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Abstract: Long block length rate-compatible low-density parity-compatible (LDPC) codes are de-
signed to solve the problems of great variation of quantum channel noise and extremely low signal-to-
noise ratio in continuous-variable quantum key distribution (CV-QKD). The existing rate-compatible
methods for CV-QKD inevitably cost abundant hardware resources and waste secret key resources.
In this paper, we propose a design rule of rate-compatible LDPC codes that can cover all potential
SNRs with single check matrix. Based on this long block length LDPC code, we achieve high effi-
ciency continuous-variable quantum key distribution information reconciliation with a reconciliation
efficiency of 91.80% and we have higher hardware processing efficiency and lower frame error rate
than other schemes. Our proposed LDPC code can obtain a high practical secret key rate and a long
transmission distance in an extremely unstable channel.

Keywords: rate compatible; LDPC; continuous-variable quantum key distribution; wide range of
SNRs regime

1. Introduction

The cryptosystem based on computational complexity is being challenged by increas-
ingly developed quantum computation. Quantum key distribution (QKD) [1–4], being
one-time pad, has been one of the best solutions for its absolute security. QKD enables two
remote separated parties named Alice and Bob to extract a symmetrical string of secret
keys using a quantum channel.

Currently, there are mainly two types of QKD protocols, called discrete-variable QKD
(DV-QKD) [5] and continuous-variable QKD (CV-QKD) [6,7]. In DV-QKD, the information
is coded on discrete variables of finite dimensional Hilbert space, such as the polarization or
phase of single photon state. In CV-QKD, the information is coded on continuous variables
of an infinite-dimensional Hilbert space, including the regular component of coherent state.
Compared with the single photon detector used in DV-QKD, homodyne or heterodyne
detection techniques, which are used to measure the transmitted quantum states, have
already been applied in classical optical communication. Therefore, CV-QKD has great
practical advantages for its low cost because of the relatively mature development and
being able to transmit in common fiber with classical optical communication. Furthermore,
CV-QKD can achieve higher capacity with frequency-multiplexed entanglement source [8].

Due to the imperfection of the quantum channel and potential eavesdropper Eve,
the key strings held by Alice and Bob are not consistent, so that a procedure called post-
processing is necessary to make them identical. The post-processing of CV-QKD mainly
includes four steps: base vector comparison, parameter estimation, information reconcil-
iation and privacy amplification. Information reconciliation is the most important part,
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whose performance has a direct correlation to the secret key rate. One of the major factors
in information reconciliation is reconciliation efficiency β, which is given by β = R/C.
The R is the rate of key and C = 0.5log(1 + SNR) is the channel compacity. The hardware
processing efficiency α = Dout/Din, where Din represents the data that are input to the
hardware device (e.g., Field-programmable Gate Array, FPGA and Graphics Processing
Unit, GPU) during information reconciliation and Dout represents the output data in unit
time [9]. IAB is the mutual information between Alice and Bob. χBE is the Holevo bound,
which is the maximal bound on the information available to the eavesdropper. The factors
mentioned above are used to evaluate the performance in a frame, while frame error rate
(FER) represents the failure probability of the frames. Ultimately, the practical secret key
rate K is given by

K = α(1− FER)(βIAB − χBE). (1)

The parameters mentioned above is related to the error correcting codes, among them
low-density parity-compatible (LDPC) code is efficient for CV-QKD [10]. The LDPC code
obtained by good degree distribution and reasonable construction method has good error
correction performance. The crux of designing a LDPC code is to construct a check matrix
which includes check nodes and variable nodes. The degree distribution of check node
ρ(x) and variable node λ(x) are expressed as:

ρ(x) =
dc

∑
j=2

ρixj−1 (2)

λ(x) =
dv

∑
i=2

λixi−1, (3)

ρi/λi is the proportion of the number of edges owned by the check/variable node with
degree j/i to the total number of edges in the Tanner graph and dc/dv indicates the
maximum degree of the check/variable node.

However, quantum is easily influenced in the process of quantum signal preparation
and transmission. To realize the free space QKD with satellite [11,12], ship [13], unmanned
aerial vehicles [14] or those with orbital angular momentum, we have to take mode distor-
tion, beam wander, weather etc. into account. Therefore, the problems of great variation of
quantum channel noise and extremely low signal-to-noise ratio (SNR) have to be solved.

