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Rate Analysis of Two-Receiver MISO Broadcast

Channel with Finite Rate Feedback: A

Rate-Splitting Approach
Chenxi Hao, Yueping Wu and Bruno Clerckx

Abstract—To enhance the multiplexing gain of two-receiver
Multiple-Input-Single-Output Broadcast Channel with imperfect
channel state information at the transmitter (CSIT), a class of
Rate-Splitting (RS) approaches has been proposed recently, which
divides one receiver’s message into a common and a private part,
and superposes the common message on top of Zero-Forcing
precoded private messages. In this paper, with quantized CSIT,
we study the ergodic sum rate of two schemes, namely RS-S
and RS-ST, where the common message(s) are transmitted via
a space and space-time design, respectively. Firstly, we upper-
bound the sum rate loss incurred by each scheme relative to
Zero-Forcing Beamforming (ZFBF) with perfect CSIT. Secondly,
we show that, to maintain a constant sum rate loss, RS-S
scheme enables a feedback overhead reduction over ZFBF with
quantized CSIT. Such reduction scales logarithmically with the
constant rate loss at high Signal-to-Noise-Ratio (SNR). We also
find that, compared to RS-S scheme, RS-ST scheme offers
a further feedback overhead reduction that scales with the
discrepancy between the feedback overhead employed by the two
receivers when there are alternating receiver-specific feedback
qualities. Finally, simulation results show that both schemes offer
a significant SNR gain over conventional single-user/multiuser
mode switching when the feedback overhead is fixed.

I. INTRODUCTION

In downlink Broadcast Channel (BC), the utilization of

multiple antennas at the transmitter offers a higher multi-

plexing gain, i.e., Degrees-of-Freedom (DoF), and throughput

enhancement compared to the single antenna case. However,

to realize such benefits, interference mitigation methods are

required at the transmitter and their performance strongly

relies on highly accurate channel state information at the

transmitter (CSIT), which is difficult to attain in practice.

Under a general assumption that the CSIT error decays with

the Signal-to-Noise-Ratio (SNR) as SNR−α, where α∈[0,1]
is termed as the CSIT quality, conventional multiuser trans-

mission strategy, such as ZFBF, achieves the sum DoF 2α in

the two-receiver MISO BC. Such a sum DoF performance is

worse than single-user transmission when α≤0.5 and becomes

interference limited when α=0. To enhance the sum DoF

performance, a Rate-Splitting (RS) approach was firstly intro-
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duced in literature1 [1, Lemma 2]. In this scheme, the message

intended for one receiver is split into a private part and a

common part. The private message and the other receiver’s

(private) message are transmitted via ZFBF using a fraction of

the total power, while the common message is superposed on

top of the ZF-precoded private messages using the remaining

power. Each receiver firstly decodes the common message, and

secondly decodes the desired private message via Successive

Interference Cancelation (SIC). Since the achievability of the

DoF of the common message does not rely on interference

nulling, RS-S is more robust to the CSIT error, especially

when the CSIT error decreases slowly with SNR (i.e., small

value of α). When the two receivers have equal CSIT qualities,

i.e., α, the resultant sum DoF is 1+α, which is larger than

2α that is achieved with ZFBF. Based on an assumption of

real input and channel vector, the optimality of this sum DoF

performance is shown by the recent work2 [2]. This scheme is

termed as RS-S scheme in this paper, as the common message

is transmitted via a space design.

Moreover, in a scenario with alternating receiver-specific

CSIT qualities, namely the CSIT quality of receiver 1 (Rx1)

and receiver 2 (Rx2) in channel use 1 is β and α respectively

while the CSIT quality of Rx1 and Rx2 in channel use 2

is α and β respectively, performing RS-S scheme in each

individual slot/subband leads to a sum DoF of 1+min{α,β}.

This result is unsatisfactory due to its inefficient use of the

alternating CSIT qualities. To enhance the DoF performance

in this scenario, [3], [4] proposed a more advanced scheme.

Compared to the RS-S scheme, this scheme transmits an

additional common message across the two channel uses and is

denoted here as the RS with space-time design (RS-ST), which

results in a sum DoF 1+α+β
2 . The discussion in various CSIT

uncertainty scenarios are reported in [4]–[7].

In contrast to [8]–[10] which studied the capacity region of

BC with common messages that carry information intended

for both receivers, the common messages considered in the

RS approaches consist of the common parts of the receivers’

1Literature [1] finds the optimal DoF region of two-receiver MISO BC with
a mixture of imperfect current CSIT and perfect delayed CSIT. However, one
of the corner point of the DoF region can be achieved with the Rate-Splitting
approach, which does not rely on perfect delayed CSIT and is applicable to
the scenario with only imperfect current CSIT.

2Literature [2] focuses on the scenario where the CSIT of one receiver is
perfect, whose sum DoF can be considered as an upper-bound of the sum
DoF in the scenario considered in Lemma 2 [1]. As the achievable sum DoF
1+α is consistent with the upper-bound found in [2], we can say the sum
DoF 1+α is optimal.
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(a) RS-S vs. conventional schemes in the scenario with equal feedback qualities

SNR gain offered by additional RS-S: 3b
M−1

dB

b-bit feedback overhead ZFBF-RVQ: sum rate saturates
TDMA: negligible gain

Feedback overhead reduction RS-S vs. ZFBF-RVQ: (M−1)log2
δ
2e

+ e
2
−1

√
δ−1

bits

(b) Benefits offered by RS-ST over RS-S in the scenario with
alternating receiver-specific feedback qualities

SNR gain incurred by τ bits feedback 3( τ
2(M−1)

−2) dB

overhead differences in each channel use

Feedback overhead reduction τ
2
−2(M−1) bits

TABLE I: Highlights of main contributions.

messages. Although they should be decoded by both receivers,

they carry messages to a single-receiver. Nonetheless, all

the aforementioned works [1]–[4], [4]–[7] focus on a DoF

analysis, leaving aside the question of how the Rate-Splitting

approach can benefit the ergodic sum rate performance. Tack-

ling such a question is more interesting and meaningful as

it sheds light on the usefulness of the information-theoretic

works in a practical multiuser MISO system.

In the context of ergodic sum rate analysis in a multiuser

MISO BC with imperfect CSIT, there have been extensive

works under the finite rate feedback model, where each re-

ceiver has to quantize its CSI using a finite number of bits and

report it to the transmitter. The impact of the quantized CSIT

on the throughput performance of a single-user system was

reported in [11]–[14], while [15], [16] focused on a multiuser

MISO BC and evaluated the per-receiver rate performance

achieved via conventional ZFBF with quantized CSIT. The

key finding of [15] reveals that to achieve a constant rate gap

relative to ZFBF with perfect CSIT, the number of feedback

bits needs to scale with the SNR and the number of transmit

antennas. Focusing on Tomlinson-Harashima precoding (THP)

with quantized-CSIT, a similar scaling law of the number of

feedback bits to achieve a certain maximum allowable rate

loss relative to THP with perfect CSIT was found in [17].

Note that all these works considered conventional multiuser

transmission strategies without integrating common messages.

To the best of our knowledge, the sum rate performance

achieved with the aforementioned RS-S and RS-ST scheme

in the presence of quantized CSIT remains to be investigated.

Hence, in this paper, our objective is to find the benefits of

1) splitting the messages into a common and a private part,

and 2) performing RS-ST rather than RS-S when there are

alternating receiver-specific feedback qualities, in terms of sum

rate performance and feedback overhead reduction compared

to the findings in [15]. More specifically, we consider 1) a two-

receiver MISO BC, where the number of transmit antennas is

greater than or equal to 2, 2) Random Vector Quantization

(RVQ) codebook is employed to quantize the channel vectors,

and 3) linear precoders are used in both schemes. Note that in

the companion papers [18]–[20], RS approach is investigated

from a robust beamforming design perspective, which differs

from this paper that focuses on a rate analysis. Table I briefly

summarizes the main findings, where M refers to the number

of transmit antennas and log2δ bps/Hz represents a maximum

allowable rate loss relative to ZFBF with perfect CSIT. To be

more specific, we highlight the main contributions as follows.

• We derive an upper-bound on the sum rate loss incurred

by the RS-S scheme relative to ZFBF with perfect CSIT

in the scenario where the two receivers have equal feed-

back qualities. When the number of feedback bits does

not change with SNR, the upper-bound indicates that a

b-bit increase of the feedback overhead leads to a 3b
M−1

dB SNR improvement of the sum-rate performance at

high SNR (see Remark 2). Such a sum-rate improvement

is greater than the improvement achieved by single-

user transmission, namely Time Division Multiple Access

(TDMA), and is in contrast to ZFBF with RVQ where

the sum rate saturates at high SNR. We also generalize

this upper-bound to the scenario with alternating receiver-

specific feedback qualities. It indicates that the sum rate

performance of RS-S degrades with τ (see Remark 4),

where τ refers to the difference between the feedback

overhead employed by the two receivers in each channel

use. Moreover, we derive an upper-bound on the sum

rate loss incurred by the RS-ST scheme relative to

ZFBF with perfect CSIT in the scenario with alternating

receiver-specific feedback qualities. It indicates that RS-

ST scheme offers 3( τ
2(M−1)−2) dB SNR gain over RS-S

scheme for large value of τ (see Remark 6).

• To achieve a maximum allowable rate loss relative to

ZFBF with perfect CSIT, equal to log2δ bps/Hz, we

characterize the number of feedback bits required by the

RS-S scheme in the scenarios where the two receivers

have equal feedback qualities and alternating receiver-

specific feedback qualities, respectively. In the former

scenario, we show that compared to conventional ZFBF

with RVQ, performing RS-S scheme allows for an over-

head reduction that scales as (M−1)log2
δ
2e+

e
2−1√

δ−1
at high

SNR (see Remark 3). In the latter scenario, we show

that the feedback overhead reduction offered by the RS-

S scheme decreases with τ (see Remark 5). Moreover, the

number of feedback bits required by the RS-ST scheme

to achieve a maximum allowable rate loss relative to

ZFBF with perfect CSIT is studied in the scenario with

alternating receiver-specific CSIT qualities. Compared to

the RS-S scheme, performing RS-ST scheme yields a

feedback overhead reduction that scales as τ
2−2(M−1)

for large value of τ .



