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ABSTRACT
Contemporary wireless devices integrate multiple network-
ing technologies, such as cellular, WiMax and IEEE
802.11a/b/g, as alternative means of accessing the Inter-
net. Efficient utilization of available bandwidth over hetero-
geneous access networks is important, especially for media
streaming applications with high data rates and stringent
delay requirements. In this work we consider the problem
of rate allocation among multiple video streaming sessions
sharing multiple access networks. We develop and evalu-
ate an analytical framework for optimal video rate allo-
cation, based on observed available bit rate (ABR) and
round trip time (RTT) over each access network, as well
as the video distortion-rate (DR) characteristics. The rate
allocation is formulated as a convex optimization problem
that minimizes the sum of expected distortion of all video
streams. We then present a distributed approximation of the
optimization, which enables autonomous rate allocation at
each device in a media- and network-aware fashion. Per-
formance of the proposed allocation scheme is compared
against robust rate control based on H∞ optimal control
and two heuristic schemes employing TCP-style additive-
increase-multiplicative-decrease (AIMD) principles. We sim-
ulate in NS-2 [1] simultaneous streaming of multiple high-
definition (HD) video streams over multiple access networks,
using ABR and RTT traces collected on Ethernet, IEEE
802.11g, and IEEE 802.11b networks deployed in a corpo-
rate environment. In comparison with heuristic AIMD-based
schemes, rate allocation from both the media-aware convex
optimization scheme and H∞ optimal control benefit from
proactive avoidance of network congestion, and can reduce
the average packet loss ratio from 27% to below 2%, while
improving the average received video quality by 3.3 - 4.5 dB
in PSNR.
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1. INTRODUCTION
The widespread acceptance and deployment of infrastruc-

ture for fixed-line, wireless, and mobile access to the Internet
enables opportunistic Internet connectivity via a multitude
of access technologies. The resulting aggregate transmission
capabilities of the multi-homed end-user devices can be uti-
lized for better quality of service (QoS) provisioning for oth-
erwise bandwidth constrained media applications.

Recent years have witnessed increasing efforts towards
standardization of architectures for convergence of hetero-
geneous access networks. Integration of heterogeneous net-
works is part of the 4G network design [2]. IEEE 802.21 [3]
is delineating a framework to enable handovers and interop-
erability between heterogeneous wireless and wireline net-
works. The IP Multimedia Subsystems (IMS) platform [4]
has defined an overlay architecture for providing multime-
dia services on top of heterogeneous networks.

While platforms and architectures supporting convergence
can allow high-bandwidth video streaming applications (e.g.,
HDTV over Internet) to benefit from simultaneous connec-
tivity to multiple access networks, distributed rate allocation
policies have to be designed for suitable application metrics
and efficient network utilization. Access networks differ in
their attributes such as available bit rates (ABRs) and round
trip times (RTTs), which also vary with time. On the other
hand, video streaming applications differ in their latency
requirements and distortion-rate (DR) characteristics. For
instance, streaming a high-definition (HD) video sequence
containing dynamic scenes from an action movie would re-
quire much higher data rate to achieve the same quality as
that needed for streaming a static head-and-shoulder news
clip for a mobile device with a low-resolution display. Video



streaming applications also require timely delivery of each
packet to ensure continuous media playout. Late packets are
typically discarded at the receiver, causing drastic quality
degradation of the received video due to error propagation
at the decoder.

In this work, we propose, evaluate, and compare dis-
tributed rate allocation policies for video streaming over het-
erogeneous networks, with and without awareness of media
and network characteristics. For the case where devices have
access to both the video DR characteristics, and network
ABRs and RTTs, we formulate the rate allocation problem
in a convex optimization framework to minimize the sum
of expected distortions of all participating video streams. A
distributed approximation to the optimization is presented,
to enable autonomous rate allocation at each device in a
media- and network-aware fashion. To address the scenario
where media-specific information is not accessible by the de-
vices, we propose a scheme based on H∞ optimal control.
The scheme achieves optimal bandwidth utilization on the
access networks by guaranteing a lower bound on a cost func-
tion that models the deviation of rate allocated to a stream
from the rate available on a network. We compare the above
policies with simple heuristic-based rate allocation schemes
that assign rates to streams on different networks in accor-
dance with the available bit rate on the networks, with the
total rate of each stream following the TCP-style additive-
increase-multiplicative-decrease (AIMD) principle [5].

