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Abstract 

We describe a neurally-inspired, unsupervised learning algorithm that 

builds a non-linear generative model for pairs of face images from the 
same individual. Individuals are then recognized by finding the highest 

relative probability pair among all pairs that consist of a test image and 
an image whose identity is known. Our method compares favorably with 

other methods in the literature. The generative model consists of a single 

layer of rate-coded, non-linear feature detectors and it has the property 

that, given a data vector, the true posterior probability distribution over 

the feature detector activities can be inferred rapidly without iteration or 
approximation. The weights of the feature detectors are learned by com

paring the correlations of pixel intensities and feature activations in two 
phases: When the network is observing real data and when it is observing 

reconstructions of real data generated from the feature activations. 

1 Introduction 

Face recognition is difficult when the number of individuals is large and the test and training 
images of an individual differ in expression, pose, lighting or the date on which they were 

taken. In addition to being an important application, face recognition allows us to evaluate 

different kinds of algorithm for learning to recognize or compare objects, since it requires 
accurate representation of fine discriminative features in the presence of relatively large 

within-individual variations. This is made even more difficult when there are very few 
exemplars of each individual. 

We start by describing a new unsupervised learning algorithm for a restricted form of Boltz

mann machine [1]. We then show how to generalize the generative model and the learning 
algorithm to deal with real-valued pixel intensities and rate-coded feature detectors. We 

then apply the model to face recognition and compare it to other methods. 

2 Inference and learning in Restricted Boltzmann Machines 

A Restricted Boltzmann machine (RBM) [2] is a Boltzmann machine with a layer of visible 

units and a single layer of hidden units with no hidden-to-hidden nor visible-to-visible 
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Figure 1: Alternating Gibbs sampling and the terms in the learning rules of a RBM. 

connections. Because there is no explaining away [3], inference in an RBM is much easier 
than in a general Boltzmann machine or in a causal belief network with one hidden layer. 

There is no need to perform any iteration to determine the activities of the hidden units, 
as the hidden states, Sj, are conditionally independent given the visible states, Si . The 

distribution of Sj is given by the standard logistic function: 

1 
p(Sj = llsi) = 1 + exp( _ Li WijSi) (1) 

Conversely, the hidden states of an RBM are marginally dependent so it is easy for an RBM 

to learn population codes in which units may be highly correlated. It is hard to do this in 
causal belief networks with one hidden layer because the generative model of a causal 

belief net assumes marginal independence. 

An RBM can be trained using the standard Boltzmann machine learning algorithm which 
follows a noisy but unbiased estimate of the gradient of the log likelihood of the data. One 

way to implement this algorithm is to start the network with a data vector on the visible 

units and then to alternate between updating all of the hidden units in parallel and updating 

all of the visible units in parallel with Gibbs sampling. Figure 1 illustrates this process. If 
this alternating Gibbs sampling is run to equilibrium, there is a very simple way to update 
the weights so as to minimize the Kullback-Leibler divergence, QOIIQoo, between the data 

distribution, QO, and the equilibrium distribution of fantasies over the visible units, Qoo, 
produced by the RBM [4]: 

(2) 

where < SiSj >Qo is the expected value of SiSj when data is clamped on the visible units 
and the hidden states are sampled from their conditional distribution given the data, and 

<SiSj>Q~ is the expected value of SiSj after prolonged Gibbs sampling. 

This learning rule does not work well because it can take a long time to approach equi

librium and the sampling noise in the estimate of < SiSj >Q~ can swamp the gradient. 

Hinton [1] shows that it is far more effective to minimize the difference between QOllQoo 
and Q111Qoo where Q1 is the distribution of the one-step reconstructions of the data that 
are produced by first picking binary hidden states from their conditional distribution given 
the data and then picking binary visible states from their conditional distribution given the 

hidden states. The exact gradient of this "contrastive divergence" is complicated because 
the distribution Q1 depends on the weights, but this dependence can safely be ignored to 

yield a simple and effective learning rule for following the approximate gradient of the 

contrastive divergence: 

(3) 

3 Applying RBMs to face recognition 

For images of faces, binary pixels are far from ideal. A simple way to increase the represen

tational power without changing the inference and learning procedures is to imagine that 



each visible unit, i, has 10 replicas which all have identical weights to the hidden units. So 

far as the hidden units are concerned, it makes no difference which particular replicas are 

turned on: it is only the number of active replicas that counts. So a pixel can now have 11 

different intensities. During reconstruction of the image from the hidden activities, all the 

replicas can share the computation of the probability, Pi, of turning on, and then we can se

lect n replicas to be on with probability (~)nPi (10 - n)(1-p;). We actually approximated 

this binomial distribution by just adding a little Gaussian noise to lOpi and rounding. The 

same trick can be used for the hidden units. Eq. 3 is unaffected except that Si and Sj are 
now the number of active replicas. 

