

approach introduced in [13] to force symbol S to get a (dis-

crete) Gaussian distribution in each dimension. For example,

the distribution of the in-phase component of the x polarization

is considered as

PSx i
(a) = e−λ|a |2

(

∑

b∈A
e−λ|b|2

)−1

, (4)

where the parameter λ controls the trade-off between the aver-

age energy of the 1D constellation and its entropy H(A). Then,

we maximize the MI I(Y ; V ) by a numerical optimization over

the parameter λ. Now, we can compute the nonuniform dis-

tribution of ‘good’ subchannels and consequently the required

rate of shaping encoders for the ‘good’ subchannels. The signal

shaping reduces the required SNR or transmit power at the cost

of shaping redundancy (or constellation expansion).

VI. COMPLEXITY ANALYSIS

The encoder and decoder of the component codes together

with the LLR calculation from soft (distorted) received symbols

represent the main part of the DSP complexity of a CM scheme.

For CM schemes with binary codes and a Gray-labeled constel-

lation, the LLRs of the subchannels can be computed using the

computationally efficient max-log approximation [48, Ch. 7].

Finding the closest among the 4D constellation symbols to the

received (distorted) symbol requires approximately four times

the computational complexity of finding the closest symbol in

the constituent 1D constellation, neglecting the three additions

which one may be needed to compute the 4D MED from four

1D MEDs [41]. Hence, the LLR vector for a 4D CM scheme

can be computed with a very low complexity. This complexity

analysis implies that one may compare the complexity of the

receivers for CM schemes with different dimensions by tak-

ing into account solely the complexity of the component code

decoders per dimension.

The complexity of LDPC and RS codes have been well-

studied in the literature. The computational complexity required

per iteration of the fast Fourier transform sum-product algorithm

in decoding of a 2q -ary regular nonbinary LDPC code designed

over GF(2q ) is in the order of O(Jρq2q ) [48, Ch. 14], where

J and ρ are the number and weight of the rows of the parity-

check matrix of the nonbinary LDPC code, respectively. For RS

codes, the complexity is in the order of O(q22q ) [49]. Moreover,

the number of iterations required for the convergence of LDPC

iterative decoding also influence the complexity of the decoder

of these codes.

VII. NUMERICAL RESULTS

In this section, we provide numerical results for the achiev-

able rates of the proposed CM scheme as well as the AWGN

bounds [10], [11] for different transparent reaches of a single-

channel non-DM PM fiber-optic system. Although the LDPC

codes with large girth employed are capable of having no

error floor on the performance curve down to BERs around

10−12 as used in [50], we have evaluated the performance
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TABLE III

THE RATES OF SHAPING ENCODERS FOR THE RATE-ADAPTIVE

CM SCHEME IN TABLE V

The encoder output length is 64 bits.

of the proposed CM scheme with a small-girth LDPC code

together with an RS outer code. Moreover, we choose the ‘in-

termediate’ subchannels such that the LDPC code rate satis-

fies Rc ≤ I(Y ;Vd+1 , . . . , Vd+q |V1 , . . . , Vd) for different SNRs.

The CM scheme is simulated with a (3,15)-regular quasi-cyclic

nonbinary LDPC (1920,1546) over GF(26) to bring the un-

coded BER down to BERs around 3 × 10−5 . Then, we meet

BER ≤ 10−15 using a (1022,1004) RS outer code over GF(210).

We use a shortening technique to match the length of the RS

code and the LDPC input block length [51, Ch. 5]. The system

parameters are given in Table I. The Fourier transform sum-

product algorithm is used for the decoding of the nonbinary

LDPC code.