We evaluate the performance of the above rate allocation
policies with NS-2 [1], using ABR and RTT traces collected
from Ethernet, IEEE 802.11b and IEEE 802.11g networks.
Simulation results are presented for the application scenario
of simultaneous streaming of multiple high-definition (HD)
video sequences over multiple access networks. We demon-
strate that rate allocation based on media-aware convex op-
timization and H∞ optimal control can achieve significantly
lower packet delays and loss rates (less than 0.1 % for the
media-aware allocation, and between 0.5 % and 1.9 % for H∞

optimal control), whereas heuristic AIMD-based schemes in-
cur packet losses of up to 27 %. As a consequence, the media-
aware allocation can improve average received video quality
by 3.3 - 4.5 dB in PSNR, and tends to assign higher rates
for the more demanding video sequence by reducing allo-
cation to easier-to-encode sequences. It therefore achieves
more balanced video quality among the streams, and tends
to allocate resource more evenly among the available access
networks.

A review of related work in rate control and multi-flow,
multi-network resource allocation is provided in the next sec-
tion. We then present our system model of the access net-
works and expected video distortion in Section 3, followed
by descriptions of the rate allocation schemes (media-aware
convex optimization, H∞ optimal control, and AIMD-based
heuristics) in Section 4. Performance evaluation and compar-
ison of the schemes are discussed in Section 5, for simulations
of three HD video sequences simultaneously streaming over
three access networks.

2. RELATED WORK
Rate allocation among multiple traffic flows over shared

network resources is an important and well-studied prob-
lem. Internet applications typically use the TCP Congestion
Control mechanism for regulating the outgoing rate [5] [6].
For media streaming applications over UDP, TCP-Friendly

Rate Control (TFRC) is a popular choice [7] [8], and sev-
eral modifications have been proposed to improve its media-
friendliness [9]. Rate allocation to flows with different util-
ities has also been studied in the mathematical framework
proposed by [10]. The authors also present distributed rate
allocation algorithms based on a pricing mechanism between
the source and relaying agents. In our work, the notion of
utility of each traffic flow corresponds to its expected re-
ceived video quality, measured in terms of mean-squared-
error (MSE) distortion from the original uncompressed video
signals. The mathematical framework has also been ex-
tended, to consider rate allocation over multiple networks
simultaneously.

The problem of efficient utilization of multiple networks
via suitable allocation of traffic flows has also been explored
from different perspectives. A game-theoretic framework to
allocate bandwidth for elastic services in networks with fixed
capacities has been addressed in [11–13]. Our work, in com-
parison, attempts to address the time-varying nature of wire-
less networks as well, by dynamically tracking the avail-
able bit rate and delay over each network, and updating
the allocation results accordingly. In [14], a cost price mech-
anism is proposed, to enable a mobile device to split its
traffic amongst several IEEE 802.11 access points based on
throughput obtained and price charged. However, the work
does not take into account the existence of heterogeneous
networks or the characteristics of traffic, nor does it specify
an operational method to split the traffic.

Rate adaptation of multimedia streams has been stud-
ied in the context of heterogeneous networks in [15], where
the authors propose an architecture to allow online mea-
surement of network characteristics and video rate adap-
tation via transcoding. The rate control algorithm, on the
other hand, is based on TFRC and unaware of the media
content. In [16], media-aware rate allocation is achieved, by
taking into account the impact of both packet loss rates and
available bandwidth over each link, on the end-to-end video
quality of a single stream, whereas in [17], the rate alloca-
tion problem has been formulated for multiple streams shar-
ing one wireless network. Unlike our recent work, where the
multi-stream multi-network rate allocation problem is ad-
dressed from the perspective of stochastic control of Markov
Decision Processes [18] and robust H∞ optimal control of
linear dynamic systems [19], in this paper we stay within
the convex optimization framework for media-aware optimal
rate allocation, and compare the performance of the scheme
with prior approaches.

3. SYSTEM MODEL
In this section, we introduce the mathematical notations

used for modeling the characteristics of the access networks,
and for estimating expected received distortion of each video
stream. We envision a middleware functionality as depicted
in Fig. 1, which collects characteristic parameters of both
the access networks and video streams, and performs the
optimal rate allocation according to one of the schemes de-
scribed in Section 4.