The replica trick can be seen as a way of simulating a single neuron over a time interval in 
which it may produce multiple spikes that constitute a rate-code. For this reason we call the 

model "RBMrate". We assumed that the visible units can produce up to 10 spikes and the 
hidden units can produce up to 100 spikes. We also made two further approximations: We 

replaced Si and Sj in Eq. 3 by their expected values and we used the expected value of Si 

when computing the probability of activation of the hidden units. However, we continued 
to use the stochastically chosen integer firing rates of the hidden units when computing the 

one-step reconstructions of the data, so the hidden activities cannot transmit an unbounded 

amount of information from the data to the reconstruction. 

A simple way to use RBMrate for face recognition is to train a single model on the training 

set, and to identify a face by finding the gallery image that produces a hidden activity vector 
that is most similar to the one produced by the face. This is how eigenfaces are used for 

recognition, but it does not work well because it does not take into account the fact that 
some variations across faces are important for recognition, while some variations are not. 
To correct this, we instead trained an RBMrate model on pairs of different images of the 

same individual, and then we used this model of pairs to decide which gallery image is best 

paired with the test image. To account for the fact that the model likes some individual 

face images more than others, we define the fit between two faces hand 12 as G(h, h) + 
G(h,h) - G(h,h) - G(h,h) where the goodness score G(VI,V2) is the negative 
free energy of the image pair VI, V2 under the model. Weight-sharing is not used, hence 
G ( VI, V2) ::p G (V2, VI). However, to preserve symmetry, each pair of images of the same 

individual VI, V2 in the training set has a reversed pair V2, VI in the set. We trained the 
model with 100 hidden units on 1000 image pairs (500 distinct pairs) for 2000 iterations 

in batches of 100, with a learning rate of 2.5 x 10-6 for the weights, a learning rate of 

5 x 10-6 for the biases, and a momentum of 0.95. 

One advantage of eigenfaces over correlation is that once the test image has been converted 

into a vector of eigenface activations, comparisons of test and gallery images can be made in 

the low-dimensional space of eigenface activations rather than the high-dimensional space 

of pixel intensities. The same applies to our face-pair network, as the goodness score of an 
image pair is a simple function of the total input received by each hidden unit from each 
image. The total inputs from each gallery image can be precomputed and stored, while the 

total inputs from a test image only needs to be computed once for comparisons with all 
gallery images. 

4 The FERET database 

Our version of the FERET database contained 1002 frontal face images of 429 individuals 
taken over a period of a few years under varying lighting conditions. Of these images, 818 
are used as both the gallery and the training set and the remaining 184 are divided into four 

disjoint test sets: 

The .6.expression test set contains 110 images of different individuals. These individuals 

all have another image in the training set that was taken with the same lighting conditions 



Figure 2: Images are normalized in five stages: a) Original image; b) Locate centers of eyes 
by hand; c) Rotate image; d) Crop image and subsample at 56 x 56 pixels; e) Mask out all 

of the background and some of the face, leaving 1768 pixels in an oval shape; f) Equalize 

the intensity histogram; g) Some examples of processed images. 

at the same time but with a different expression. The training set also includes a further 
244 pairs of images that differ only in expression. 

The ildays test set contains 40 images that come from 20 individuals. Each of these 
individuals has two images from the same session in the training set and two images taken 

in a session 4 days later or earlier in the test set. A further 28 individuals were photographed 
4 days apart and all 112 of these images are in the training set. 

The ilmonths test set is just like the ~d ays test set except that the time between sessions 

was at least three months and different lighting conditions were present in the two sessions. 
This set contains 20 images of 10 individuals. A further 36 images of 9 more individuals 
were included in the training set. 

The ilglasses test set contains 14 images of 7 different individuals. Each of these individ

uals has two images in the training set that were taken in another session on the same day. 
The training and test pairs for an individual differ in that one pair has glasses and the other 

does not. The training set includes a further 24 images, half with glasses and half without, 

from 6 more individuals. 

The images include the whole head, parts of the shoulder, and background. Instead of 

working with whole images, which contain much irrelevant information, we worked with 
face images that were normalized as shown in figure 2. Masking out all of the background 

inevitably looses the contour of the face which contains much discriminative information. 
The histogram equalization step removes most lighting effects, but it also removes some 
relevant information like the skin tone. For the best performance, the contour shape and 

skin tone would have to be used as additional sources of discriminative information. 