3

��

���

���

Feedback

Feedback 

�
�

Fig. 1: Two-user MISO BC with quantized CSIT

• Through simulation, we highlight that the RS-S and RS-

ST scheme provide a significant SNR gain over the

conventional (as used in LTE-A) single-user/multiuser

mode switching (SU/MU) at high SNR when there is a

fixed number of feedback bits.

The rest of the paper is organized as follows. Section

II elaborates on the system model and revisits RVQ, RS-

S and RS-ST. The upper-bound for the sum rate loss and

the feedback scaling law for RS-S scheme in the scenario

with equal CSIT qualities are presented in Section III. The

scenario with alternating receiver-specific feedback qualities is

considered in Section IV, where the upper-bound for the sum

rate loss and feedback scaling laws for both RS-S and RS-ST

schemes are studied. A performance comparison with SU/MU

is shown in Section V. Section VI concludes the paper.

Notations: Bold lower letters stand for vectors whereas

a symbol not in bold font represents a scalar. (·)∗ denotes

the conjugate of a scalar. (·)H , (·)⊥ and (·)† denote the

Hermitian, orthogonal space and pseudo-inverse of a matrix

or vector, respectively. ∥·∥ is the norm of a vector. |·| is

the absolute value of a complex number. E [·] refers to the

expectation of a random variable. a
d∼ b means that random

variable a and b are drawn from the same distribution. The

notation ∠(v,w), arccos |vHw|
∥v∥∥w∥ denotes the angle between

the vectors v and w.

II. SYSTEM MODEL

In this paper, we consider a two-receiver MISO BC as

shown in Figure 1, where the transmitter is equipped with

M (M≥2) antennas. Denoting the transmitted signal in

channel use l by sl∈CM×1, subject to the power constraint

E

[

∥sl∥2
]

≤P , the received signal, ykl∈C at Rxk in channel

use l, writes as

ykl=hH
klsl+ϵkl, k=1,2, (1)

where hkl, of size M×1 and with CN (0,1) entries, denotes

the channel vector between the transmitter and Rxk in channel

use l, and hkl is assumed to be independent across channel

uses and receivers. Here, ϵkl is the Gaussian noise with unit

variance. Therefore P refers to the SNR throughout the paper.

A. Random Vector Quantization

We consider a Frequency Duplex Division (FDD) setup,

where the transmitter acquires the CSI through receivers’

estimation and report. Since the feedback link is rate limited,

vector quantization is needed and the feedback is accom-

plished via a finite number of bits. We assume that each

receiver estimates its channel accurately and we ignore the

feedback latency. Hence, the CSIT is only subject to the

imperfectness due to the quantization error. In this paper, RVQ

is considered as it is amenable to analysis and performs closely

to optimal quantization [15].

To avoid reporting the same codeword, each receiver shares

a receiver-specific codebook with the transmitter. Let us

employ Vkl,{vkl,1,vkl,2,· · ·,vkl,2Bkl} to denote the code-

book used by Rxk=1,2 in channel use l, where the code-

words are independent and isotropically distributed in the M -

dimensional unit sphere. The quantized CSIT is obtained as

ĥkl=arg min
vkl,i∈Vkl

sin2 ∠(hkl,vkl,i). (2)

Afterwards, the index of the chosen codeword is quantized by

Rxk using Bkl bits and reported to the transmitter. According

to [12], [15], the quantization error, namely sin2 ∠(hkl,ĥkl)
is the minimum of 2Bkl independent beta (1,M−1) random

variables. Its expectation is subject to

Ehkl,Vkl

[

sin2 ∠(hkl,ĥkl)
]

≤2
−Bkl
M−1 . (3)

Note that in this paper, only the direction of the channel is

quantized, the magnitude information is not conveyed to the

transmitter. This is because the magnitude information is more

meaningful in performing user-selection when there is a large

number of candidate users in the system [21]–[23]. As pointed

out in [15], when a two-receiver MISO system is considered,

the magnitude feedback is of second concern.

Moreover, we consider two scenarios regarding the feedback

qualities of the two receivers and the number of channel uses.

The first scenario involves one channel use where the two

receivers quantize their respective channels using an equal

number of bits, i.e., B11=B21=B. However, in practical

systems as LTE-A [24], the feedback of CSI is receiver-

specific and may only be performed on a subset of the channel

uses (time and/or frequency domains). This leads to the second

scenario, which consists of two channel uses and is featured by

an alternating receiver-specific feedback qualities pattern. In

particular, we consider that the two receivers alternatively have

a better feedback quality in the two channel uses, while they

have an equal average feedback quality across the two channel

uses. To be specific, the second scenario is described as

B11=Bβ , B21=Bα, B12=Bα and B22=Bβ , where Bα<Bβ .

B. Rate-Splitting Approach

As it was introduced in [1], in the RS-S scheme, the message

intended for one receiver is split into a common and a private

part, where the common part is drawn from a codebook shared

by both receivers and should be decoded by both receivers with

zero error probability, while the private part is to be decoded

by the corresponding receiver only. The message intended for

the other receiver consists of private part only. Let us use c
to denote the common message and uk to denote the private

message intended for Rxk. Then, the transmitted signal in each

individual channel use functions as superposing c on top of

ZF-precoded private messages, i.e., u1 and u2. Mathematically,
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the transmitted and received signals write as

s=wcc
︸︷︷︸

Pc

+w1u1
︸ ︷︷ ︸

P1

+w2u2
︸ ︷︷ ︸

P2

, (4a)

yk=hH
k wcc+hH

k wkuk+hH
k wjuj+ϵk, k,j=1,2, k ̸=j,(4b)

where the index of the channel use is ignored. The power

allocation is such that Pc=P (1−t) and P1=P2=
Pt
2 , where3

t∈(0,1] denotes the fraction of the total power that is allocated

to the private messages. Although equal power allocation for

the private messages does not yield the best performance from

a sum rate perspective, it allows us to find tractable results

on the rate loss incurred by RS-S scheme relative to ZFBF

with perfect CSIT. More details on the power optimization

can be found in [20]. The precoders are chosen as follows,

for k=1,2,k ̸=j: 4

• wk∈ĥ⊥
j , with ∥wk∥=1, is a ZF-precoder and indepen-

dent of ĥk, where ĥk is obtained as in (2).

• wc, with ∥wc∥=1, is a random beamformer and indepen-

dent of hk, ĥk and wk.

Decoding: The common message c is decoded first by

treating the private messages as noise. Afterwards, using SIC

(i.e., removing c), Rxk can decode uk by treating uj as noise,

for k=1,2 and k ̸=j. Consequently, the corresponding Signal-

to-Interference-plus-Noise-Ratios (SINR) explicitly write as

SINR(k)
c =

|hH
k wc|2P (1−t)

1+Pt
2

∑2
j=1 |hH

k wj |2
(5a)

SINRc=min(SINR(1)
c ,SINR(2)

c ), (5b)

SINRk=
|hH

k wk|2 Pt
2

1+|hH
k wj |2 Pt

2

, k ̸=j. (5c)

The ergodic rate of each message is expressed as a function of

the power splitting ratio, namely Rc(t),E [log2(1+SINRc)]
and Rk(t),E [log2(1+SINRk)].

Remark 1. In a more general RS approach, the messages

of both receivers are split into a common part, mck, and a

private part, mpk, for k=1,2. The private parts, mp1 and

mp2, are transmitted similarly to u1 and u2, while c is a

general common message which can be a mixture of mc1 and

mc2. Then, any non-negative rates Rc1 and Rc2 such that

Rc1+Rc2=Rc are achievable by properly splitting the bits

encoded in c. Hence, assuming c is made up of either mc1 or

mc2 is a special case. As we focus on a sum rate analysis, it

suffices to consider rate splitting for only one receiver.

Connection with [1], [4]–[6]: We point out that the RS-S

scheme proposed in [1], [4]–[6] (Lemma 2 in [1], “matched

case” in [5], Scheme X3 in [4] and P1, Q1 scheme in

3If t=0, the common symbol is transmitted with full power and the rate
is limited by the receiver with a weaker effective channel gain. This case is
meaningless because it is outperformed by a single-user transmission (TDMA)
whose rate is determined by the receiver with a stronger effective channel gain.
Hence, we exclude this case from the support of t.

4Generally, the RS approach considered in this paper is a class of trans-
mission strategies that superpose common message on top of conventional
multiuser transmission. To understand the fundamental benefit of common
message transmission, in most part of the paper, we consider random beam-
formers that improve the analytical tractability. More details on the precoder
optimization can be found in [20].

[6]) is investigated from a DoF perspective. When the two

receivers have equal feedback qualities, if B scales with SNR

as B=α(M−1)log2P+o(log2P ) (where 0≤α≤1), using (3),

one can easily obtain that the quantization error decays as

P−α. According to the findings in [1], [4]–[6], by choos-

ing Pc=P−Pα and P1=P2=
Pα

2 , the residual interference

|hH
k wj |2 Pt

2 ,k ̸=j will be received with a power similar to the

noise. Then, RS-S scheme achieves the sum DoF of 1+α,

which is greater than 2α that is achieved by ZFBF, i.e., with

Pc=0 and P1=P2=
P
2 . Note that, although RS-S scheme has

no DoF gain over TDMA for α=0 and ZFBF with RVQ for

α=1, its benefits over TDMA and ZFBF with RVQ in terms

of sum rate and feedback overhead requirement remain to be

investigated. This is the main focus of Section III.

In the scenario with alternating receiver-specific

feedback qualities, if Bα=α(M−1)log2P+o(log2P ) and

Bβ=β(M−1)log2P+o(log2P ) where 0≤α<β≤1, [6], [7]

suggested that performing RS-S scheme in each channel use

with the power allocation P1=P2=
Pα

2 yields the sum DoF

1+α. However, such a result does not reveal the usefulness

of having alternating CSIT qualities, i.e., B11>B21 and

B12<B22. This leads to the emergence of a space-time

design of the RS approach (RS-ST).