One of the simplest rate-compatible methods for LDPC code is to operate on single-
matrix using puncturing, shortening and extending. Furthermore, Gao proposed multi-
matrix rate-compatible reconciliation where, in each iteration, multiple matrices produce
more useful information to correct errors such that the iteration number falls and the
convergence speed increases [15]. However, it inevitably decreases the performance of the
original check matrix. Another commonly used way is to construct several check matrices
with different code rates to meet the requirements of different SNRs. However, for CV-QKD,
the code length has to be longer than 100,000. Base matrices are at least 64,800 long even
when we construct the spatially coupled (SC)-LDPC codes or quasi-cyclic (QC)-LDPC
codes [16]. As one of the most effective decoding tools of LDPC code, the FPGA has limited
hardware resources. To realize high efficiency information reconciliation with FPGA in
an extremely unstable channel, it is necessary to construct a single-matrix rate-compatible
error correction code. A comparison of the existing works with our proposed LDPC code is
shown in Table 1.

In this paper, we first obtain degree distribution with discrete density evolution and
differential evolution algorithm. Then we use random construction, progressive edge
growth (PEG) algorithm and rate compatible methods of extending and puncturing to
construct a check matrix with a code length of 64,800. Finally, we extend the above LDPC
code with quasi-cyclic extension to a code length of 648,000. The results show that the
proposed codes have a reconciliation efficiency of 91.80%, higher hardware processing
efficiency and lower FER than other schemes. Therefore, we can obtain a high practical
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secret key rate and a longer transmission distance in an extremely unstable channel with
wide range of SNRs.

Table 1. Related works comparison in an unstable channel. Transmission distance is 10 km and the
number of check matrix changing times N is 3.

Reference Hardware Resource Secret Key Rate
(bit/pulse)

Abilitiy to Cope
with Channel SNR

Changing

Single-matrix
rate-compatible
reconciliation

a, single matrix 0.0021 low

Multimatrix
rate-compatible

reconciliation [15]
3a, multimatrix 0.0098 low

Multimatrix
corresponding to
given SNRs [16]

12a, multimatrix 0.0089 low

Our proposed LDPC
code a, single matrix 0.0116 high

The remainder of this paper is organized as follows. In Section 2, we present some
preliminaries of LDPC codes and rate-compatibility. In Section 3, we introduce how to con-
struct our rate compatible (RC)-LDPC code. In Section 4, we present the simulation results
and comparisons for the proposed scheme and existing schemes. Finally, the conclusions
are drawn in Section 5.

2. Preliminaries

In this section, we first briefly introduce the discrete density evolution and differential
evolution, which are used to generate degree distribution. Then we introduce the construc-
tions: random construction, PEG algorithm and QC-LDPC extension, with which we can
construct the check matrix with the degree distribution ahead. We also introduce the rate
compatible methods: puncturing and extending.

2.1. Methods of Obtaining Degree Distribution
2.1.1. Discrete Density Evolution

Compared with continuous density evolution [17] and Gaussian approximation al-
gorithm [18], discrete density evolution [19] has lower complexity and higher accuracy.
Therefore, in this paper, we use discrete density evolution to obtain the optimal degree
distribution of LDPC codes. The main steps are as follows:

• We firstly define two functions: quantized function Q and probability mass function S.

Q(x) =


⌊

x
∆ + 1

2

⌋
, x ≥ ∆

2⌈
x
∆ −

1
2

⌉
, x ≤ −∆

2 ,

0, else

(4)

bxc is the largest integer not greater than x; and dxe is the smallest integer not less
than x. The value range of decoded message is [−L, L] and evenly divided into m = 2q

intervals; the quantization interval ∆ is given by 2L/m.

S(Pa, Pb) = ∑
(i,j):k∆=R(i∆,j∆)

Pa[i] · Pb[j]. (5)
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In which two-input operator R is

R(a, b) = Q(tanh−1(tanh
a
2

tanh
b
2
)), (6)

where a and b are quantized messages.
• The check node and variable node updating of discrete density evolution is

p(l)−
u

=
dr

∑
i=2

ρiSi−1
(

p(l−1)
−
v

)
(7)

p(l)−
v
(k) = p(0)−

v
(k) ·

dv

∑
i=2

λi ⊗i−1 (p (l)
−
u
(k)), (8)

⊗
is discrete convolution and l is the iteration number. The initial value p(0)−

v
is

p(0)−
v

=
σ

8π
exp

(
−
(
2− σ2v

)2

8σ2

)
, v(0) ∼ N

(
2
σ2 ,

4
σ2

)
. (9)

• Finally, we calculate the error rate with

p(l)−
e

= p(l)−
v
(0) +

−1

∑
k=−m/2

p(l)−
v
(k). (10)

End the procedure when the p(l)−
e
) < 0 or l reaches the maximum number of iterations.