3.1 Network Model
Consider a set of access networks N = {1, 2, . . . , N}, si-

multaneously available to multiple devices. Each access net-
work n is characterized by its available bit rate ABRn and
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Figure 1: Middleware functionality in a device. The rate

allocation module collects the observed media statistics

and network characteristics (e.g., ABR and RTT), and

dictates the rate allocation among application streams,

over each network interface.

round trip time RTTn, which are measured and updated
periodically. For each device, the set of video streams is
denoted as S = {1, 2, . . . , S}. Traffic allocation can be ex-
pressed in matrix form: R = {Rs

n}S×N , where each element
Rs

n corresponds to the allocated rate of Stream s to Net-
work n. Consequently, the total allocated rate over Network
n is Rn =

P
s Rs

n, and the total allocated rate for Stream
s is Rs =

P
n Rs

n. We denote the residual bandwidth over
Network n as:

Bn = ABRn −
X
s∈S

Rs′
n = ABRn −Rn. (1)

From the perspective of Stream s, the observed available
bandwidth is:

ABRs
n = ABRn −

X
s′ 6=s

Rs′
n . (2)

Note that Bn = ABRn −Rn = ABRs
n −Rs

n.
As the allocated rate on each network approaches the

maximum achievable rate, average packet delay typically in-
creases due to network congestion. We use a simple frac-
tional function to approximate the non-linear increase of
packet delay with traffic rate over each network, as:

Tn =
αn

Bn
=

αn

ABRn −Rn
=

αn

ABRs
n −Rs

n

, (3)

which is reminiscent of the classical M/M/1 queuing
model [20]. The value of αn is estimated from past observa-
tions of RTTn and Bn:

αn =
BnRTTn

2
, (4)

assuming equal delay on both directions.

3.2 Video Distortion Model
Expected video distortion at the decoder comprises of two

terms:

Ddec = Denc + Dloss, (5)

where Denc denotes the distortion introduced by quantiza-
tion at the encoder, and Dloss represents the additional dis-
tortion caused by packet loss [21].

Typically, the distortion-rate (DR) characteristic of the
encoded video stream can be fit to a parametric model [21]:

Ds(Rs) = Ds
0 +

θs

(Rs −Rs
0)

, (6)

where the parameters Ds
0, θs and Rs

0 depend on the coding
scheme and the content of the video. They can be estimated
from three or more trial encodings using non-linear regres-
sion techniques. To allow fast adaptation of the rate alloca-
tion to abrupt changes in the video content, these parame-
ters need to be updated for each group of pictures (GOP) in
the encoded video sequence, typically once every 0.5 second.

The distortion introduced by packet loss due to transmis-
sion errors and network congestion, on the other hand, can
be derived from [22] as:

Ds
loss = κsP s

loss, (7)

where the sensitivity factor κs reflects the impact of packet
losses P s

loss, and depends on both the video content and its
encoding structure. For simplicity, we assume in the rest of
the paper that random packet losses due to transmission
errors are remedied at the lower layers (e.g., MAC-layer re-
transmissions and PHY-layer channel coding). In this case,
P s

loss comprises solely of packet late losses due to network
congestion.

4. DISTRIBUTED RATE ALLOCATION
In this section, we address the problem of rate allocation

among multiple streams over multiple access networks with
several alternative approaches. We first present a convex op-
timization formulation of the problem in Section 4.1, and
explain how to approximate the media- and network-aware
optimal solution with decentralized calculations. In the case
that video DR characteristics are unavailable, we resort to
a formulation of H∞-optimal control in Section 4.2, which
dynamically adjusts the allocated rate to each stream ac-
cording to fluctuations in observed network available band-
width. As a basis of comparison, we investigate in Section 4.3
two heuristic allocation schemes following the TCP-style
additive-increase-multiplicative-decrease (AIMD) principle.

4.1 Media-Aware Allocation
We seek to minimize the total expected distortion of all

video streams sharing multiple access networks:

min
R

P
s Ds

dec(R
s, P s

loss) (8)

s.t. Rs =
P

n Rs
n, ∀s ∈ S (9)

Rn =
P

s Rs
n < ABRn, ∀n ∈ N (10)

Rs
n = ρnRs, ∀n ∈ N . (11)

In (8), the expected distortion Ds
dec is a function of the allo-

cated rate Rs and average packet loss P s
loss according to (5).