C. Rate-Splitting Approach with Space-Time design

In the scenario with alternating receiver-specific feedback

qualities, the RS-ST scheme was proposed in [3], [4] (Scheme

S
3/2
3 in [3] and Scheme X2 in [4]) to enhance the sum DoF

achieved with the RS-S scheme. Comparing with the RS-

S scheme, RS-ST scheme transmits an additional common

message (resulted by a further split of the messages), i.e.,

c0, across the two channel uses. Specifically, the transmitted

signals in channel use 1 and 2 write as

s1= wc1c1
︸ ︷︷ ︸

P (1−tβ)

+ w01c0
︸ ︷︷ ︸

P (tβ−tα)/2

+w11u11
︸ ︷︷ ︸

Ptα/2

+w21u21
︸ ︷︷ ︸

Ptβ/2

, (6a)

s2= wc2c2
︸ ︷︷ ︸

P (1−tβ)

+ w02c0
︸ ︷︷ ︸

P (tβ−tα)/2

+w12u12
︸ ︷︷ ︸

Ptβ/2

+w22u22
︸ ︷︷ ︸

Ptα/2

, (6b)

respectively, where ukl denotes the symbol that carries the

private message intended for Rxk in channel use l, cl is the

common messages transmitted in channel use l. The power of

c0 is chosen as the difference between the powers allocated

to the private messages in each channel use, namely P
tβ−tα

2 .

tβ and tα are the power splitting ratios, where 0<tα≤tβ≤1.

The precoders are chosen as follows:

• wcl and wkl, k=1,2, are respectively the random beam-

former and ZF-precoders in channel use l, similar to the

RS-S scheme;

• We choose w01=w11∈ĥ⊥
21 and w02=w22∈ĥ⊥

12. Al-

though such choice is non-optimal, it suffices to provide

the fundamental benefit of transmitting c0 across the two

channel uses.
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This leads to the following received signals for k=1,2 and

j ̸=k,

yk1=hH
k1wc1c1+hH

k1w01c0+

hH
k1wk1uk1+hH

k1wj1uj1+ϵk1, (7a)

yk2=hH
k2wc2c2+hH

k2w02c0+

hH
k2wk2uk2+hH

k2wj2uj2+ϵk2. (7b)

Decoding: Let us focus on the decoding at Rx1. Following

the decoding process elaborated in [3], [4], using SIC, Rx1

firstly decodes c1 and c0 sequentially in y11 by treating the

private messages as noise. Secondly, after removing c0 from

y12, Rx1 recovers c2 by treating the private messages as noise.

Thirdly, by removing all the common messages, Rx1 decodes

u11 and u12 in channel use 1 and 2 respectively. Similarly,

Rx2 decodes c2 and c0 from y22, recovers c1 from y21 and

proceeds to decode the private messages afterwards. The SINR

of the messages decoded by Rx1 are explicitly written as

SINR
(1)
c1 =

|hH
11wc1|2P (1−tβ)

1+|hH
11w01|2 P (tβ−tα)

2 +|hH
11w11|2 Ptα

2 +|hH
11w21|2 Ptβ

2

,(8a)

SINR
(1)
c2 =

|hH
12wc2|2P (1−tβ)

1+|hH
12w12|2 Ptβ

2 +|hH
12w22|2 Ptα

2

, (8b)

SINR
(1)
c0 =

|hH
11w01|2 P (tβ−tα)

2

1+|hH
11w11|2 Ptα

2 +|hH
11w21|2 Ptβ

2

, (8c)

SINR11=
|hH

11w11|2 Ptα
2

1+|hH
11w21|2 Ptβ

2

, (8d)

SINR12=
|hH

12w12|2 Ptβ
2

1+|hH
12w22|2 Ptα

2

. (8e)

The SINR of the messages decoded by Rx2 are omitted for

brevity as they write similarly. The ergodic rate is computed

by Rcl(tβ ,tα),E[log2(1+mink=1,2 SINR
(k)
cl )], l=0,1,2 and

Rkl(tβ ,tα),E [log2(1+SINRkl)].
Connection with [3], [4]: We point out that [3], [4] show

the benefit of the space-time transmission of c0 from a DoF

perspective. Considering Bα=α(M−1)log2P+o(log2P ) and

Bβ=β(M−1)log2P+o(log2P ) where 0≤α<β≤1, the quan-

tization errors incurred in ĥ12 and ĥ21 decay as P−α and

the quantization errors incurred in ĥ11 and ĥ22 decay as

P−β . According to [3], [4], with Ptα=Pα and Ptβ=P β ,

the residual interference |hH
12w22|2 Ptα

2 and |hH
11w21|2 Ptβ

2 will

be received with a power similar to the noise. The sum DoF

achieved by c1, c2 and all the private messages is 1+α, while

c0 achieves the DoF of β−α
2 . Thus, the resultant sum DoF

is 1+α+β
2 , which is greater than 1+α that is achieved with

the RS-S scheme. However, the benefits of the space-time

transmission over RS-S scheme in terms of sum rate and

feedback overhead requirement remains to be investigated.

This is the main focus in Section IV.

Next, we will carry out some preliminary calculations

for the random variables involved in the SINR expression,

followed by the analysis on the sum rate and the feedback

overhead reduction.
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Fig. 2: CDF approximation

III. RS-S WITH EQUAL FEEDBACK QUALITIES

In this section, we focus on the scenario where the two

receivers have equal feedback qualities, i.e., B11=B21=B.

Before going into the main results, some preliminary results

are derived as they are frequently used in the rest of the paper.

A. Preliminary Calculations

Lemma 1. [15, Lemma 1 and 2] The random variable,

|h̄H
k wj |2,k ̸=j, where h̄k=

hk

∥hk∥ , is equal to the product of the

quantization error ∠sin2(hk,ĥk) and a beta (1,M−2) random

variable. Note that ∠sin2(hk,ĥk) and the beta (1,M−2) ran-

dom variable are independent of each other. The expectation

of |h̄H
k wj |2,k ̸=j is subject to

Ehk,Vk

[
|h̄H

k wj |2
]
<

1

M−1
2

−Bk
M−1 , k ̸=j. (9)

As it will be seen in the proof of Proposition 1, 3 and 5,

Lemma 1 is used to upper-bound the rate loss incurred by the

ZF precoders in the RS-S (and RS-ST) scheme with RVQ.

Next, we aim to compute the distribution of SINR(k)
c and

the distribution of the minimum of SINR(1)
c and SINR(2)

c .

Towards this, we introduce the following assumption to ease

the computation complexity.

Assumption 1. We assume that the feedback quali-

ties are good enough for both receivers, such that the

|hH
k wk|2≫|hH

k wj |2 in (5a) and |hH
klwkl|2≫|hH

klwjl|2 in

(8a), (8b) and (8c) hold with a high likelihood, where k ̸=j.

Then, by introducing Xk1,|hH
k wc|2, Xk2,|hH

k wk|2 and

Yk,
Xk1

1+Xk2
Pt
2

, SINR(k)
c in (5a) and SINRc in (5b) are ap-

proximated by P (1−t)Yk and P (1−t)Y with Y,min(Y1,Y2),
respectively. The approximations of (8a), (8b) and (8c) follow

similarly.

Note that Assumption 1 is only applied to the derivation

of the rate of the common messages. The impact of the

residual interference after ZFBF with RVQ is considered in

the derivation of the rate of the private messages. However,

in the simulation of Section III-B, III-C, IV and V, the SINR

of the common messages are calculated following (5a), (8a),

(8b) and (8c).

To calculate the distribution of SINRc, it suffices to study

the distribution of Y . To this end, we calculate the joint

distribution of Xk1 and Xk2. We observe that Xk1 and Xk2

are exponential distributed with parameter 1, because hk is a
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complex Gaussian vector and wc and wk are isotropic unit

vectors independent of hk. Moreover, we see that Xk1 and

Xk2 are correlated as both of them depend on the realization

of hk. Their joint distribution is characterized as follows.

Lemma 2. The joint cumulative distribution function (CDF)

of the correlated exponential random variables Xk1=|hH
k wc|2

and Xk2=|hH
k wk|2 is given by

FXk1,Xk2
(x1,x2)=1−e−x1−e−x2+ξ(x1,x2), (10)

where x1,x2∈[0,∞) and ξ(x1,x2) is given in (11) at the top

of next page. Γ(r)=(r−1)! is the Gamma function for positive

integer r, while Γ(r,a)=
∫∞
a

are−ada refers to the Upper

Incomplete Gamma function, which is also valid for r≤0.

Proof: see Appendix A. �

Note that it is cumbersome to utilize (10) to obtain the

distribution of Y and perform analysis. Hence, we approximate

(10) by assuming that Xk1 and Xk2 are independent, namely

FXk1,Xk2
(x1,x2)≈FX̃k1,X̃k2

(x1,x2)

=1−e−x1−e−x2+e−x1−x2 , (12)

where X̃k1
d∼ Xk1, X̃k2

d∼ Xk2 and X̃k1 and X̃k2 are

independent. Figure 2(a) shows that the approximation is good

for sufficiently large value of M , and it is good enough

for M=4. Hence, we employ (12) instead of (10) in the

subsequent derivations to make the analysis more tractable.

Let us introduce Ỹk,
X̃k1

1+Pt
2 X̃k2

, which is an approximation

of Yk,
Xk1

1+Xk2
Pt
2

since FXk1,Xk2
(x1,x2)≈FX̃k1,X̃k2

(x1,x2) in

(12). Since X̃k1 and X̃k2 are independent, we compute the

CDF of Ỹk as

FỸk
(y)=

∫ ∞

0

Pr(X̃k1<y(1+
Pt

2
x))fX̃k2

(x)dx

=1− e−y

1 + Pt
2 y

≈FYk
(y), (13)

using the fact that X̃k1 and X̃k2 are exponential distributed

with parameter 1. A comparison of FYk
and FỸk

is shown by

Figure 2(b), where FYk
(y) is plotted via Monte Carlo (MC)

simulation.

Next, we study the distribution of Y=min(Y1,Y2). As wk

is isotropically chosen from the null space of ĥj ,j ̸=k and

ĥj is obtained using (2), we can see that wk is correlated

with hj ,j ̸=k. In turn, it follows that Y1 and Y2 are correlated.

Thus, it is cumbersome to derive the exact distribution of

Y=min(Y1,Y2). Instead, we provide an upper-bound of the

CDF of Y as follows.

Lemma 3. (Upper-bound on the CDF of Y )

FY (y)≤1−(1−FY1(y))
2. (14)

Proof: The inequality directly follows [25, eq (5.4.1b)]. �

Using (13), an approximation of this upper-bound writes as

FY (y)≤1−(1−FY1(y))
2

≈1−(1−FỸ1
(y))2=1− 1

(1+Pt
2 y)2

e−2y, y∈[0,∞).(15)
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Fig. 3: Simulation results for RS-S with M=4.

Moreover, we introduce the following useful Lemma.