Otherwise, we continue to update the check node and variable node.

Discrete density evolution is first proposed to obtain the noise threshold according to
the degree distribution ρi and λi. In our work, we use it to obtain the degree distribution
under specific channel noise.

2.1.2. Differential Evolution

Stom first proposed the differential evolution algorithm in 1995 to solve the optimiza-
tion problem [20]. It uses differential mutation operator and crossover operator to generate
new individuals by the way of survival of the fittest. Based on this method, we can obtain
the optimal degree distribution under specific channel noise.

• Set channel noise threshold σ, target error probability Pe, maximum number of itera-
tions lmax, maximum degree of variable node dv and the number of terms of degree
distribution polynomial n.

• Randomly generate NP vectors Pi,G, i = 1, 2, . . . , NP for the degree distribution of
variable node. Use discretized density to evolve each vector and obtain the respective
error probability Pei ,G. The vector with the lowest error probability is marked as the
best vector Pbest,G and its error probability is marked as Pebest ,G.

• For each i, randomly choose four vectors from set of Pi,G and the new vector is
updated by

vi,G+1 = Pbest,G + 0.5
(

Pr1,G − Pr2,G
)
+ 0.5

(
Pr3,G − Pr4,G

)
. (11)

Calculate the corresponding error probability Pvi ,G+1 for each new vector vi,G+1.
• For each i, compare Pei ,G with Pvi ,G+1 and let Pi,G+1 = vi,G+1 if Pei ,G > Pvi ,G+1. The vec-

tor with the lowest error probability is marked as the best vector Pbest,G+1 and its error
probability is marked as Pebest ,G+1.
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• If the error probability corresponding to the best vector Pebest ,G+1 > Pe, update the
vectors again and return to step (4). If Pebest ,G+1 ≤ Pe, the Pbest,G+1 is the ideal vector
that we want.

2.2. Constructions

In this work, we use random construction, the PEG algorithm and QC extension for
their good results in various situations.

2.2.1. Random Construction

Various random constructions have been proposed based on the same core thought,
that is, place non-zero elements in random unfilled positions in the check matrix without
violating any set constraint. There are two constraint rules: one is that line li contains Xi
“1” and column ci contains Yi “1” according to the degree distribution of check nodes and
variable nodes; the other one is the number of elements “1” at the same position in any two
rows or columns is less than or equal to 1. It means that the shortest girth has to be longer
than 4.

2.2.2. Progressive-Edge-Growth Algorithm

Before introducing the PEG algorithm, we first introduce a common representation
of LDPC codes—the Tanner diagram and several concepts. As shown in Figure 1a, Vi is a
variable node, Cj is a check node and the line between them is called an edge. If two nodes
are connected with each other, we say these two nodes are adjacent to each other. The girth
is defined as the minimum number of lines that comes from a node and back to this node,
whose intermediate node is only passed once. As shown in Figure 1a, the shortest girth is 6
and one of them is V1 → C1 → V2 → C4 → V5 → C2 → V1, for instance.

For the PEG algorithm, new edges are added to make the loop girth in the Tanner
diagram corresponding to the check matrix as large as possible. As shown in Figure 1b,
the steps are as follows:

• Determine the number of check node, variable node and the degree distribution of
variable node.

• Randomly choose a variable node Vi and find the check node Cj with the least number
of connected edges in the Tanner graph. Then connect the variable node Vi and the
check node Cj with an edge and take it as the first edge of the variable node Vi.

• Take the variable node Vi as the root node and expand the current Tanner diagram.
When the expansion depth is l, the set of check nodes adjacent to Vi is recorded as
Nl

Vi
. The Nl

Vi
is the complement set of Nl

Vi
, where the complete set Vc is the set of all

variable nodes. Expand the Tanner graph with the root node and the depth of l. When

Nl
Vi
6= ∅, Nl+1

Vi
= ∅ and the number of nodes contained in Nl

Vi
stops increasing but is

still less than the number of matrix rows l, connect the check node Cj with the least
number of connected edges to the variable node Vi.

• Repeat step (2) to add edges to the selected variable nodes until all of them are added.
• Repeat steps (1) to (3) to add edge for all other variable nodes.
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(a)

(b)

Figure 1. (a) Tanner graph; (b) PEG algorithm.