The constraints in (11) are introduced to impose uniqueness
of the optimal solution. We choose ρ = ABRn/

P
n′ ABRn′

to ensure balanced utilization over each interface:

Rn

ABRn
=

P
s Rs

n

ABRn
=

ρn

P
s Rs

ABRn
=

P
n′ Rn′P

n′ ABRn′
,∀n ∈ N .

(12)
It can also be shown that ρn = ABRs

n/
P

n ABRs
n,∀s ∈ S.

Each stream can therefore calculate ρn independently, based
on its own observation of ABRs

n for each network n.



The average packet loss P s
loss for each stream is the

weighted sum of packet losses over all networks:

P s
loss =

X
n

ρne−T s
0 /Tn , (13)

Following the derivations in [22], the percentage of late pack-

ets is estimated as e−T s
0 /Tn based on an exponential approx-

imation of the packet delay distributions, with average delay
of Tn over Network n and playout deadline T s

0 for Stream s.
Given (3), one can express P s

loss as:

P s
loss =

X
n

ρne−T s
0 (ABRn−Rn)/αn . (14)

Combining (5)-(14), it can be verified that the optimiza-
tion objective is a convex function of the variable matrix R.
If all the observations and parameters were available in one
place, the solution could be found by any suitable convex
optimization method [23].

We desire to minimize the objective (8) in a distributed
manner, with as little exchange of information among the
devices as possible. One approach is to consider the impact
of network congestion on one stream at a time, and alternate
between streams until convergence. From the perspective of
a single stream s, its contribution to (8) can be rewritten as:

min
Rs

Ds(Rs) + κs P
n ρne−T s

0 (ABRs
n−Rs

n)/αn

+
P

n

P
s′ 6=s ρnκs′e−T s′

0 (ABRs
n−Rs

n)/αn (15)

s.t. Rs
n = ρnRs,∀n ∈ N

Rs
n < ABRs

n,∀n ∈ N .

In (15), optimization of rate allocation for Stream s
would require knowledge of its own distortion-rate function
Ds(Rs), its own loss sensitivity κs, but also its impact on

the late loss of other streams via κs′ and T s′
0 . While each

video stream can locally obtain information regarding its
own loss sensitivity and playout deadline, exchange of such
information among different video streams is undesirable for
a distributed solution.

We therefore further simplify the optimization to:

min
Rs

Ds(Rs) +
P

n κ′ρne−T s
0 (ABRs

n−Rs
n)/αn (16)

s.t. Rs
n = ρnRs,∀n ∈ N

Rs
n < ABRs

n,∀n ∈ N ,

where κ′ is empirically chosen to control the level of ag-
gressiveness of the allocation. Even though (16) does not
necessarily lead to a optimal solution to (8), it nevertheless
incorporates the considerations of both network congestion
and encoder video distortion in the choice of allocated rates.
Influence to the performance of other streams are included
implicitly, since congestion introduced over each network is
captured in the second term in (16), which would impact all
streams traversing that network.

Note that in essence, optimization of (16) involves a one-
dimensional search of Rs, thus can be solved efficiently us-
ing various numerical methods. In practice, implementation
of the distributed allocation scheme would also require each
stream to track its observations of ABRs

n’s and RTTn’s over
all available access networks, to periodically update its es-
timate of αn according to (4), and to determine its rate
allocation by finding the optimal Rs for (16) and allocate
the rate in proportion to ρn over respective networks.

4.2 H∞-Optimal Allocation
The problem of optimal rate allocation among streams

sharing multiple networks with time-varying characteristics
can also be addressed using H∞ optimal control [19]. In this
approach, we use a linear state-space system to keep track
of current and past observations on available bandwidth of
each network, and model the variations as unknown distur-
bances. We then consider a “worst-case” formulation and let
each video stream update its rate using H∞-optimal con-
trol [24]. This allows to treat the dynamics of each stream
as independent of the others, thereby decoupling the inter-
action between different streams. Unlike the previous ap-
proach, this scheme does not require RTT observations and
is unaware of media-specific knowledge, such as the video
DR characteristics.

Each stream can estimate via various online measurement
tools [25] the quantity wn, which is approximately propor-
tional to the residual bandwidth Bn defined in (1). Without
loss of generality, we use the following formulation:

wn =

(
Bn, if Bn ≥ 0

κ (tf − ti), if Bn < 0
, (17)

where κ is a negative constant. Here, ti and tf denote the
initial and final time instance when Bn is negative.