Lemma 4. For random variables Z and Z̃ who have the same

support (−∞,∞) and whose CDF satisfy FZ(z)≤FZ̃(z), we

have E[Z]≥E[Z̃].

Proof: see Appendix B. �

In the proof of Proposition 1, 3 and 5, the rate of the

common message is lower-bounded by a function of E[lnY ].
Lemma 4 allows us to lower-bound E[lnY ] using the right

hand side (r.h.s.) of (15).

Next, we study the sum rate loss incurred by the RS-S

scheme relative to the ZFBF with perfect CSIT and investigate

the scaling law of B to achieve a maximum allowable rate loss.

B. Sum Rate Loss

To study the sum rate loss incurred by the RS-S scheme

in the scenario where the two receivers have equal feedback

qualities, we define ∆Req
S (t),Rp

1+Rp
2−R1(t)−R2(t)−Rc(t)

to be the difference between the sum rate achieved with

ZFBF with perfect CSIT and the sum rate achieved with

RS-S with a power splitting ratio t∈(0,1]. The expression

Rp
k,E

[
log2(1+|hH

k wk,pf |2 P
2 )
]

denotes the rate achieved

by Rxk, k=1,2, using ZFBF with perfect CSIT, where

wk,pf is a unit-norm vector randomly chosen from the

M−1-dimensional null space of hj ,k ̸=j. An upper-bound of

∆Req
S (t) is stated below.

Proposition 1. In the scenario where the two receivers have

equal feedback qualities, the sum-rate loss incurred by the RS-

S scheme with RVQ relative to the ZFBF with perfect CSIT is

upper-bounded by

∆Req
S (t)≤∆R̃eq

S (t)=2ϵ(t)+2log2(1+
PtM

2(M−1)
2

−B
M−1 )−

log2(1+
P (1−t)

2
eκ(t)), (16)

where κ(t),( 4
Pt−1)ϕ(Pt

4 )−1−γ, ϵ(t), 1
ln 2

[
ϕ(P2 )−ϕ(Pt

2 )
]
,

while t∈(0,1] is the power splitting ratio, γ≈0.577 is the

Euler constant, ϕ(x),e
1
xE1(

1
x ) with E1(x)=

∫∞
1

e−xt

t dt and

e≈2.718 refers to the natural constant.

Proof: see Appendix C. �

In (16), the first term 2ϵ(t) stands for the rate loss due to

the decrement of the power allocated to the private messages,

the second term which is a function of B refers to the rate loss
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ξ(x1,x2)=
1

Γ(M)

M−1∑

i=0

M−1∑

j=0

(−x1)
M−1−i(−x2)

M−1−j

(
M−1

i

)(
M−1

j

)

Γ(i+j+2−M,max(x1,x2)), (11)

incurred by the ZF precoders (with power Pt) of RS-S with

RVQ, while the last term is the rate achieved by the common

message, i.e., c. Taking t=1 yields the rate loss incurred by

the conventional ZFBF with RVQ, where the first and last term

become zero.5

Next, we aim to find the closed-form solution of the

optimal power splitting ratio t∗, argmin0<t≤1 ∆R̃eq
S (t), but

it is difficult to obtain for arbitrary SNR due to the compli-

cated expression of ∆R̃eq
S (t). Hence, to improve the analysis

tractability, we consider high SNR regime and aim to obtain

teqS , argmin0<t≤1 ∆R̃eq
S (t)|P→∞. As ϕ(r)≈−γ+ln(r) for

r→∞, one has

ϵ(t)
P→∞
= log2

1

t
, κ(t)

P→∞
= −ln(Pt)−1+ln4. (17)

Substituting (17) into (16) yields

∆R̃eq
S (t)|P→∞=2log2

(
1

t
+

PM

2(M−1)
2−

B
M−1

)

−

log2

(

1+
2

te
−2

e

)

. (18)

By evaluating the first order derivative of (18), we can easily

obtain

teqS =

{ 1

PM
2(M−1)

2
−B
M−1 +2−e

if B≤Beq
0 ;

1 if B>Beq
0 ,

(19)

where Beq
0 =(M−1)

[

log2
PM

2(M−1)−log2(e−1)
]

. Note that

Beq
0 acts as a threshold that switches the scheme from ZFBF

with RVQ to RS-S if the feedback quality is not good enough.

Figure 3(a) compares the analytical upper-bounds with the

Monte Carlo simulation when M=4 and B=10. Specifically,

for conventional ZFBF with quantized CSIT, the upper-bound

∆R̃eq
S (1) is plotted by substituting t=1 into ∆R̃eq

S (t), while

the simulation is carried out with even power allocation. For

RS-S, the upper-bound ∆R̃eq
S (teqS ) is plotted by substituting

t=teqS into ∆R̃eq
S (t). The simulations are carried out in two

ways: 1) with an exhaustive (Ex) search for t; 2) with t=teqS
in (19). We observe that ∆R̃eq

S (teqS ) is an upper-bound of the

simulation result of the sum rate loss incurred by the RS-S

scheme even though Assumption 1 gives an upper-bound of

SINRc. In addition, we can see that teqS in (19) is a proper

allocation for the RS-S scheme as the simulation of the RS-S

scheme with teqS yields almost the same performance as the

case with exhaustive search.

To gain insights into how the sum rate of RS-S scheme

changes with B, let us substitute teqS into ∆R̃eq
S (t) and evaluate

5We note that the expression of the upper-bound of the sum rate loss
incurred by ZFBF with RVQ is different from that is derived in [15] due
to the following reasons: 1) we consider a M×2 system while [15] studied a
M×M system, and 2) we consider that the ZF precoder is randomly chosen
from the null space of the unintended receiver, whereas [15] obtained the ZF
precoders by computing the pseudo-inverse of the aggregate channel.
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Fig. 4: M=4, to achieve maximum log2δ=6bps/Hz rate loss.

∆R̃eq
S (teqS ) focusing on high SNR and B<Beq

0 . It writes as

∆R̃eq
S (teqS )|P→∞=log2e+log2(

PM

(M−1)
2

−B
M−1+2−e). (20)

Remark 2. (SNR gain offered by feedback quality incre-

ment:) We can see that in (20), a certain increment of B,

equal to b bits, results in b
M−1 bps/Hz sum rate enhancement

for RS-S, where the term 2−e is negligible as we consider high

SNR and B is not a function of P . Such an enhancement can

be interpreted as a 3b
M−1 dB SNR gain for RS-S. Remarkably,

this is an extraordinary distinction compared with ZFBF with

RVQ and single-user transmission, i.e., TDMA.

For ZFBF with RVQ, the upper-bound of the sum rate

loss writes as ∆R̃eq
S (1)=2log2(1+

PM
2(M−1)2

−B
M−1 ). Although

increasing B by b bits yields a sum rate enhancement, it cannot

be interpreted as a SNR gain because the sum rate saturates

at high SNR. This can be seen from the pre-log factor of the

∆R̃eq
S (1), which indicates a DoF loss of 2. Similar observation

was found in [15].

For TDMA, an upper-bound on the sum rate, i.e.,

log2(1+PM(1−2
−B
M−1 )), was shown in [15]. This indicates

that increasing B does not provide a significant gain especially

when B is already good enough.

By setting M=4 and different values of B, i.e., 10 and 15,

Figure 3(b) illustrates the simulation result of the ergodic sum

rate of RS-S with teqS in (19). We see that, unlike ZFBF with

RVQ, the sum rate of RS-S is increasing rather than saturating

when B does not change with P . The SNR gain stated in

Remark 2 is verified as RS-S with B=15 yields a 5dB SNR

gain over the case with B=10 at high SNR regime. On the

other hand, as mentioned in [15], the saturation of the sum rate

can be also avoided by doing TDMA. A thorough comparison

between RS-S and TDMA will be presented in Section V.

C. A New Scaling Law of B

It has been shown in [15] that full DoF is achievable with

ZFBF with RVQ if the number of feedback bits scales linearly

with M and SNR (in decibel). In this case, although RS-

S scheme does not bring DoF gain over ZFBF with RVQ,
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it enables a feedback reduction to maintain a constant rate

offset relative to the ZFBF with perfect CSIT. The following

proposition specifies the scaling law of B required by RS-

S scheme to achieve a certain maximum allowable rate loss

relative to the ZFBF with perfect CSIT.

Proposition 2. In the scenario where the two receivers have

equal feedback qualities, to achieve a maximum allowable sum

rate loss, equal to log2δ bps/Hz, relative to ZFBF with perfect

CSIT, the number of feedback bits required by the RS-S scheme

is given by Beq
S (δ,t), where

Beq
S (δ,t)=(M−1)log2

PM

2(M−1)
−

(M−1)log2





√
δ
√

1+P (1−t)
2 eκ(t)

t · 2ϵ(t) −1

t



 , (21)

where κ(t), ϵ(t) and t are the same as those introduced in

Proposition 1.

Proof: (21) is obtained as the inverse function of (16),

namely setting ∆R̃eq
S (t)=log2δ and calculating B as a func-

tion of δ and t. �

We see that it is difficult to derive the optimal power

splitting ratio t∗, argmin0<t≤1 B
eq
S (δ,t) due to the compli-

cated expression (21). To gain insights into Proposition 2, we

obtain the optimal power splitting ratio at high SNR, namely

teq,2S , argmin0<t≤1 B
eq
S (δ,t)|P→∞ where

Beq
S (δ,t)|P→∞=(M−1)log2P−(M−1)log2

2(M−1)

M
−

(M−1)log2

(√

δ

(

1+
2

te
−2

e

)

−1

t

)

. (22)

By evaluating the first order derivative of (22), we can easily

obtain

teq,2S =

{
1

δ
2e− e

2+1
if δ≥e2,

1 if 1<δ<e2.
(23)

Remark 3. [Feedback overhead reduction] To achieve a

maximum allowable rate loss equal to log2δ bps/Hz, by

comparing the number of feedback bits required by RS-S,

i.e., Beq
S (δ,teq,2S ), with that required by ZFBF with RVQ, i.e.,

Beq
S (δ,1), one can compute the feedback overhead reduction

as in (25) at the top of next page.