2.2.3. QC-LDPC Extension

QC-LDPC extension is uniquely determined by the dimension and shift times of the
circulant matrix. Its quasi-cyclic characteristics make the process of coding and decoding
more efficient. Compared with randomly constructed LDPC codes, QC-LDPC codes have
lower error level and are more convenient for storage and hardware implementation. We
multiply the corresponding positions of the base matrix Hb and the coefficient matrix Hc
and we define this operation as �, the expression is expressed as follows:

Hb�Hc =

B1,1 · · · B1,i
...

. . .
...

Bj,1 · · · Bj,i

�
C1,1 · · · C1,i

...
. . .

...
Cj,1 · · · Cj,i

 =

B1,1C1,1 · · · B1,iC1,i
...

. . .
...

Bj,1Cj,1 · · · Bj,iCj,i

. (12)

Take lifting size of 3 as an example, the elements of the base matrix are 0 and 1, and the
elements of the coefficient matrix are 1, 2 and 3. Then the matrix elements are replaced by
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the cyclic permutation matrices (CPMs). We replace 0 with zero matrices, 1 with

1 0 0
0 1 0
0 0 1

,

2 with

0 1 0
0 0 1
1 0 0

 and 3 with

0 0 1
1 0 0
0 1 0

.

2.3. Methods of Rate-Compatible

Puncturing is a method that makes the code rate change from low to high. As shown
in Figure 2a, the submatrix A are information bits and submatrix B and C are check bits.
The initial code rate is R = L0/(L0 + L1 + L2). By deleting the submatrix C, we can obtain
a code rate increasing to R = L0/(L0 + L1).

On the contrary, extending as shown in Figure 2b enables the code rate to change from
high to low. We first construct a check matrix A with the high bit rate of (N0 −M0)/N0.
Moreover, by adding the submatrix An, we extend the matrix to make it compatible for the
low rate. The code rate is expressed as:

Ri =

n
∑
0

Ni −
n
∑
0

Mi

N
. (13)

(a) (b)

Figure 2. The rate-compatible method: (a) puncturing; (b) extending.

3. Proposed Check Matrix for RC-LDPC Codes with Wide Range of SNRs Regime

From the Equation (1) we can see that high hardware processing efficiency and rec-
onciliation efficiency result in a good performance of final secret key rate for a given
SNR. Proper degree distribution and reasonable construction method lead to good error
correction performance.

3.1. Obtaining Degree Distribution

We first obtain the initial optimal degree distribution using discretize density evolution
and differential evolution refer to Sections 2.1.1 and 2.1.2. Maximum degree of variable
node and the number of terms of degree distribution polynomial are set as 10 and 4,
respectively.

From the initial optimal degree distribution, we find that the pairs of degree distri-
bution are distributed nearby λ3 and λ7 except of λ2 and λ10. Therefore, we calculate
the average number of λ3 and λ7 at rate from 0.3 to 1, i.e., SNR from 0.1 to 3 (the degree
distribution is appropriate to the SNR larger than 3 but the maximum rate 1 corresponds to
the SNR of 3). The initial values are average number λ3 and λ7, and maximum degree of
variable node and the number of terms of degree distribution polynomial are still set as 10
and 4. The difference is that the degree distribution of the variable distribution is set on the
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λ2, λ3, λ7 and λ10 instead of a random distribution. Then we repeat the above operations
to obtain the optimal degree distribution in these conditions.

Through the above operations, we obtain the degree, the maximum degree of the vari-
able node, and the number of terms of the degree distribution polynomial. Ultimately, we
calculate the optimal degree distribution for proposing our LDPC code with Algorithm 1.

Algorithm 1 Obtaining the ultimate variable degree distribution with density evolution
and differential evolution
Input: Target error probability Pe, maximum number of iterations lmax, population size

NP = 50, the number of terms of variable node degree distribution polynomial l = 5,
the highest power of variable node degree distribution, λ3 = 0.0047, λ7 = 0.5072

Output: Error rate Pebest , vector Pbest
1: for i= 1 to NP do
2: refer to Section 2.1.1 generate vector Pi with λ2, λ3, λ7, λ8 and λ10, λ2 + λ8 + λ10 =

0.4881;
3: calculate the error probability Pei ;
4: if Pebest > Pei then
5: Pebest ← Pei ; Pbest ← Pi;
6: end if
7: end for
8: for j = 1 to lmax do
9: randomly choose four numbers r1, r2, r3 ,r4 from 1 to NP;