We next define a system from the perspective of a single
stream s keeping track of a single network n. The system
state xs

n reflects roughly the ABR on this network. We first
focus on the single network case and drop the subscript n
to simplify analysis. The case involving multiple access net-
works is discussed in the Appendix. Since each stream is
independent of others in the H∞ control formulation, the
analysis also generalizes immediately to the case with mul-
tiple streams. We refer the readers to [19] for further details
in the derivations.

The system equation for stream s is:

ẋs = a xs + b us + w, (18)

where us represents the control action of the device. The
parameters a < 0 and b < 0 adjust the memory horizon (the
smaller a the longer the memory) and the “expected” effec-
tiveness of control actions, respectively, on the system state
xs. The stream s bases its control actions on its state, which
not only takes as input the current measured ABR, but also
accumulates past observations. One can also interpret the
system (18) as a low pass filter with input w and output x.

Let us introduce a rate update scheme which is approxi-
mately proportional to the control actions:

ṙs = −φrs + us, (19)

where φ > 0 is sufficiently small. Since w is a function of the
available bandwidth B according to (17), which, in turn, is
a function of the aggregate rates from all video streams, the
systems (18) and (19) are connected via a feedback loop.
For simplicity, the coefficient of us is chosen to be unity
in (19). Since increases in allocated rate will reduce the
residual bandwidth, the parameter b in (18) needs to be
negative. Notice that we resort here to a “bandwidth prob-
ing scheme” similar to the additive-increase multiplicative-
decrease (AIMD) principle in TCP Congestion Control [5].

We now consider the controlled output, zs, as a two di-
mensional vector:

zs := [hxs gus]T , (20)



where g and h are positive weighting parameters. In H∞

analysis, the cost of stream s is defined as the ratio of the
L2-norm of zs to that of w:

Ls(xs, us, w) =
‖zs‖
‖ws‖ , (21)

where ‖zs‖2 :=
R ∞
0
|zs|2 dτ , and, ‖w‖2 :=

R ∞
0
|w|2 dτ . Note

that Ls captures the proportional changes in zs due to
changes in w. If ‖w‖ is very large, the cost Ls should be
low even if ‖zs‖ is large as well. A large ‖zs‖ indicates that
the state |xs| and the control |us| have high values reflecting
and reacting to the situation, respectively. However, they
should not grow unbounded, which is imposed by minimiz-
ing the cost Ls.

The performance factor γ is defined as the worst possible
value for the cost Ls. H∞-optimal control theory allows us
to find an optimal controller given γ:

us = −
„

b

g2
σγ

«
xs, (22)

with σγ = (−a±
√

a2 − λh2)/λ and λ = 1/γ2 − b2/g2. Note
that the optimal solution (22) is a linear feedback controller
operating on the system state x. The gain can be calcu-
lated offline given a set of system (a, b) and preference (h, g)
parameters, and target ”worse-case” cost γ. Furthermore, it
guarantees a lower bound of γ∗:

γ∗ =

»s
a2

h2
+

b2

g2

–−1

. (23)

In practice, the H∞-optimal rate control scheme is imple-
mented over discrete time instants as follows: each stream
s keeps track of the ABR of each access network n via the
respective state equation (18), with wn as input. The linear
feedback control us is computed from (22) for each network
separately, given a set of system (a, b) and preference (h, g)
parameters. Finally, the stream updates its rate allocation
to each network according to (19).

4.3 AIMD-Based Heuristics
As a basis for comparison, we introduce in this section

two heuristic rate allocations schemes based on the additive-
increase-multiplicative-decrease (AIMD) principle used by
TCP congestion control [5]. Instead of performing proactive
rate allocations by optimizing a chosen objective according
to observed network and video characteristics, the AIMD-
based schemes are reactive in nature, probing the network
for available bandwidth and reducing rate allocation after
congestion occurs.

Each stream s initiates its rate at a specified rate Rs
min

corresponding to the minimum acceptable video quality, and
increases its allocation by ∆Rs every ∆t seconds unless net-
work congestion is perceived, in which case the allocated rate
is dropped by (Rs

n−Rs
min)/2 over the congested network n.