Setting the maximum allowable rate loss to be log2δ=6
bps/Hz, we plot Beq

S (δ,teq,2S ) and Beq
S (δ,1) in Figure 4(a)

for M=4. Notably, at medium SNR (15dB), RS-S scheme

requires 5 bits less than ZFBF with RVQ. When it comes

to high SNR, the feedback overhead reduction decreases to

a constant. Figure 4(b) illustrates the simulation result of the

sum rate performance by applying Beq
S (δ,1) to ZFBF with

RVQ and Beq
S (δ,teq,2S ) to the RS-S scheme (the power splitting

ratio in the simulation is teq,2S ), where log2δ=6bps/Hz. Firstly,

we see that both schemes achieve less than 6bps/Hz rate

loss relative to ZFBF with perfect CSIT with their respective

scaling law of B. Secondly, both schemes achieve almost

the same sum rate performance. This implies that Remark

3 correctly characterizes the feedback overhead reduction

offered by the RS-S scheme to achieve the same sum rate

performance as ZFBF with RVQ.

IV. RS-S AND RS-ST WITH ALTERNATING

RECEIVER-SPECIFIC FEEDBACK QUALITIES

In this section, we focus on the scenario with alternating

receiver-specific feedback qualities, where Rx1 utilizes Bβ

(resp. Bα) bits and Rx2 employs Bα (resp. Bβ) to quantize

their channels in channel use 1 (resp. 2). We firstly focus

on the RS-S scheme and extend the results shown in the

previous section. Secondly, we identify the benefit of the RS-

ST scheme by comparing with the sum rate achieved with the

RS-S scheme. For convenience, we use τ,Bβ−Bα (assuming

Bα<Bβ) to represent the discrepancy between the feedback

overhead employed by the two receivers in each channel use,

and use B̄,
Bα+Bβ

2 to denote the average feedback overhead.

A. Performing the RS-S scheme

In this part, following the footsteps in the previous section,

we study the sum rate performance of the RS-S scheme in the

scenario with alternating receiver-specific feedback qualities.

1) Sum rate loss: Let us use ∆Rrs
S (t) to denote the sum-

rate loss incurred by the RS-S scheme in the scenario with

alternating receiver-specific feedback qualities. As the sum

rate achieved by RS-S scheme in channel use 1 and 2 are

statistically equivalent, we only focus on the sum rate achieved

in a single channel use. Reusing the proof of Proposition 1,

an upper-bound of ∆Rrs
S (t) is given below.

Proposition 3. In the scenario with alternating receiver-

specific feedback qualities, the sum-rate loss incurred by the

RS-S scheme with RVQ relative to the ZFBF with perfect CSIT

is upper-bounded by

∆Rrs
S (t)≤∆R̃rs

S (t)=2ϵ(t)+log2(1+tΛα)+log2(1+tΛβ)−

log2(1+
P (1−t)

2
eκ(t)), (26)

where Λα=
PM

2(M−1)2
−Bα
M−1 , Λβ=

PM
2(M−1)2

−Bβ
M−1 , while κ(t), ϵ(t)

and t are the same as those introduced in Proposition 1.

Similar to the analysis in the previous section, it is difficult

to obtain a closed-form solution of t∗, argmin0<t≤1 ∆R̃rs
S (t)

for arbitrary SNR due to the complicated expression

of ∆R̃rs
S (t). Hence, we calculate an optimal power

splitting ratio that minimizes ∆R̃rs
S (t) at high SNR,

namely trsS , argmin0<t≤1 ∆R̃rs
S (t)|P→∞. Specifically,

∆R̃rs
S (t)|P→∞ writes as

∆R̃rs
S (t)|P→∞= log2

(
1

t
+Λα

)

+ log2

(
1

t
+Λβ

)

−

log2

(

1+
2

te
−2

e

)

. (27)

Then, by evaluating the first order derivative of (27), it can be

shown that

trsS =

{

1 B̄≥B̄rs
0 (Θ);

1√
(Λα− e−2

2 )(Λβ− e−2
2 )− e−2

2

B̄<B̄rs
0 (Θ), (28)
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Beq
S (δ,1)−Beq

S (δ,teq,2S ) = (M−1) log2









√
δ

√

1+
P (1−teq,2

S
)

2 eκ(t
eq,2
S

)

teq,2S · 2ϵ(teq,2S
)

− 1

teq,2S



 /
(√

δ−1
)



 (24)

P→∞
= (M−1) log2

δ
2e+

e
2−1√

δ−1
, for δ≥e2. (25)

B̄rs
0 (Θ)=(M−1)log2P−(M−1)log2

2(M−1)

M
−(M−1)log2

(√

e2

4
+(e−2)2

Θ(Θ−4)

16
+
e−2

4
(Θ−2)

)

, (29)

where B̄rs
0 (Θ) is given in (29) at the top of next page, and

Θ=2
−τ

2(M−1)+2
τ

2(M−1)+2. (30)

Note that B̄rs
0 (Θ) is the threshold that switches the scheme

between RS-S and ZFBF with RVQ. Clearly, B̄rs
0 (Θ) is

monotonically decreasing with Θ, i.e., τ . When Bα=Bβ , we

have B̄rs
0 (Θ)=Beq

0 and (26) and (28) become (16) and (19),

respectively.

To gain insights into the impact of having receiver-specific

feedback qualities, let us consider B̄<B̄rs
0 (Θ) and plug trsS

into (27). The upper-bound of the sum rate loss at high SNR

can be derived as

∆R̃rs
S (trsS )|P→∞=

log2

(

trsS (
√

ΛαΛβ−
1

trsS
)2+(

√

Λα+
√

Λβ)
2

)

−

log2

(
2

e
+(1−2

e
)trsS

)

. (31)

Note that it is cumbersome to quantify the term

trsS (
√

ΛαΛβ− 1
trs
S
)2 due to the constant terms e−2

2 in trsS .

Thus, to obtain a quantitative result, we further upper-bound

∆R̃rs
S (trsS )|P→∞ by ∆R̃rs

S (t̃rsS )|P→∞, where t̃rsS , 1√
ΛαΛβ

,

because trsS , argmin0<t≤1 ∆R̃rs
S (t)|P→∞. Specifically,

∆R̃rs
S (trsS )|P→∞≤∆R̃rs

S (t̃rsS )|P→∞

=log2(
√

Λα+
√

Λβ)
2− log2

(
2

e
+(1−2

e
)t̃rsS

)

(32)

≤log2

(

PM · 2 B̄
M−1

2(M−1)
·Θ
)

+ log2
e

2
. (33)

Note that by comparing (33) with (31), we can see that (33)

upper-bounds ∆R̃rs
S (trsS )|P→∞ within log2

e
2≈0.44. This is

because the first term in (31) is greater than the first term in

(33) while the second term log2
e
2≈0.44 in (33) upper-bounds

the second term in (31).

Remark 4. (Sum rate degradation of RS-S scheme with

alternating receiver-specific feedback qualities:) From (33),

we can see that, compared to the case τ=0 where Θ=4, the

sum rate degradation incurred by τ>0 can be characterized

by log2
Θ
4 bps/Hz. Similar to Remark 2, this degradation can

be interpreted as a 3log2
Θ
4 ≈3( τ

2(M−1)−2) dB SNR loss, if τ
is relatively large.

2) Scaling law of B̄: Inverting (26) with the respect of

(w.r.t.) B̄ yields the following proposition.

Proposition 4. In the scenario with alternating receiver-

specific feedback qualities, to achieve a maximum allowable

rate loss, equal to log2δ bps/Hz, relative to ZFBF with perfect

CSIT, the average number of feedback bits required by the RS-

S scheme is given by

B̄rs
S (δ,t)=(M−1)log2

PM

2(M−1)
−

(M−1)log2







√
√
√
√Θ2−4Θ

4t2
+
δ
(

1+P (1−t)
2 eκ(t)

)

t2 · 22ϵ(t) −Θ−2

2t






,(34)

where Θ is given by (30), and κ(t), ϵ(t) and t are the same

as those introduced in Proposition 1.

Proof: see Appendix D. �

Similar to the previous analysis, it is difficult to calculate

the optimal power splitting ratio t∗, argmin0<t≤1 B̄
rs
S (δ,t)

for arbitrary SNR. However, we can make progress at high

SNR regime. In particular, when P→∞, the optimal power

splitting ratio is defined as trs,2S ,min0<t≤1 B̄
rs
S (δ,t)|P→∞.

With the derivation presented in Appendix D, we obtain trs,2S

in (35) at the top of next page. Note that in Appendix D,

trs,2S is the solution to a quadratic formula. When Bα=Bβ ,

the quadratic formula degrades to a linear formula, where the

resultant trs,2S becomes teq,2S in (23) and the threshold δ0(Θ)
becomes e2. Clearly, δ0(Θ) is monotonically increasing with

Θ (or τ ) as Θ≥4. This indicates that the threshold where S-

JMB starts to offer feedback reduction over ZFBF with RVQ

grows with Θ (or τ ).

Remark 5. (Average feedback overhead reduction offered

by the RS-S scheme over ZFBF with RVQ when there are

alternating receive-specific feedback qualities:) To achieve

a maximum allowable sum rate loss relative to ZFBF with

perfect CSIT, equal to log2δ bps/Hz, compared to the feedback

overhead required by ZFBF with RVQ (i.e., Brs
S (δ,1)), per-

forming RS-S scheme enables an average feedback overhead
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trs,2S =

{ [√
4(Θ−2)2

e2(Θ2−4Θ)2 δ
2− (Θ−2)2

Θ2−4Θδ(1− 2
e )− 4δ

e(Θ2−4Θ)

]−1

δ>δ0(Θ);

1 1<δ≤δ0(Θ);
(35)

δ0(Θ),

√

e2

4
(Θ2−4Θ)+

(
e2

8
(Θ−2)2(1−2

e
)+e

)2

+
e2

8
(Θ−2)2(1−2

e
)+e (36)
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Fig. 5: B̄ vs. τ , M=4 and P=30dB.
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RS-ST, τ = 6

RS-S, τ = 6

ZFBF-RVQ, τ = 6

ZFBF-Perfect

RS-ST, τ = 10

RS-S, τ = 10
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(b) Sum rate, τ=6 and τ=10.

