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Abstract

In this paper, we derive bounds on the Structural SIMilarity (SSIM) Index as a
function of quantization rate for fixed-rate uniform quantization of image discrete cosine
transform (DCT) coefficients under the high rate assumption. The space domain SSIM
Index is first expressed in terms of the DCT coefficients of the space domain vectors.
The transform domain SSIM Index is then used to derive bounds on the average SSIM
Index as a function of quantization rate for Gaussian and Laplacian sources. As an
illustrative example, uniform quantization of the DCT coefficients of natural images is
considered. We show that the SSIM Index between the reference and quantized images
fall within the bounds for a large set of natural images. Further, we show using a simple
example that the proposed bounds could be very useful for rate allocation problems in
practical image and video coding applications.

1 Introduction

The mean squared error (MSE) is a popular distortion measure used in the optimization of
a wide variety of image processing algorithms ranging from quantization to restoration. The
amenability of the MSE to analysis combined with a lack of competitive perceptual distor-
tion measures contribute to its popularity. The importance of designing image processing
algorithms optimized for perceptual quality measures, as opposed to the MSE, has been
long recognized [4]. Image coding algorithms that are optimized for perceptual distortion
measures have been proposed by several authors and have become a part of image coding
standards [9, 14, 10]. These algorithms use distortion measures such as those based on mod-
els of the human visual system (HVS), variants of the MSE such as the weighted MSE, or
other empirical measures of quality.

Recent advances in image quality assessment (IQA) research has led to the emergence of
powerful algorithms that include, among others, the SSIM Index [13], or Wang-Bovik Index,
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the visual information fidelity criterion (VIF) [11], and the visual signal to noise ratio (VSNR)
[2]. These IQA algorithms correlate better with the mean opinion scores (MOS) of subjective
quality evaluation compared to measures currently used in image coding algorithms such as
the just-noticeable distortion (JND) metric [8] and MSE [12]. The emergence of these IQA
algorithms present the possibility of improved design of image coding algorithms.

In this paper, we analyze the relation between the quantization rate and the SSIM Index
in the discrete cosine transform (DCT) domain. The SSIM Index is considered as opposed
to other recent IQA algorithms since its performance is very competitive while being highly
amenable to analysis. The DCT domain is considered since it is popularly used in transform
coding of images and videos. A closed form relation between rate and SSIM Index for fixed
rate uniform quantization is extremely difficult, if not impossible, to derive. Instead, we
are able to derive upper and lower bounds on the SSIM Index as a function of quantization
rate (under a high rate assumption). It is shown that the SSIM Index between the reference
and quantized versions of the input falls within these bounds not only for Gaussian and
Laplacian sources, but also for natural images. The usefulness of the bounds in a practical
image coding scenario is demonstrated using a simple rate allocation example.

The SSIM Index is briefly reviewed followed by an overview of the discrete cosine trans-
form (DCT) and uniform quantization. The rate versus SSIM Index problem is then for-
mulated in the DCT domain. Bounds on the SSIM Index as a function of quantization rate
are derived for Gaussian and Laplacian sources. The usefulness of the bounds in a practical
image coding scenario is demonstrated using a bit allocation example.

2 Background

2.1 SSIM Index

The most general form of the structural similarity measure between two signal vectors x and
y (both in R

N) is
SSIM(x,y) = [l(x,y)]α[c(x,y)]β[s(x,y)]γ. (1)

The term l(x,y) = 2µxµy+C1

µ2
x+µ2

y+C1
compares the luminance of the signals, c(x,y) = 2σxσy+C2

σ2
x+σ2

y+C2
com-

pares the contrast of the signals, and s(x,y) = σxy+C3

σxσy+C3
measures the structural correlation

of the signals. The quantities µx, µy are the sample means of x and y respectively, σ2
x, σ