The probabilistic shaping encoder output length is fixed to

64 bits. The optimized rates of the shaping encoders for different

‘good’ subchannels based on the method introduced in Section

V-B are given in Table III. The total rate of the CM scheme is

R =
RRS

d + q + h

(

h
∑

i=1

Ri + qRc

)

(5)

where RRS is the rate of outer RS code. The total FEC over-

heads of the systems for different transparent reaches are given

in Tables IV and V. The split-step Fourier method (SSFM) [52,

Eq. 2.4.10] is used to simulate a fiber-optic channel based on

the Manakov equation with an adaptive segment length [53] of

∆i = (κLNL2
D )1/3 , where i is the segment index, κ = 10−4 ,

and LN = 1/(γPi−1) is the nonlinear length of segment i − 1
[52, p. 55] with the input power Pi−1 . In the simulations, the

receiver is assumed to have perfect knowledge of the polariza-

tion state. The optical filters are assumed to be unity gain with

double-sided bandwidth equal to the sampling frequency used,

which is usually greater than the signal bandwidth. We consider

a root-raised-cosine pulse [54, p. 675] with an excess bandwidth

of 0.2 and a truncation length of 16 symbols.

Fig. 7 shows the information bit rate per two polarizations ver-

sus the transparent reach for a non-DM fiber-optic link. The gap

between the bit rate achieved using the proposed CM scheme

without probabilistic shaping and the AWGN capacity is around

50 Gbps. As seen for transparent reaches smaller than 3000 km,

probabilistic shaping decreases the gap to around 40 Gbps (20%

reduction). In this figure, the AWGN capacity is plotted based

on the Shannon formula, 2 log2(1 + SNR), for an AWGN chan-

nel for different transparent reaches. To this end, the SNR was

estimated in two ways: analytically using the variance σ2
Zx

intro-

duced for the Gaussian noise model and empirically by simulat-

ing at the output of the equalizer using a Monte-Carlo simulation

in a similar way as in [30]. Fig. 7 indicates a good agreement

between the analytical and empirical approaches.

The maximum uncoded symbol error rate of a hard-decision

demodulator, denoted by SERTh , for obtaining an information

BER of 10−15 at the output of the CM decoder for different

transparent reaches are also given in Tables IV and V. As men-

tioned earlier, we use a semi-analytical approach to compute

this FEC threshold. In fact, the required SNR to get a BER

around 2 × 10−5 at the output of the proposed CM scheme is

computed by Monte-Carlo simulations. Then, an interleaver is

considered to make the errors independent at the input of the

outer RS decoder. Finally, the BER at the output of the exploited

outer RS decoder with no decoding failures is obtained by [55,

Eq. (16)–(19)] assuming negligible probability of undetected

errors. For example, a CM scheme with 17 spans (see first row

of Table V) and 16.47% overhead has a SER FEC threshold

(SERTh ) of 0.08.

VIII. RATE ADAPTATION

To improve the utilization of optical networks with a dynamic

or heterogeneous structure, we use the same approach as [30] to

adapt the CM scheme to the CSI estimated by the receiver and

reported back to the transmitter of the fiber-optic system. Simi-

larly, we consider two choices for the CSI: (i) SNR, which is the

symbol SNR estimated after polarization tracking and EDC, and

(ii) the inner LDPC code performance, which is computed by a

syndrome-based error estimator. The CSI is usually quantized

to an integer value and sent to the transmitter using a reliable

feedback channel.

The proposed ‘polar CM’ scheme provides a flexible structure

to implement an adaptive-rate CM scheme with a single LDPC

code. More precisely, the number of bits in the different (‘good’,

‘intermediate’, and ‘bad’) groups introduced in the ‘polar CM’

scheme are adjusted according to the CSI, as shown in Tables IV

and V (these tables are discussed in Section VII). In contrast

to [30], this approach exploits a simple circuitry to provide a rate-

adaptive CM scheme. Since the mapper is solely a simple look-

up table, the rate adaptation is straightforward to implement. As

an example, in a single channel scenario for a short link with a

transparent reach smaller than 1500 km (or SNR > 18 dB), PM

64-QAM with no dropped bits is a suitable scheme, while for a

long link with a transparent reach of 9000 km (SNR ≃ 9 dB),

PM 16-QAM with two dropped bits satisfies the required BER

of 10−15 .