We consider two variations of the AIMD-based schemes.
They differ in their manners of allocation over the multiple
access networks during the additive-increase phase:

• Greedy AIMD : The increase in rate allocation ∆Rs is
allocated to the network interface offering the maxi-
mum instantaneous available bit rate ABRs

n.

• Rate Proportional AIMD : The increase in rate allo-
cation ∆Rs is allocated to all available networks in
proportion to the average ABR of each.

Sender 
S

Receiver
S

Sender 
2

Receiver
1Sender 

1

Receiver
2

… …

802.11b

Ethernet

802.11g

Figure 2: Topology for network simulations

ABR(Mbps) RTT(ms)

Ethernet
Avg. 31.5 190.1

Std. Dev. 1.7 0.03

802.11g
Avg. 15.1 193.0

Std. Dev. 3.6 3.2

802.11b
Avg. 4.2 195.7

Std. Dev. 0.3 0.3

Table 1: Statistics of measured Available Bit

Rate (ABR) and round-trip-time (RTT) from Deutsche

Telekom Laboratories to Stanford University.

In both schemes, congestion over Network n is indicated
upon detection of a lost packet, or when the observed RTT
exceeds a specified threshold, based on the playout deadline
of the video stream.

5. PERFORMANCE EVALUATION

5.1 Simulation Methodology
We simulate all four rate allocation policies in NS-2 [1], for

an example network topology shown in Fig. 2. Each sender
streams one HD video sequence via all three access networks
(Ethernet, 802.11b and 802.11g) to its receiver, using the
middleware functionality depicted in Fig. 1 for determining
its total rate and allocation over each network.

Each network is simulated as a link with varying avail-
able bandwidth and delay, according to the traces collected
from several actual access networks using the ABR and RTT
measurement tool [25] 1. Table 1 summarizes the statistics of
the collected ABR ad RTT trace between Deutsche Telekom
Laboratories in Berlin and Stanford University in California,
over a two-hour duration. Details of the trace collection pro-
cedures and online bandwidth and delay measurements are
reported in [18].

Three HD video sequences: Bigships, Cyclists, Harbor are
streamed by three senders, respectively. The sequences have
spatial resolution of 1280× 720 pixels, and frame rate of 60
fps. Each stream is encoded using a fast implementation of
the H.264/AVC codec [26] [27] at various quantization step
sizes, with GOP length of 30 and IBBP... structure similar to

1Forward and backward trip delays are both simulated as
half of the measured RTTs.
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Figure 3: Rate-PSNR performance of 3 HD video se-

quences used in the experiments: Bigships, Cyclists and

Harbor, all encoded using the H.264/AVC codec at 60

frames per second, GOP length of 30.

that often used in MPEG-2 bitstreams. The trade-off curves
between average encoded video quality in PSNR and aver-
age bit rates over the entire sequence durations are plotted
in Fig. 3. Encoded video frames are segmented into pack-
ets with maximum size of 1500 bytes, and the transmission
intervals of each packet in the entire GOP are spread out
evenly, so as to avoid unnecessary queuing delay due to the
large sizes of intra coded frames.

In addition to the video streaming sessions, additional
background traffic is included over each interface, using the
exponential traffic generator in NS-2. The background traf-
fic rate is varied between 10% and 50% of the total ABR of
each network. We first compare the performance of various
allocation schemes with a background traffic load of 20%
and fixed playout deadline of 300 ms over each network in
Section 5.2. The impact of background traffic load on the al-
location results obtained from different schemes is studied in
Section 5.3. The effect of different video streaming playout
deadlines is investigated in Section 5.4.

5.2 Comparison of Allocation Traces
The traces of aggregate rate allocated over the Ethernet

interface are plotted for all four allocation schemes, together
with the available bit rate over that network. It can be ob-
served in Fig. 4 (a) that the media-aware allocation avoids
much of the fluctuations in the two AIMD-based heuristics.
Fig. 4 (b) shows that it achieves higher network utilization
than H∞ optimal rate allocation, which is designed to op-
timize for the worst-case scenario. Similar observations also
hold for the traces of aggregate allocated rate over the other
two interfaces.