2
y are

the sample variances of x and y respectively, and σxy is the sample cross-covariance between
x and y. The constants C1, C2, C3 are used to stabilize the distortion measure for the case
where the means and variances become small. The parameters α > 0, β > 0, and γ > 0,
are used to adjust the relative importance of the three components. We use the following
simplified form of the SSIM Index in our work (where α = β = γ = 1, and C3 = C2/2):

SSIM(x,y) =

(

2µxµy + C1

µ2
x + µ2

y + C1

)(

2σxy + C2

σ2
x + σ2

y + C2

)

. (2)

In image quality assessment, pixel values from local blocks of the reference and distorted
images constitute the vectors x and y respectively. The average of the SSIM values across
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the image (also called mean SSIM or MSSIM) gives the final quality measure. The design
philosophy of the SSIM Index is to acknowledge the fact that natural images are highly
structured, and that the measure of structural correlation (between the reference and the
distorted image) is important for deciding overall visual quality. Further, the SSIM Index
measures quality locally and is able to capture local dissimilarities better, unlike global
quality measures such as MSE (and hence PSNR). Though (2) has a form that is more
complicated than MSE, it remains analytically tractable.

2.2 The Discrete Cosine Transform

The DCT is widely used in the transform coding of images and videos and is central to sev-
eral popular image (JPEG) and video coding standards (MPEG-x) [10, 3]. Highly efficient
software and hardware implementations of the DCT form the core of several of these stan-
dards. The DCT is popular due to its energy compaction property, combined with efficient
implementations. These reasons motivate us to perform our analysis in the DCT domain.
The DCT of a vector x ∈ R

N is:

X(k) =
N−1
∑

i=0

λ(k)cos

(

(2i + 1)πk

2N

)

x(i), (3)

where λ(k) =
√

1
N

, if k = 0, λ(k) =
√

2
N

otherwise.

2.3 Uniform Quantization

Uniform quantization [1] is the earliest, simplest, and most common form of quantization. It
is used in a range of audio, image, and video coding applications mainly due to its simplicity.
While other forms of quantization are well studied [5], asymptotic analysis of the relation
between rate and distortion (mean squared error) for fixed-rate uniform quantization of
symmetric sources with infinite support was reported only as recently as 2001 by Hui and
Neuhoff [6]. We use results from this work in our implementation.

The following notation is used in our analysis. The range of the granular region is
denoted by 2L, the number of quantization levels N = 2R, where R is the quantization rate.
The quantizer step size is denoted by ∆ = 2L

N
. The quantization levels are denoted by yi

(0 ≤ i ≤ N − 1), with yi = −L + (i + 1/2)∆. An interval in the granular region is denoted
by Si = (yi −∆/2, yi + ∆/2]. In the sequel, we use the term rate and quantization step size
interchangeably (for notational convenience) since they are related by ∆ = 2L

2R , where 2L
and R are as defined above.

3 Problem Formulation

3.1 Measuring SSIM Index from DCT Coefficients

The SSIM Index in (2) is defined in the space domain. In the following, we derive a simple
yet useful formula for measuring the SSIM Index between two vectors from their DCT coef-
ficients. The DCT is a unitary transform and obeys Parseval’s theorem. Using this property
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and (3), the following relations between space domain mean, variance, cross correlation and
the DCT coefficients are established:

µx =

∑N−1
i=0 x(i)

N
=

X(0)√
N

, σ2
x =

∑N−1
k=1 X(k)2

N − 1
, σxy =

∑N−1
k=1 X(k)Y (k)

N − 1
. (4)

Substituting the space domain mean, variance, and cross correlation terms in the definition
of SSIM (2) with the expressions in (4),

SSIM(x,y) =

(

2X(0)Y (0)
N

+ C1

X(0)2+Y (0)2

N
+ C1

)





2
PN−1

k=1
X(k)Y (k)

N−1
+ C2

PN−1

k=1
X(k)2+Y (k)2

N−1
+ C2



 . (5)

This expression can be particularly useful when performing quality assessment of JPEG
compressed images without having to decompress the images to the space domain (for com-
puting the SSIM Index from non-overlapping blocks). We use the DCT domain expression
for the SSIM Index in the following analysis.