Fig. 6: Simulation results for RS-ST, RS-S and ZFBF with B̄=10
and M=2.

reduction that scales as

B̄rs
S (δ,1)−B̄rs

S (δ,trs,2S )
P→∞
=

(M−1)log2

√

Θ2−4Θ
4(trs,2

S
)2
+δ
(

1+ 2
trs,2
S

e
− 2

e

)

− Θ−2
2trs,2

S

√
Θ2−4Θ

4 +δ−Θ−2
2

. (37)

Due to the complicated expression of (35) and (37), it is

cumbersome to analyze the impact of τ on the feedback over-

head reduction. In Figure 5, we plot B̄rs
S (δ,1) and B̄rs

S (δ,trs,2S )
for M=4 and P=30dB. When τ increases, we can see that

the gap between B̄rs
S (δ,1) and B̄rs

S (δ,trs,2S ) decreases. This

indicates that the feedback overhead reduction in (37) offered

by the RS-S scheme over ZFBF with RVQ is decreasing

with τ . When δ0(Θ) is equal to δ, B̄rs
S (δ,1) and B̄rs

S (δ,trs,2S )
coincide.

B. Benefit of the Space-Time Transmission

Previous subsection identifies the impact of τ on the sum

rate performance and the feedback overhead reduction over

ZFBF with RVQ achieved by the RS-S scheme in the scenario

with alternating receiver-specific CSIT qualities. In this part,

we analyze the sum rate performance of the RS-ST scheme.

By comparing with the RS-S scheme, we will show the benefit

of transmitting an additional common message, i.e., c0, using

a space-time transmission.

1) Sum rate loss: Recalling the SINR expressions in (8), we

see that the SINR of c1, u11 and u21 are statistically equivalent

with that of c2, u22 and u12, respectively. Hence, the sum rate

achieved by RS-ST writes as

RST (tα,tβ),
1

2
(2Ru11(tα,tβ)+2Ru21(tα,tβ)+

2Rc1(tα,tβ)+Rc0(tα,tβ))

Moreover, the sum rate achieved by ZFBF with perfect CSIT

are statistically equivalent in these two channel uses. Thus, let

us write the sum rate achieved by ZFBF with perfect CSIT as

Rp
11+Rp

21, where Rp
11 and Rp

21 denote the rate achieved by the

private messages intended for Rx1 and Rx2 in channel use 1,

respectively. Consequently, the sum rate loss incurred by the

RS-ST scheme relative to ZFBF with perfect CSIT is defined

as ∆Rrs
ST (tα,tβ),Rp

11+Rp
21−RST (tα,tβ). An upper-bound of

∆Rrs
ST (tα,tβ) is stated below.

Proposition 5. In the scenario with alternating receiver-

specific feedback qualities, the sum-rate loss incurred by the

RS-ST scheme with RVQ relative to the ZFBF with perfect

CSIT is upper-bounded as

∆RST (tα,tβ)≤∆R̃ST (tα,tβ)

=µ(tα,tβ)−ϱ(tα,tβ)+log2(1+tαΛα)+

log2(1+tβΛβ)−log2

[

1+
P (1−tβ)

2
eκ(tβ)

]

,(38)

with µ(tα,tβ)=
1

ln 2

[

ϕ(P2 )−ϕ(
Ptβ
2 )+ϕ(P2 )−ϕ(Ptα

2 )
]

and

ϱ(tα,tβ)=
1

ln 2

[

ϕ(
Ptβ
2 )−ϕ(

Ptβ
4 )

2 −ϕ(Ptα
2 )+

ϕ(Ptα
4 )

2

]

, while

Λα, Λβ , κ(tβ), tα∈(0,tβ ] and tβ∈[tα,1] are the same as

those introduced in Proposition 3.

Proof: see Appendix E. �

In (38), µ(tα,tβ) refers to the rate loss incurred by the

power decrement of the private messages, while ϱ(tα,tβ)
characterizes the rate achieved by c0, which is essentially

determined by the discrepancy between tα and tβ . The rate

loss incurred by the ZF precoders in RS-ST with RVQ is

shown by log2 (1+tβΛβ) and log2 (1+tαΛα). The last term

represents the rate achieved by c1 and c2.

Note that ∆R̃ST (tα,tβ) in (38) gives an upper-bound for

arbitrary SNR, but it is difficult to get explicit insights from

∆R̃ST (tα,tβ). Moreover, after writing ∆R̃ST (tα,tβ) at high
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SNR, namely

∆R̃ST (tα,tβ)|P→∞=log2

(
1

tβ
+Λβ

)

+log2

(
1

tα
+Λα

)

−

1

2
log2

tβ
tα

−log2

(

1+
2

tβe
−2

e

)

, (39)

we find that it is still cumbersome to calculate the

closed-form solution of the power splitting ratios

(t∗α,t
∗
β), argmin0<tα≤tβ≤1 ∆R̃ST (tα,tβ)|P→∞ as (39)

is a non-convex function of two arguments. Hence, for the

sake of analysis tractability, we choose tα and tβ as

tST ,β=min{Λ−1
β ,1}, tST ,α=min{Λ−1

α ,1}. (40)

Note that (40) follows the power allocation in [4], where the

power allocated to the private messages is chosen to ensure

that the residual interference after ZFBF with imperfect CSIT

is drowned by the noise, i.e., Λαtα≤1 and Λβtβ≤1. Although

tST ,α and tST,β in (40) are non-optimal in minimizing the

rate loss, they provide a baseline of how much benefit we can

gain from the space-time transmission of c0.

In Figure 6(a), we firstly compare the simulation results

of RS-S with t=trsS in (28) and RS-ST with tα=tST,α and

tβ=tST ,β in (40), with their corresponding analytical upper-

bounds, namely ∆R̃rs
S (trsS ) and ∆R̃ST (tST,α,tST,β), respec-

tively. We can see that Proposition 3 and 5 upper-bound the

sum rate loss incurred by the RS-S and RS-ST scheme in the

scenario with alternating receiver-specific feedback qualities,

even though Assumption 1 provides an upper-bound of the

SINR of the common messages. Secondly, we also plot the

simulation results of the RS-S scheme with an optimal power

splitting ratio obtained by exhaustive search. We can see that

the simulation of the RS-S scheme with trsS in (28) yields

almost the same performance as the case with exhaustive

search. This indicates that trsS is a proper allocation for the

RS-S scheme in the scenario with alternating receiver-specific

feedback qualities.

Next, to obtain insights into the sum rate performance of

the RS-ST scheme, we plug tβ=tST,β and tα=tST ,α into (39)

and derive ∆R̃ST (tST,α,tST,β)|P→∞ as

∆R̃ST (tST ,α,tST ,β)|P→∞

=log2

(
1

tST,β
+Λβ

)

+log2

(
1

tST ,α
+Λα

)

+

1

2
log2tST ,βtST ,α−log2(

2

e
+(1−2

e
)tST ,β),

≤log2
PM · 2 −B̄

M−1

2(M−1)
+2+log2

e

2
, (41)

where the inequality is because 2
e+(1− 2

e )tST ,β≥ 2
e . In (41),

we see that the sum rate loss incurred by the the RS-ST scheme

at high SNR is not a function of Θ. This indicates that, when

B̄ is fixed, performing RS-ST scheme produces similar results

for any choice of Bα and Bβ . This is in contrast to the RS-S

scheme, where the sum rate degrades dramatically with τ .

Remark 6. [SNR gain offered by RS-ST over RS-S scheme:]

Using (33) and (41), we quantify the gap between the sum rate

achieved by RS-ST and RS-S scheme at high SNR as

∆R̃S(t
rs
S )|P→∞−∆R̃ST (tST ,α,tST ,β)|P→∞≈

2log2
2

−τ
4(M−1)+2

τ
4(M−1)

2
, (42)

where the approximation is due to the fact that (33)

and (41) are upper-bounds of ∆R̃S(t
rs
S )|P→∞ and

∆R̃ST (tST ,α,tST ,β)|P→∞, respectively. For a large value

of τ , we can see that RS-ST scheme offers a SNR gain of

3( τ
2(M−1)−2) dB over the RS-S scheme, which indicates that

in the scenario with alternating receiver-specific feedback

qualities, the sum rate degradation of the RS-S scheme

mentioned in Remark 4 can be avoided by the space-time

transmission of the additional common message, i.e., c0.

Figure 6(b) illustrates the simulation results of ZFBF with

RVQ, RS-S with trsS in (28) and RS-ST scheme with tST ,α and

tST ,β in (40) for M=2, B̄=20 and different values of τ . We

can see that RS-ST scheme with τ=6 and τ=10 yield the same

performance at high SNR, offering 2∼3dB and 8∼9dB SNR

gain over RS-S scheme when τ=6 and τ=10 respectively.

2) Scaling law of B̄: Let B̄ST (δ) denote the average

feedback overhead required by the RS-ST scheme to achieve a

maximum allowable rate loss, equal to log2δ bps/Hz, relative

to ZFBF with perfect CSIT. To characterize B̄ST (δ), we can

invert (38) w.r.t. B̄ and evaluate the resulted inverse function

at high SNR. But these footsteps will result in an equation

similar to (39), which does not allow us to find a closed-form

solution of the optimal power splitting ratios. Instead, using

(41) and (33), we will firstly obtain a tractable result of the

average feedback overhead reduction enabled by RS-ST over

RS-S, such that both RS-ST and RS-S schemes achieve the

same sum rate performance. Secondly, using such a quantity,

we find a tractable expression of B̄ST (δ) as a function of the

average feedback overhead required by the RS-S scheme to

maintain log2δ bps/Hz sum rate offset relative to ZFBF with

perfect CSIT.

Specifically, when τ is fixed, by setting (41) equal to (33)

and through some simple manipulations, we can calculate that

the difference between the average number of feedback bits

employed by RS-S in (33) and that employed by RS-ST in

(41) scales as

(M−1)log2
Θ

4
=2(M−1)log2

2
−τ

4(M−1)+2
τ

4(M−1)

2
. (43)

If τ is relatively large (w.r.t 4(M−1)), such a feedback

overhead reduction offered by RS-ST over RS-S writes as
τ
2−2(M−1). This quantity allows us to express B̄ST (δ) as

B̄ST (δ)=B̄rs
S (δ,trs,2S )−2(M−1)log2

2
−τ

4(M−1)+2
τ

4(M−1)

2
,(44)

where B̄rs
S (δ,trs,2S ) in (34) with trs,2S in (35) characterizes the

average number of feedback bits required by the RS-S scheme

to achieve maximum log2δ bps/Hz rate loss relative to ZFBF

with perfect CSIT in the scenario with alternating receiver-

specific feedback qualities.
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Fig. 8: Sum rate performances of RS-ST, RS-S and SU/MU mode
switching.