In Fig. 5, we compare the traces of total allocated rate
for each video stream, resulting from the various allocation
schemes. In greedy AIMD allocation, the total rate of each
stream increases until multiplicative decrease is triggered
by either packet losses or increase in the observed RTTs
from one of the interfaces. Therefore traces of the allocated
rates bear a saw-tooth pattern. Behavior of the rate pro-
portional AIMD scheme is similar, except that rate drops
tend to occur around the same time. The allocations from
H∞ optimal control yields less fluctuations. In both the rate
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Figure 4: Trace of aggregated rate over the Ethernet in-

terface. (a) Media-aware allocation versus AIMD-based

heuristics; (b) Media-aware allocation versus H∞ opti-

mal control. In this experiment, background traffic load

is 20% and the playout deadline is 300 ms. The network

available bit rate is also plotted as a reference.

proportional AIMD allocation and the H∞ optimal control
schemes, allocated rates are almost identical to each video
stream, since all flows are treated with equal importance.
The media-aware convex optimization scheme, in contrast,
consistently allocates higher rate for the more demanding
Harbor stream, with reduced allocation for Cyclists with
less complex contents.

5.3 Impact of Background Traffic Load
Next, we vary the percentage of background traffic over

each network from 10% to 50%. Figure 6 compares the av-
erage utilization over each interface, allocated rate to each
stream, and corresponding received video quality achieved
by the four allocation schemes, for background traffic load
of 30%. The impact of the background traffic load on the
allocation results is shown in Fig. 7. It can be observed that
utilization over each interface increases with the background
traffic load. For the media-aware, H∞ optimal and rate pro-
portional AIMD schemes, utilization varies between 60% to
90%, whereas for the greedy AIMD scheme, the 802.11b in-
terface is underutilized. 2 Note that utilization over all three
interfaces are balanced by the media-aware convex optimiza-
tion allocation, as predicted by (12).

2In fact, since 802.11b has significantly lower ABR than the
other two interfaces, it is never chosen by the greedy alloca-
tion.
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Figure 7: Comparison of allocation results from different schemes, as the background traffic load increases.
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Figure 5: Trace of allocated rate to each video stream,

aggregated over three interfaces. Background traffic load

is 20% and the playout deadline is 300 ms.
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Figure 6: Comparison of allocation results from differ-

ent schemes, with background traffic load of 30%, and

playout deadline chosen at 300 ms. (a) Aggregated net-

work utilization over each interface; (b) Allocated video

rate for each stream; (c) Corresponding received video

quality in PSNR.
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Figure 8: Average packet delivery delay for each video

stream (a), and packet loss rates at the decoder (b), with

playout deadline of 300 ms and background traffic load

at 10%, 30% and 50%, respectively.

In Fig. 6 (b), it can be noticed that the media-aware al-
location leads to much lower rate for Cyclists and much
higher rate for Harbor, compared to the other schemes. This
improves the video quality of Harbor, the stream with the
lowest PSNR among the three, at the cost of reducing the
quality of Cyclists. As a consequence, the video quality is
more balanced among the streams (see Fig. 6 (c)).

Fig. 7 (b) demonstrates that, as the background traffic
load increases, allocated rate of each stream decrease accord-
ingly. While the other three schemes treat the three flows
with equal importance, the media-aware allocation consis-
tently favors the more demanding Harbor, thereby reducing
the quality gap between the three sequences.

Figure 8 compares the average packet delivery delay and
packet loss ratios due to late arrivals. In the two AIMD-
based schemes, allocated rates are reduced only after con-
gestion has been detected. The media-aware convex opti-
mization and the H∞ optimal allocation schemes, on the
other hand, try to avoid over-congesting the network in a
proactive manner in their problem formulations, therefore
can achieve significantly lower packet loss ratios and delays
and improved received video quality.

5.4 Varying Playout Deadline
In the next set of experiments, we vary the playout dead-

line for each video streams from 200 ms to 500 ms, fixing the
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Figure 10: Average packet delivery delay (a) for each

video stream, and packet loss rates (b) at the decoder,

for playout deadline of 200 ms, 300 ms and 500 ms re-

spectively. Background traffic load is chosen at 20 %.

background traffic load to 20%. As the playout deadline in-
creases, higher packet delay can be tolerated for each video
stream. The media-aware convex optimization scheme there-
fore increases its allocation accordingly, as shown in Fig. 9.
Allocation from the other three media-unaware schemes, in
comparison, tend to remain the same regardless of playout
deadlines of the video streams.