3.2 Relation between SSIM Index and Quantization Rate

The relation between SSIM and rate is derived under the high rate assumption and includes
contributions only from the granular region. We assume that the DCT coefficients are
independent [7], and that they are quantized at different step sizes ∆i [10].

Let X = [X0 X1 . . . XN−1]
T denote a random vector composed of N DCT coefficients. In

the sequel we assume that the elements X0, X1, . . . , XN−1 are independent and have a joint
density fX(x) = f(x0)f(x1) . . . f(xN−1). Each element of the random vector Xi is uniformly
quantized at rate Ri. Under these assumptions, an interval in the joint granular region of the
quantizers can be indexed by a vector k = [k0, k1, . . . , kN−1], where ki varies between 0 and
2Ri − 1. The upper and lower limits of a quantization interval are denoted by Uki

and Lki

respectively. The vector X(∈ Sk) is quantized by a point Q(X) = [Yk0
Yk1

. . . YkN−1
]T . We

ignore the contribution of the overload region to the average SSIM between X and Q(X),
and consider only the granular region. The average SSIM Index between X and Q(X) is
computed as

E[SSIM(X, Q(X))] ≈ E[SSIMgran(X, Q(X))]

=
∑

k

∫ Uk0

Lk0

2x0Yk0
+ NC1

x2
0 + Y 2

k0
+ NC1

f(x0)dx0

∫ Uk1

Lk1

. . .

∫ UkN−1

LkN−1

(

2
∑N−1

i=1 xiYki
+ (N − 1)C2

∑N−1
i=1 x2

i + Y 2
ki

+ (N − 1)C2

)

f(x1)f(x2) . . . f(xN−1)dx1dx2 . . . dxN−1.

(6)

In practice, the most common DCT block size used in image and video coding applications
is 8×8. The expression in (6) however, is quite formidable to evaluate and implement even
for DCT block sizes as small as 2×2. Therefore, directly using (6) in a practical scenario
appears extremely difficult, if not impossible. To make this problem tractable, we develop
upper and lower bounds on (6). These bounds are shown to be accurate in estimating the
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range of the average SSIM Index between the reference and quantized versions of a variety
of sources. Further, it is also shown that the bounds are easier to implement and evaluate
than an explicit solution to (6).

4 Bounds on the SSIM Index

In this section we present upper and lower bounds on the average SSIM Index as a function
of quantization rate, evaluate these bounds for Gaussian and Laplacian sources, and discuss
several properties of these bounds. We assume that the DCT coefficients Xi are independent,
and each coefficient is quantized separately at step size ∆i. The high resolution assumption
is made, and only the contribution of the granular region is considered.

Theorem 4.1 For a random vector X with independent components, the average SSIM
Index (as defined in (5), (6)) between X and its uniformly quantized version Q(X) =
[Q0(X0), Q1(X1), . . . , QN−1(XN−1)]

T is bounded with probability p by

M̄



1 −
PN−1

i=1
∆2

i /12

N−1

U + C2



 ≤ E[SSIM(X, Q(X))] ≤ M̄



1 −
PN−1

i=1
∆2

i /12

N−1

V + C2



 , (7)

where ∆i is the step size assigned to quantizer Qi to quantize random variable Xi, M̄ =

E

[

2X0Q(X0)+NC1

X2
0
+Q(X0)2+NC1

]

is the average value of the contribution from the mean term, U, V are

quantities defined below, 2L is the range of the granular region of the quantizer with the
largest span, and C2 is a stabilizing constant (from (5)).