Setting the maximum allowable rate loss to be log2δ=6
bps/Hz, we plot B̄rs

S (δ,1), B̄rs
S (δ,trs,2S ) and B̄ST (δ) in Fig-

ure 7(a) for M=4 and τ=14. We can see that RS-S (i.e.,

B̄rs
S (δ,trs,2S )) offers roughly 1 bit reduction compared to ZFBF

with RVQ (i.e., B̄rs
S (δ,1)) at high SNR, which is smaller than

the overhead reduction shown in Figure 4(a) with τ=0. In

addition, RS-ST (i.e., B̄ST (δ)) enables 1∼2 bits reduction over

RS-S (i.e., B̄rs
S (δ,trs,2S )).

Figure 7(b) illustrates the simulation result of the sum rate

performance achieved by applying B̄rs
S (δ,1) in (34) to ZFBF

with RVQ, B̄rs
S (δ,trs,2S ) in (34) to RS-S and B̄ST (δ) in (44)

to RS-ST. Besides, for RS-S, the simulation is carried out

with the power splitting ratio trs,2S in (35), and for RS-ST, the

simulation is carried out with the power splitting ratios tST,α

and tST,β in (40). We can see that 1) all the aforementioned

schemes achieve less than 6bps/Hz rate loss relative to ZFBF

with perfect CSIT with their respective scaling laws of B̄,

and 2) all the schemes achieve almost the same sum rate

performance. This confirms the feedback overhead reduction

benefits stated in Remark 5 and Eq.(43).

V. PERFORMANCE COMPARISON

According to the power splitting ratios discussed in the

previous analysis, when the number of feedback bits is fixed,

both RS-S and RS-ST schemes perform similarly to ZFBF

with RVQ at low and medium SNR, while they transmit

common messages with most of the power at high SNR such

that the sum rate is increasing rather than saturating. A coun-

terpart of this kind of transmission is SU/MU switching, which

dynamically switches between ZFBF with RVQ (i.e., multiuser

mode) and TDMA (i.e., single-user mode) to maximize the

sum rate. At high SNR, since the sum rate achieved with ZFBF

with RVQ saturates, TDMA dominate SU/MU and benefits

from the multiuser diversity. Thus, we can wonder whether

RS-S and RS-ST schemes still outperform SU/MU switching

in terms of sum rate when the number of feedback bits is

fixed. This leads to the discussion of this section.

Note that RS is a general approach that integrates common

messages on top of conventional multiuser transmission to

enhance the sum rate performance with imperfect CSIT. Pre-

vious sections consider a simple case and aim to characterize

the fundamental benefit of transmitting common messages in

terms of sum rate performance. In this section, to gain more

insights into the RS approach, we focus on a different design

of RS-S and RS-ST schemes compared to the discussions in

the previous sections. In particular, given the framework of

RS-S in (4a) and RS-ST in (6a) and (6b), we choose

• wcl is chosen as the dominant right-singular vector of

Ĥl,[ĥ1l,ĥ2l]
H ,l=1,2;

• wkl=
pkl

∥pkl∥ is the ZF-pecoder, k=1,2, where

[p1l,p2l] =Ĥ
†
l , l=1,2.

• In the RS-ST scheme, we choose w01=w11 and

w02=w22;

• In the RS-S scheme, the power splitting ratio t is given

by (19) when the two receivers have equal feedback

qualities, while it is chosen as (28) in the scenario with

alternating receiver-specific feedback qualities. In the RS-

ST scheme, tα and tβ are chosen as (40).

In the simulation, we compute the ergodic rate of

SU/MU switching as RSU/MU, 1
2 (R

SU/MU
1 +R

SU/MU
2 ),

where R
SU/MU
l ,E

[
max

(
RTDMA

l ,RZFBF
l

)]
refers to the

rate achieved in channel use l, l=1,2. Note that the

precoders employed in the ZFBF with RVQ are the

same as wkl in the RS-S and RS-ST scheme and

RTDMA
l ,log2(1+P maxk=1,2 |hH

klĥkl|2).
Figure 8(a) compares the sum rate achieved with RS-S

scheme and SU/MU in the scenario where the two receivers

have equal feedback qualities. As shown, although RS-S offers

no DoF gain compared to SU/MU, it still enables a SNR gain

over SU/MU, for B=10, 15 and M=4. Intuitively, the reason

can be drawn from the power splitting ratio teqS in (19), though

the precoders considered in this section is slightly different.

For a fixed value of B, the power splitting ratio teqS in (19)

tends to zero at high SNR, but the amount of power that

is allocated to the private messages, i.e., PteqS , remains to

be a constant, namely PteqS
P→∞
= 2(M−1)

M 2
B

M−1 . Then, we

can see that the rate of the common message is limited by

the receiver with the weakest effective channel gain and is

probably lower than the rate of the single message sent via

SU/MU (SU/MU boils down to TDMA at high SNR for fixed

B). But the contribution of the rates of the private and common

messages altogether leads to a higher sum rate than SU/MU,

if the feedback quality is good enough. Moreover, such a rate

gap offered by RS-S over SU/MU increases with B.

Similar observations can be seen from Figure 8(b), which

illustrates the sum rate performance of the RS-S, RS-ST

schemes and SU/MU in the scenario with alternating receiver-
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specific feedback qualities. As shown, both schemes yield

a significant SNR gain over SU/MU. Besides, RS-ST offers

about 3dB SNR gain over RS-S scheme when τ=18.

As pointed out earlier, RS is a general approach that

integrates common messages on top of conventional multiuser

transmissions, such as Regularized-ZF, THP, etc, in order to

enhance the sum rate achieved by simply performing con-

ventional multiuser transmissions in the presence of imperfect

CSIT. Although we have not been able to perform an analysis

of the RS-S and RS-ST with the precoders specified in this

section, the benefit of transmitting the common message found

in this paper would be extendable to RS with any conventional

multiuser transmissions.

VI. CONCLUSION

In this paper, focusing on a two-receiver MISO BC with

quantized CSIT (based on RVQ), we investigate the ergodic

sum rate of two new multiuser transmission schemes based on

a rate-splitting strategy, known as RS-S and RS-ST. In these

two schemes, the message of one receiver is divided into a

common and a private part, where the private messages are

transmitted via ZFBF using a fraction of the total power, while

the common messages are transmitted via a space design in the

RS-S scheme and via a space-time design in the RS-ST scheme

using the remaining power. We derive an upper-bound on the

sum rate loss incurred by each scheme relative to ZFBF with

perfect CSIT, which highlights that an increase in the number

of feedback bits leads to a SNR/rate offset of the sum-rate

performance. This gain is higher than that obtained by single-

user transmission, i.e., TDMA, and contrasts with that of

conventional multiuser transmission, i.e., ZFBF with quantized

CSIT, where the sum rate saturates at high SNR. Besides, RS-

ST scheme outperforms RS-S scheme by a constant gap in the

scenario with alternating receiver-specific feedback qualities.

A scaling law of the feedback overhead required to achieve

a certain maximum allowable rate loss is derived for each

scheme. It shows that RS-S scheme enables a feedback over-

head reduction compared with ZFBF with quantized CSIT, and

RS-ST scheme offers a further reduction over RS-S scheme

in the case of alternating receiver-specific feedback qualities.

At last, through simulation, we show that both schemes offer

a significant SNR gain over SU/MU switching at high SNR.

Those results provide fundamental insights into the benefit

of the RS approach in the presence of imperfect CSIT, and

would be extendable to RS approach with other type of private

message transmission. Besides, it is expected that such a rate

splitting strategy will have fundamental impacts on various

MIMO wireless network configurations where the performance

is limited by inaccurate CSIT (e.g., K-user Broadcast and

Interference channel, massive MIMO) and lead to novel trans-

mission strategies for beyond LTE-A that do not only rely on

conventional SU/MU switching.

APPENDIX

A. Proof of Lemma 2

Since (X11,X12) are statistical equivalent with (X21,X22),
let us drop the index k and introduce β1=|h̄wc|2, β2=|h̄w|2

and a=∥h∥2. Then, we have X1=β1a and X2=β2a. As h
is independent of wc and w, β1 and β2 are beta (1,M−1)

random variables. Besides, a
d∼ χ2(M) is independent of β1

and β2. The CDF of βi,i=1,2 and the PDF of a are given by

Fβi
(βi)=

{

1−(1−βi)
M−1 βi≤1

1 βi>1
, fA(a)=

1

Γ(M)
a
M−1

e
−a

,

(45)

respectively. Denoting x′
1,min{x1,x2} and

x′
2,max{x1,x2}, the joint CDF of X1 and X2 are derived as

F (x1,x2)=
∫∞
0

Pr(X1≤x1|A=a)Pr(X2≤x2|A=a)fA(a)da
due to the fact that X1 and X2 are independent conditioned
on A=a, i.e., β1 and β2 are independent according to
the analysis in [15]. Then, replacing Pr(Xi≤xi|A=a) by
Fβi

(xi

a ), Pr(X1≤x1,X2≤x2) is further derived as

∫ x′

1

0

f(a)da+

∫ x′

2

x′

1

(1−(1−
x′
1

a
)M−1)fA(a)da

+

∫ ∞

x′

2

(1−(1−
x1

a
)M−1)(1−(1−

x2

a
)M−1)fA(a)da

=

∫ ∞

0

fA(a)da−

2
∑

i=1

∫ ∞

x′

i

(1−
x′
i

a
)M−1

fA(a)da

+

∫ ∞

x′

2

(1−
x′
1

a
)M−1(1−

x′
2

a
)M−1

fA(a)da, (46)

In (46), it is straight forward that the first term is 1.
Simply replacing a=ã+x′

i in the second term, one has
∫∞
0

ãe−x′

i−ã

Γ(M) dã=e−x′

i for i=1,2. Let ξ(x1,x2) denote the last

term. It can be derived as

ξ(x1,x2)=
1

Γ(M)

∫ ∞

x′

2

M−1
∑

i=0

M−1
∑

j=0

(

M−1

i

)(

M−1

j

)

×

(−x1)
M−1−i(−x2)

M−1−j
a
i+j+1−M

e
−a

da

=
1

Γ(M)

M−1
∑

i=0

M−1
∑

j=0

(

M−1

i

)(

M−1

j

)

×

(−x1)
M−1−i(−x2)

M−1−jΓ(i+j+2−M,x
′
2). (47)