Interestingly, this rate adaptation can be seen as a proper

selection of 4D constellations extracted from well-known lat-

tices [6]. Tables IV and V indicate how the number of dropped

bits (DB) and uncoded bits (UB) in the 4D mapper needs to

be changed to support spectral efficiencies (SE) from 2.37 to

5.32 per polarization. As seen, for high SNRs, the PM 64-QAM

constellation extracted from the 4D cubic lattice is used, while

by decreasing the SNR, simply by changing the mapper, we ob-

tain the 2048-ary 4D constellation extracted from the so-called

D4 lattice, which is the best 4D packing lattice [56], [57]. The

number of coded bits, i.e., ‘intermediate’ subchannels, is fixed

to six and these bits were coded by a nonbinary LDPC code.
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TABLE IV

THE CM SCHEME WITHOUT PROBABILISTIC SHAPING FOR DIFFERENT TRANSPARENT REACHES

TABLE V

THE CM SCHEME WITH PROBABILISTIC SHAPING FOR DIFFERENT TRANSPARENT REACHES

Fig. 7. Bit rates per two polarizations achieved by the CM scheme versus the
transparent reach of a non-DM link with EDC, with and without probabilistic
shaping.

In Fig. 8, the AWGN capacity (spectral efficiency) per di-

mension is illustrated versus the transparent reach as well as

the SNR (using the results provided in Sections II-B and II-C)

for the rate-adaptive CM scheme over a non-DM fiber-optic

link with the parameters given in Table I. The spectral effi-

ciencies of the system with standard constellations, 4-PAM and

8-PAM, with and without probabilistic shaping, are also plot-

ted in this figure. The results show that the rate-adaptive CM

scheme using a single nonbinary code with probabilistic shaping

can achieve ∆γ < 2.7 dB for transparent reaches from 17 × 80

to 112 × 80 km.

The transmission bit rates for different transparent reaches are

given in Table VI for four rate-adaptive schemes, including our

proposed CM scheme. Since we have not considered the band-

Fig. 8. The spectral efficiency per dimension versus the transparent reach and
the SNR for a non-DM link with EDC. The CM scheme curves are based on
the results given in Tables V and IV and the spectral efficiency for the Gaussian
noise model is computed by (1/2) log2 (1 + SNR), where SNR = |ζ |2 P/σ2

Z x
.

TABLE VI

PERFORMANCE (Gb/s, km) OF RATE-ADAPTIVE SCHEMES WITH DIFFERENT

BIT RATES PER TWO POLARIZATIONS AND TRANSPARENT REACHES

pass filtering of the signal propagated through many cascaded

reconfigurable optical add–drop multiplexers (ROADMs) over

long transparent reaches as considered in [30], we solely com-

pare the gap from the AWGN capacity rather than the transpar-

ent reach. As shown in Table VI, the rate-adaptive CM scheme
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introduced in [29] can achieve information rates even higher

than the AWGN capacity computed for a scheme with EDC.

Moreover, the results introduced in [21] with distributed Ra-

man amplification show significantly larger transparent reaches,

however the gap from the AWGN capacity (∆γ) is larger than

with our proposed scheme.

The results shown in Table V indicate larger than 1 dB per-

formance improvement (or reduction in ∆γ) compared to the

previous results presented in [30]. However, according to the

complexity analysis introduced in Section VI, the complexity

of the exploited regular nonbinary LDPC code is slightly higher

than irregular binary LDPC codes used in [30].

IX. CONCLUSION

The paper introduced a new 4D LDPC CM scheme for nonlin-

ear fiber-optic channels. The design framework was supported

by an information-theoretic approach. The proposed scheme

exploits a 4D mapper, inspired by polar coding, to reduce the

computational complexity of the nonbinary CM schemes with-

out performance degradation. The 4D scheme provides a flexible

structure to adapt the CM scheme for links with different signal

qualities in a fiber-optic network.

In contrast to existing rate-adaptive schemes in the litera-

ture, the proposed scheme uses a single LDPC code rather than

several binary or nonbinary component codes. Furthermore, ex-

ploiting a probabilistic shaping based on the shell-mapping algo-

rithm, the system FEC threshold is improved with a reasonable

increase in the system complexity.
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