The terms V and U for a given probability p are

V =
√

2σverf
−1(2p − 1) + µv,

U =
√

2σuerf
−1(1 − 2p) + µu

(8)

where σv, σu, µv, µu are dependent on the source distribution.
Proof: Let vector Q(X) = [Yk0

, Yk1
, . . . , YkN−1

] be a set of quantization levels correspond-
ing to X = [X0, X1, . . . , XN−1].

SSIM(X, Q(X)) = MS, with

M =





2
X0Yk0

N
+ C1

X(0)2+Y 2
k0

N
+ C1



 , S =





2
PN−1

i=1
XiYki

N−1
+ C2

PN−1

i=1
X2

i +Y 2
ki

N−1
+ C2





(9)

where M corresponds to the mean term, and S corresponds to the structure term. It is easy
to show that M > 0 (for natural images), and −1 ≤ S ≤ 1. Also, 1 − S ≥ 0. Now,

1 − S = 1 −
2

PN−1

k=1
XiYki

N−1
+ C2

PN−1

k=1
X2

i +Y 2
ki

N−1
+ C2

=

PN−1

i=1
(Xi−Yki

)2

N−1
PN−1

i=1
X2

i +Y 2
ki

N−1
+ C2

. (10)
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To simplify the denominator in the above equation, a variable Z =
PN−1

i=1
X2

i

N−1
is introduced.

Since N is large for the most interesting case of an 8×8 DCT, the distribution of Z can
be approximated well by a Gaussian distribution due to the central limit theorem. For a
specified probability p, choose V and U such that P (Z ≤ V − L2) = p, P (Z > U) = p. The
term L2 is subtracted from V since it is larger than the highest value that any of quantizer
levels Yki

can take. Since Z is Gaussian, it follows that V, U that satisfy the probability p
is given by (8), where the first and second moments of Z are computed based on the source
distribution. Since M > 0, the following bound holds with probability p.

M

PN−1

i=1
(Xi−Yki

)2

N−1

V + C2
≤ M(1 − S) ≤ M

PN−1

i=1
(Xi−Yki

)2

N−1

U + C2
. (11)

Applying the expectation operator, using the high-rate uniform quantization result MSE =
∆2

12
[1, 5], and the independence assumption

E[M ][

PN−1

i=1
∆2

i /12

N−1

V + C2
] ≤ E[M ] − E[MS] ≤ E[M ][

PN−1

i=1
∆2

i /12

N−1

U + C2
]. (12)

Replacing E[M ] with M̄ and rearranging terms,

M̄



1 −
PN−1

i=1
∆2

i /12

N−1

U + C2



 ≤ E[SSIM(X, Q(X))] ≤ M̄



1 −
PN−1

i=1
∆2

i /12

N−1

V + C2



� (13)

The terms M̄, σv, σu, µv, µu are presented next for Gaussian and Laplacian sources. These
two sources are considered as they are commonly used to model DCT coefficients [7]. The
expressions for these bounds can be very easily implemented for these sources for any DCT
block size. Most importantly, we show that the bounds are indeed accurate not only for
these sources, but also for a large set of natural images.

In the following, the distribution of X0 is assumed to have zero mean mainly to simplify
notation. The essence of these results is the same irrespective of the mean. Their proofs are
omitted for brevity.

4.1 Gaussian Source

If the DC coefficient X0 is Gaussian distributed with zero mean and variance σ2
0 , the expres-

sion for M̄ is given by

M̄ ≈ 1√
2πσ0

2R0−1
∑

k0=0

Yk0
e

Y 2
k0

+2σ2
0

NC1

2σ2
0

[

E1

(

L2
k0

+ Y 2
k0

+ 2σ2
0NC1

2σ2
0

)

− E1

(

U2
k0

+ Y 2
k0

+ 2σ2
0NC1

2σ2
0

)]

(14)

where E1(x) =
∫∞

x
e−t

t
dt (x > 0), is the exponential integral. The expression for M̄ is

an approximation in this case since we consider the contribution of only one term in the
numerator.
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If the AC coefficients X1, X2, . . . , XN−1 are independent and Gaussian distributed with
zero mean and variance σ2