Comparison of the average packet delivery delay and
packet loss ratios due to late arrivals are shown in Fig. 10.
Similar to the results in Fig. 8, the average packet delay
achieved by the media-aware and H∞ optimal allocations
are much lower than those achieved by the two AIMD-based
heuristics, especially in the case of higher playout deadlines.
The packet loss rates are almost negligible (less than 0.1 %)
from the media-aware allocation, and very small (between
0.5 % and 1.9 %) from H∞ optimal control. In comparison,
the two AIMD-based heuristics lead to packet loss rate in
the range of 16 - 27 % and 12 - 15%, respectively. As a conse-
quence, while the average received video quality of Bigships
at playout deadline 300 ms is 34.0 dB and 32.8 dB from the
greedy and rate proportional AIMD schemes, respectively,
they are improved to 37.3 dB with the media-aware con-
vex optimization, and to 36.0 dB with H∞ optimal control.
Similar results are observed for other sequences, and other
playout deadlines, as shown in Fig. 11.
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Figure 9: Aggregated network utilization over each interface, as the playout deadline increases from 200 ms to 500 ms.
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Figure 11: Received video quality in PSNR for Big-

ships, Cyclists and Harbor, for playout deadline of 200 ms,

300 ms and 500 ms respectively. The background traffic

load is chosen at 20 %.

6. CONCLUSIONS
We consider the problem of rate allocation for multiple

video streaming sessions sharing multiple access networks.
We provide an analytical framework for optimal rate alloca-
tion based on observed network attributes (e.g., available bit
rates and round trip times) and video distortion-rate (DR)
characteristics. The proposed media-aware rate allocation
scheme is compared against several alternatives, including
a robust flow rate allocation scheme based on H∞-optimal
control and two heuristic AIMD-based schemes with propor-
tional or greedy allocation over each network.

All four schemes are evaluated in NS-2 simulations, where
three different high-definition (HD) video sequences are si-
multaneously streamed over three heterogeneous access net-
works. Our results demonstrate that both the media-aware
convex optimization scheme and the robust allocation with
H∞ optimal control lead to smaller rate fluctuations, lower
delays and significantly reduced packet losses than the two
AIMD-based heuristics: the former benefit from proactive
avoidance of network congestion, while the later adjusts
the allocated rates reactively, for instance after detection
of packet drops or excessive delays. The media-aware ap-
proach further takes advantage of explicit knowledge of the
video distortion-rate (DR) characteristics, and can achieve
more balanced video quality than the other schemes. While
allocation from the other schemes are oblivious to the video
streaming playout deadlines, the media-aware scheme ad-
justs its level of aggressiveness in the allocation accordingly,
and achieves higher network utilization in case of a more
relaxed deadline.

APPENDIX
We now provide the H∞-optimal control formulation for the
general case of multiple access networks for a single stream
s ∈ S and drop the superscript s for ease of notation.

Let us define x := [xn], r := [rn], and u := [un] for all
n ∈ N . Then, the counterpart of the system (18) and (19)
is given by

ẋ = Ax + B u + D w
ṙ = −Φ r + u,

(24)

where w := [wn] ∀n. Here, the matrices A, B, and Φ are
obtained simply by multiplying the identity matrix by a, b,
and φ, respectively.

The counterpart of the controlled output in (20) is:

z := Hx + Gu, (25)

where we assume that GT G is positive definite, and that no
cost is placed on the product of control actions and states:
HT G = 0. The matrix H represents a cost on variation from
zero state, i.e. full capacity usage.

The cost function is defined as:

L(x,u,w) =
‖z‖
‖w‖ , (26)

where ‖z‖2 :=
R ∞
0
|z(t)|2dt and ‖w‖2 :=

R ∞
0
|w(t)|2dt. The

corresponding differential game is parameterized by γ:

Jγ(u,w) = ‖z‖2 − γ2‖w‖2. (27)

Here γ is larger than the γ∗ defined in (23).
The corresponding game algebraic Ricatti equa-

tion (GARE)

AT Z +ZA−Z(B(GT G)−1BT − γ−2DDT )Z +Q = 0 (28)

admits a unique minimal nonnegative definite solution
Z̄γ , for γ > γ∗, if (A, B) is stabilizable and (A, H) is
detectable [24].

Similar to the solutions for the scalar system, we obtain
the H∞-optimal linear feedback controller for the multiple
network case:

µγ(x) = −(GT G)−1BT Z̄γx, (29)

for each γ > γ∗, which is also stabilizing.
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