Consequently, (11) and (10) are immediate. �

B. Proof of Lemma 4

The expectation of Z with support (−∞,∞) writes as
E[Z]=

∫∞
−∞ zdFZ(z). It can be derived as

∫ 0

−∞
zdFZ(z)+

∫ ∞

0

zdFZ(z)

=−

∫ 0

−∞

∫ 0

z

1dθdFZ(z)+

∫ ∞

0

∫ z

0

1dθdFZ(z) (48)

=−

∫ 0

−∞

∫ θ

−∞
dFZ(z)dθ+

∫ ∞

0

∫ ∞

z

dFZ(z)dθ (49)

=−

∫ 0

−∞
(FZ(θ)−FZ(−∞))dθ+

∫ ∞

0

(FZ(∞)−FZ(θ))dθ (50)

=−

∫ 0

−∞
FZ(θ)dθ+

∫ ∞

0

(1−FZ(θ))dθ. (51)

Similarly, for Z̃ with the support (−∞,∞), we can

write E[Z̃]=
∫∞
0

(1−FZ̃(θ))dθ−
∫ 0

−∞ FZ̃(θ)dθ. Since

FZ(z)≤FZ̃(z), we have E[Z]≥E[Z̃]. �
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C. Proof of Proposition 1

Apparently, Rp
1 and R1(t) are statistically equivalent with

Rp
2 and R2(t) respectively, thus we only need to upper-bound

Rp
k−Rk(t) and lower-bound Rc(t). Specifically,

R
p
k−Rk(t)

≤ E

[

log2(1+|hH
k wk,pf |

2P

2
)

]

−E

[

log2(1+|hH
k wk|

2Pt

2
)

]

+

E

[

log2(1+|hH
k wj |

2Pt

2
)

]

(52a)

=
1

ln 2

[

φ(
P

2
)−φ(

Pt

2
)

]

+E

[

log2(1+|hH
k wj |

2Pt

2
)

]

(52b)

≤
1

ln 2

[

φ(
P

2
)−φ(

Pt

2
)

]

+log2

(

1+
Pt

2
E

[

∥hk∥
2|h̄H

k wj |
2
]

)

(52c)

≤
1

ln 2

[

φ(
P

2
)−φ(

Pt

2
)

]

+log2

(

1+
PtM

2(M−1)
2−

B
M−1

)

. (52d)

As wk,pf is a unit-norm vector randomly chosen from the

M−1-dimensional null space of hj ,k ̸=j, the random vari-

able |hH
k wk,pf |2 is exponential distributed with parameter

1. Thus, the first two terms in (52a) have the same form

Er[log2(1+ar)]. (52b) is obtained by calculating the inte-

gral
∫∞
0

log2(1+ar)e−rdr=ϕ(a)
ln2 . (52c) follows Jensen’s In-

equality. (52d) is obtained by Lemma 1, and the fact that

∥hk∥2 d∼ χ2(M).

Recalling that Y=min(Y1,Y2) where Yk=
|hH

k wc|2
1+|hH

k
wk|2 Pt

2

and using Jensen’s Inequality, we lower-bound Rc as
Rc(t)≥log2

(
1+P (1−t)eE[lnY ]

)
due to the fact that

log2(1+aer) is a convex function of r. Since the r.h.s. of
(15) gives an approximate upper-bound of FY (y) according
to Lemma 3, we can use r.h.s. of (15) to lower-bound E [lnY ]
following Lemma 4. Consequently, one has

E[lnY ]≥

∫ ∞

0

(

Pt

(1+Pt
2
y)3

e
−2y+

2

(1+Pt
2
y)2

e
−2y

)

· lny dy

=

(

4

Pt
−1

)

φ(
Pt

4
)−γ−ln2−1, (53)

where Pt
(1+Pt

2 y)3
e−2y+ 2

(1+Pt
2 y)2

e−2y is obtained by calculat-

ing the derivative of the r.h.s. of (15). Combining (52d) and

(53) yield (16).

Note that the proof of Proposition 3 follows similarly. The

only difference lies in (52d), where the last term is upper-

bounded by the receiver-specific feedback quality, i.e., Bkl.

�

D. Proof of Corollary 4 and Derivation of (35)

In (26), one can write

log2(1+tΛα)+log2(1+tΛβ)=log2

[

(tη−1)
2
+tηΘ

]

, where

η=
√

ΛαΛβ and Θ=2+
√
Λα√
Λβ

+
√
Λα√
Λβ

=2
−τ

2(M−1)+2
τ

2(M−1)+2

are functions of B̄ and τ , respectively. Setting

∆R̃rs
S =log2δ and inverting it w.r.t. η, one has

(η− 1
t )

2+ηΘ
t =

δ(1+P (1−t)
2 eκ(t))

t2·22ϵ(t) . Solving this quadratic
formula yields

η=

√

√

√

√Θ2−4Θ

4t2
+
δ
(

1+P (1−t)

2e1+γ e(
4
Pt

−1)φ(Pt
4

)
)

t2 · 2
2

ln 2 [φ(
P
2
)−φ(Pt

2
)]

−
Θ−2

2t
. (54)

Proposition 4 is immediate by expanding η as a function of

B̄. �
Next, to calculate trs,2S =argmin0<t≤1 B̄

rs
S (δ,t)|P→∞, let

us replace 1
t with r and write B̄rs

S (δ,r)|P→∞ and
dB̄rs

S (δ,r)|P→∞

dr as

B̄
rs
S (δ,r)|P→∞=

√

Θ2−4Θ

4
r2+δ(1+

2

e
r−

2

e
)−

Θ−2

2
r,(55a)

dB̄rs
S (δ,r)|P→∞

dr
=

Θ2−4Θ
2

r+ 2
e
δ

2
√

Θ2−4Θ
4

r2+δ(1+ 2
e
r− 2

e
)
−
Θ−2

2
. (55b)

By setting
dB̄rs

S (δ,r)|P→∞

dr =0, we find that the stationary points
satisfy

(Θ2−4Θ)r∗
2
+
8δ

e
r
∗=

4δ2

e2
−(Θ−2)2δ(1−

2

e
). (56)

When Θ=4, i.e., τ=0, we have r∗= δ
2e+1− e

2 , which leads to

teq,2S in (23). Since we consider τ>0 (or Θ>4), by solving
the quadratic formula (56), we find that one stationary point
writes as

r
∗=

√

4(Θ−2)2

e2(Θ2−4Θ)2
δ2−

(Θ−2)2

Θ2−4Θ
δ(1−

2

e
)−

4δ

e(Θ2−4Θ)
. (57)

It can be seen that r∗ in (57) minimizes B̄rs
S (δ,r)|P→∞

because
dB̄rs

S (δ, 1
r
)|P→∞

dr >0,∀r>r∗ and
dB̄rs

S (δ, 1
r
)|P→∞

dr <0,

∀0<r<r∗. Consequently, we choose trs,2S =min{1, 1
r∗ }. Then,

evaluating r∗ in (57) leads to the closed-form of trs,2S in (35)

and the threshold δ0(Θ). �

E. Proof of Proposition 5

In the RS-ST scheme, we aim to upper-bound
Rp

1−Ru11(tβ ,tα) and Rp
2−Ru21(tβ ,tα) while find lower

bounds for Rc1(tβ ,tα), Rc2(tβ ,tα) and Rc0(tβ ,tα).
Specifically,

R
p
1−Ru11(tβ ,tα)

=E

[

log2(1+|hH
11w11,opt|

2P

2
)

]

−E

[

log2(1+
|hH

11w11|
2 Ptα

2

1+|hH
11w21|2

Ptβ
2

)

]

(58)

=
1

ln 2

[

φ(
P

2
)−φ(

Ptα

2
)

]

+log2

(

1+
PtβM

2(M−1)
2−

Bβ
M−1

)

, (59)

where we have used the same derivation of Proposition 1.

Note that since w21∈ĥ⊥
11, the upper-bound is a function of

B11=Bβ . Similarly, one has

R
p
2−Ru21(tβ ,tα)≤

1

ln 2

[

φ(
P

2
)−φ(

Ptβ

2
)

]

+

log2

(

1+
PtαM

2(M−1)
2−

Bα
M−1

)

. (60)

Using Assumption 1, we have SINR
(1)
c1 ≈ |hH

11wc1|2P (1−tβ)

1+|hH
11w11|2

Ptβ
2

,

SINR
(1)
c2 ≈ |hH

12wc2|2P (1−tβ)

1+|hH
12w12|2

Ptβ
2

and SINR
(1)
c0 ≈ |hH

11w11|2
P (tβ−tα)

2

1+|hH
11w11|2 Ptα

2

,

where we have also used the fact that w01=w11. Then, fol-
lowing the footsteps in the proof of Proposition 1, Rc1(tβ ,tα)
is lower-bounded by

Rc1(tβ ,tα)=E

[

log2

(

1+ min
k=1,2

|hH
k1wc1|

2P (1−tβ)

1+|hH
k1wk1|2

Ptβ
2

)]

(61)

≥ log2

[

1+
P (1−tβ)

2e1+γ
e
( 4
Ptβ

−1)φ(
Ptβ
4

)

]

. (62)
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The derivation of Rc2(tβ ,tα) follows similarly as it is statis-
tically equivalent with Rc1(tβ ,tα). Then, it remains to bound
Rc0(tβ ,tα), which writes as

Rc0(tβ ,tα)=E

[

log2

(

1+ min
k=1,2,l=k

|hH
klwkl|

2 P (tβ−tα)

2

1+|hH
klwkl|2

Ptα
2

)]

=E

[

log2

(

1+x
Ptβ
2

1+xPtα
2

)]

, (63)

where x=min(|hH
11w11|2,|hH

22w22|2) and (63) is due to the
fact that the function log2(

1+bx
1+ax ) is monotonically increasing

with x if b>a. Clearly, x is the minimum of two inde-
pendent exponential random variables, its CDF writes as
F (x)=1−e−2x. Then, the (63) can be derived as

Rc0(tβ ,tα)=E

[

log2

(

1+x
Ptβ

2

)]

−E

[

log2

(

1+x
Ptα

2

)]

(64)

=
1

ln 2

[

2φ(
Ptβ

2
)−φ(

Ptβ

4
)−2φ(

Ptα

2
)+φ(

Ptα

4
)

]

.

(65)

Combining (59), (60), (62) and (65), Proposition 5 holds. �
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