1, σ
2
2, . . . , σ

2
N−1 respectively,

σ2
v =

∑N−1
i=1 2σ4

i

(N − 1)2
, µv =

∑N−1
i=1 σ2

i

(N − 1)
+ L2, σ2

u =

∑N−1
i=1 2σ4

i

(N − 1)2
, µu =

∑N−1
i=1 σ2

i

(N − 1)
(15)

are a conservative set of parameters that satisfy the bounds.

4.2 Laplacian Source

If the DC coefficient X0 is Laplacian distributed with zero mean and variance σ2
0, the ex-

pression for M̄ is a combination of three terms depending on the values of the upper and
lower limits of the interval Sk0

. Suppose that there are N1 intervals corresponding to Case
1 (Lk0

> 0, Uk0
> 0), N2 intervals in Case 2 (Lk0

≤ 0, Uk0
≤ 0), and N3 intervals in Case 3

(Lk0
< 0, Uk0

> 0), with N1 + N2 + N3 = 2R0 . Each case is evaluated as follows.
Case 1: Lk0

> 0, Uk0
> 0

T1 =
1√
2σ0

N1−1
∑

k0=0

Yk0

{

eiab[E1(a(Lk0
+ ib)) − E1(a(Uk0

+ ib))] + e−iab[E1(a(Lk0
− ib)) −

E1(a(Uk0
− ib))]

}

+ i
NC1√

b

{

eiab[E1(a(Lk0
+ ib)) − E1(a(Uk0

+ ib))] − e−iab[E1(a(Lk0
− ib))−

E1(a(Uk0
− ib))]

}

,

(16)

where a =
√

2
σ0

, b =
√

Y 2
k0

+ NC1, i =
√
−1, E1(x) is the exponential integral.

Case 2: Lk0
≤ 0, Uk0

≤ 0

T2 =
1√
2σ0

N2−1
∑

k0=0

Yk0

{

e−iab[E1(−a(Lk0
+ ib)) − E1(−a(Uk0

+ ib))] + eiab(E1[−a(Lk0
− ib))−

E1(−a(Uk0
− ib))]

}

+ i
NC1√

b

{

e−iab[E1(−a(Lk0
+ ib)) − E1(−a(Uk0

+ ib))]−

eiab[E1(−a(Lk0
− ib)) − E1(−a(Uk0

− ib))]
}

,

(17)

where a =
√

2
σ0

, b =
√

Y 2
k0

+ NC1, i =
√
−1, E1(x) is the exponential integral.

Case 3: Lk0
< 0, Uk0

> 0

T3 = T1 + T2 (18)

with T1 as above evaluated over the interval (0, Uk0
] and T2 also as above, evaluated over

(Lk0
, 0].

M̄ = T1 + T2 + T3. (19)

7



If the AC coefficients X1, X2, . . . , XN−1 are independent and Laplacian distributed with zero
mean and variance σ2

1, σ
2
2, . . . , σ

2
N−1 respectively,

σ2
v =

∑N−1
i=1 5σ4

i

(N − 1)2
, µv =

∑N−1
i=1 σ2

i

(N − 1)
+ L2, σ2

u =

∑N−1
i=1 5σ4

i

(N − 1)2
, µu =

∑N−1
i=1 σ2

i

(N − 1)
(20)

are a conservative set of parameters that satisfy the bounds.