5 Comparative results 

We compared RBMrate with four popular face recognition methods. The first and sim
plest is correlation, which returns the similarity score as the angle between two images 

represented as vectors of pixel intensities. This performed better than using the Euclidean 
distance as a score. The second method is eigenfaces [5], which first projects the images 

onto the principal component subspaces, then returns the similarity score as the angle be

tween the projected images. The third method is fisherfaces [6] . Instead of projecting 

the images onto the subspace of the principal components, which maximizes the variance 
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Figure 3: Error rates of all methods on all test sets. The bars in each group correspond, 
from left to right, to the rank-I, rank-2, rank-4, rank-8 and rank-16 error rates. The rank-n 
error rate is the percentage of test images where the n most similar gallery images are all 
incorrect. 

among the projected images, fisherfaces projects the images onto a subspace which, at the 
same time, maximizes the between individual variances and minimizes the within individ

ual variances in the training set. The final method, which we shall call ()ppca, is proposed 
by Moghaddam et at [7]. This method models differences between images of the same 
individual as a PPCA [8, 9], and differences between images of different individuals as 
another PPCA. Then given a difference of two images, it returns as the similarity score 
the likelihood ratio of the difference image under the two PPCA models. It was the best 
performing algorithm in the September 1996 FERET test [10]. 

For eigenfaces, we used 199 principal components, omitting the first principal component, 
as we determined manually that it encodes simply for lighting conditions. This improved 
the recognition performances on all the test sets except for ~exp r ession . We used a 
subspace of dimension 200 for fisherfaces, while we used 10 and 30 dimensional PPCAs 
for the within-class and between-class model of c5ppca respectively. These are the same 
numbers used by Moghaddam et at and gives the best results in our simulations. The num
ber of dimensions or hidden units used by each method was optimized for that particular 
method for best performance. 

Figure 3 shows the error rates of all five methods on the test sets. The results were averaged 
over 10 random partitions of the dataset to improve statistical significance. Correlation and 
eigenfaces perform poorly on ~expre s s i o n, probably because they do not attempt to 
ignore the within-individual variations, whereas the other methods do. All the models did 
very poorly on the ~months test set which is unfortunate as this is the test set that is most 
like real applications. RBMrate performed best on ~expre s s i o n, fisherfaces is best 

on ~days and ~glasses ,while eigenfaces is best on ~months . These results show 
that RBMrate is competitive with but do not perform better than other methods. Figure 
4 shows that after our preprocessing, human observers also have great difficulty with the 
~m o nths test set, probably because the task is intrinsically difficult and is made even 
harder by the loss of contour and skin tone information combined with the misleading oval 



Figure 4: On the left is a test image from ~m o nths and on the right are the 8 most similar 
images returned by RBMrate . Most human observers cannot find the correct match within 

these 8. 

Figure 5: Example features learned by RBMrate . Each pair of RFs constitutes a feature. 
Top half: with unconstrained weights; bottom half: with non-negative weight constraints. 

contour produced by masking out all of the background. 

6 Receptive fields learned by RBMrate 

The top half of figure 5 shows the weights of a few of the hidden units after training. All the 

units encode global features, probably because the image normalization ensures that there 

are strong long range correlations in pixel intensities. The maximum size of the weights 
is 0.01765, with most weights having magnitudes smaller than 0.005. Note, however, that 

the hidden unit activations range from 0 to 100. 

On the left are 4 units exhibiting interesting features and on the right are 4 units chosen at 

random. The top unit of the first column seems to be encoding the presence of mustache in 

both faces. The bottom unit seems to be coding for prominent right eyebrows in both faces. 
Note that these are facial features which often remain constant across images of the same 

individual. In the second column are two features which seem to encode for different facial 
expressions in the two faces. The right side of the top unit encodes a smile while the left 
side is expressionless. This is reversed in the bottom unit. So the network has discovered 

some features which are fairly constant across images in the same class, and some features 

which can differ substantially within a class. 

Inspired by [11], we tried to enforce local features by restricting the weights to be non-



negative. This is achieved by resetting negative weights to zero after each weight update. 

The bottom half of figure 5 shows some of the hidden receptive fields learned. Except for 

the 4 features on the left, all other features are local and code for features like mouth shape 

changes (third column) and eyes and cheeks (fourth column). The 4 features on the left are 
much more global and clearly capture the fact that the direction of the lighting can differfor 

two images of the same person. Unfortunately, constraining the weights to be non-negative 

strongly limits the representational power of RBMrate and makes it worse than all the other 
methods on all the test sets. 

7 Conclusions 

We have introduced a new method for face recognition based on a non-linear generative 

model. The generative model can be very complex, yet retains the efficiency required 

for applications. Performance on the FERET database is comparable to popular methods. 
However, unlike other methods based on linear models, there is plenty of room for further 
development using prior knowledge to constrain the weights or additional layers of hidden 

units to model the correlations of feature detector activities. These improvements should 
translate into improvements in the rate of recognition. 
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