4.3 Properties of the Bounds

The bounds in (7) possess several useful properties. (a) The terms (M̄, σv, σu, µv, µu) can
be easily evaluated for several commonly used unbounded source types (as shown in the
previous subsections). This property makes the bounds tractable when compared to (6). (b)
In practice, different DCT coefficients are quantized at different rates in order to optimally
allocate bits. The bounds hold for any combination of rates, thereby making them attractive
in practical rate allocation problems. (c) From the expression for the bounds, we see that
they can be implemented efficiently and easily (even for the complex looking Laplacian
case). Note that the second term in the bound involves only N summation and division
operations. This property could be very useful if these bounds were to be used in real-time
codec implementations. This property also allows for fast computation at any practical DCT
block size. (d) These bounds can easily be extended to the SSIM Index’s predecessor - the
universal image quality Index (UQI).

A point to note is that though the analysis considers a 1-D DCT, it is easy to show that
the results carry over to the 2-D DCT case. The 2-D DCT obeys the Parseval’s theorem,
and the relation between the space domain and DCT domain means and inner products also
hold.

5 Results

In this section, two representative results are presented. Rate versus SSIM Index plots for
Gaussian and Laplacian sources are presented first, followed by a bit-allocation example of
image sources.

5.1 Gaussian and Laplacian Sources

As a representative visual example, the case of equal rate allocation is considered for a set
of 64 independent and identically distributed sources. The plot of the bounds, and the true
SSIM Indices are shown in Fig. 1. For these plots, the probability p of the bounds being
satisfied is set to 0.9. Since the values V, U are calculated using conservative estimates, it
was found that the bounds hold with a much higher probability (almost 1) in practice. It
can be observed from the plots that the bounds are accurate in the high rate regime.
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Figure 1: Plots of rate versus SSIM Index for uniform quantization of 64 random variables
that have zero mean and variance 100. 1(a) Gaussian source. 1(b) Laplacian source.

5.2 Bit-allocation Example

Consider the following rate allocation problem, and the associated constraints. Suppose that
a bit budget of 128 bits is to be allocated to the 64 DCT coefficients. To make this problem
tractable, the following constraints are introduced. The DCT coefficients are divided into
four groups, each containing 16 coefficients. Further, the first group is assumed to contain the
most important coefficients, the next group to contain the next most important coefficients,
and so on. Finally, the more important group is always assigned bits greater than or equal
to the number of bits assigned to the group immediately lower in importance. Though this
setup is simple, it is a fair reflection of a true coding scenario. Under these assumptions, four
combinations are possible - (5, 1, 1, 1), (4, 2, 1, 1), (3, 3, 1, 1), and (2, 2, 2, 2). The problem
is to find the rate combination that results in the highest SSIM Index of the quantized image.
The results of allocating these bit combinations to an image are shown in Fig. 5.2. Also
shown are the predicted SSIM Indices using the average of proposed upper and lower bounds
for Laplacian sources (with p = 0.9), and true SSIM Indices. It can be seen that the bounds
help make an accurate prediction of the SSIM Index.

6 Conclusions

In this paper, we presented bounds on the SSIM Index as a function of quantization rate for
fixed-rate uniform quantization. The proposed bounds make use of a well-known relation
between MSE and quantization rate for fixed rate uniform quantization under the high
rate assumption. We have demonstrated the strength of the proposed bounds for Gaussian
and Laplacian sources and their usefulness in a practical image coding scenario. Through
these results, we have taken a step in the path of designing perceptually optimal image
coding algorithms, and more generally in designing perceptually optimal image processing
algorithms that leverage the strength of emerging IQA algorithms.
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(a) Original (b) 5111 (c) 4211 (d) 3311

Figure 2: Rate allocation example: 2(a) The original Boats image. 2(b) Original quantized
using the 5, 1, 1, 1 rate profile. SSIM Index = 0.7743, Laplacian estimate of SSIM Index
= 0.7755. 2(c) Original quantized using the 4, 2, 1, 1, rate profile. SSIM Index = 0.7551,
Laplacian estimate of SSIM Index = 0.7584. 2(d) Original quantized using the 3, 3, 1, 1 rate
profile. SSIM Index = 0.6689, Laplacian estimate of SSIM Index = 0.6583.
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