10: vj = Pbest + 0.5(Pr1 - Pr2 + Pr3 - Pr4);
11: calculate the error probability Pej ;
12: if Pebest < Pe then
13: output vj;
14: end if
15: if Pebest > Pej then
16: Pebest ← Pej ;
17: end if
18: end for

Table 2 is the result of Algorithm 1, whose input signal X ∼ (0, 1) and additive white
Gaussian noise Z ∼ (0, σ2) are random variables that obey Gaussian distribution and
independent of each other. The channel noise SNR = 1/σ2 and σ represents the maximum
allowed value of noise for the additive white Gaussian channel. For ρ(x) = λ(x) = 1,
the check node degree distribution is definite with the constraint condition r = 1 −∫ 1

0 ρ(x)dx/
∫ 1

0 λ(x)dx. The degree distribution in our scheme especially decreases the
difficulty of constructing the check matrix.

Table 2. Variable nodes degree distribution pairs for the code rate from 0.3 to 1.0.

Rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1

λ2 0.0001 0.0001 0.0007 0.0001 0.0002 0.0002 0.0004 0.0005
λ3 0.0047
λ7 0.5072
λ8 0.1382 0.1268 0.1044 0.0761 0.0480 0.0367 0.0281 0.0089
λ10 0.3498 0.3612 0.3830 0.4119 0.4399 0.4512 0.4596 0.4787
σ 1.3868 1.1547 1.0000 0.8771 0.7809 0.7001 0.6337 0.5774

SNR 0.52 0.75 1.00 1.30 1.64 2.04 2.49 3.00
C 0.3072 0.4037 0.5000 0.6008 0.7003 0.8020 0.9016 1.0000

1 The practical rate at 1 is close to but lower than 1.

In order to maximize the use of limited key resources, we still need to fully consider
the condition of rate lower than 0.1. Obviously, the secret key rate is low for the low mutual
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information IAB. Therefore, in order to simplify our work, the degree distribution pairs we
choose for the rate lower than 0.1 are directly refer to Appendix A [21,22].

3.2. Constructing Check Matrix for RC-LDPC Code

With the degree distribution we obtained above, we construct a single matrix RC-LDPC
code simultaneously with the random construction, the PEG algorithm, and QC-LDPC
codes mentioned in Section 2. The structure of the check matrix is shown in Figure 3 and
combined with parts A, B and C.

The part A is a shared part for the rate from 0.1 to 1, which is constructed with λ3 and
λ7. This structure has the advantage of reducing computational complexity and saving the
storage resources. Previous work showed that the PEG algorithm has better performance
at SNR∼3 [23], while random construction exhibits better performance at SNR∼1 [24].
Therefore, the construction that we use to construct the sub-matrix A is the PEG algorithm.

The part B is constructed with rest of degree distribution to realize the rate-compatible
method of puncturing. In order to further improve the performance of our LDPC code, we
construct the check matrix with the thought of puncturing. More specifically, we divide
submatrix Bn into two part and construct one part when the R decreases every 0.05. For rate
from 0.3 to 0.1, this number is 0.1. We use PEG algorithm to construct B1 to B5 and random
construction to construct extra part. Moreover, the structure of part B is a lower triangular
matrix, which can be directly encoded.

Multi-edge-type (MET)-LDPC codes are employed with low SNRs due to their good
error-correcting performances, more amenable decoding complexity and also being able to
be rate-compatible at low rates [25]. Based on the check matrix above, we construct part C
with degree distribution of the MET-LDPC codes from Appendix A for the rate from 0.01
to 0.1.

Figure 3. The check matrix for RC-LDPC codes with wide range of SNR.

4. Simulation Experiment

In this section, we summarize the implementation results of the proposed LDPC codes
over an unstable channel. Our purpose is to construct a RC-LDPC code with single matrix
that can be adapt to the SNR from 0.01 to 15. We show the performance of reconciliation
efficiency β, hardware processing efficiency α and FER, which are influenced by the change
of SNR. Furthermore, the decoding algorithm is a modified Min-Sum algorithm.

The reconciliation efficiency comes from β = R/C. Referring to the construction
mentioned in Section 3.2, we change the check matrix when R reduces to a certain extent.
When R is from 0.3 to 1, C decreases 0.1 to an integer multiple of 0.1. When R is from 0.01
to 0.3, C decreases 0.05 to an integer multiple of 0.05. In Figure 4, assuming that the channel
noise is uniformly distributed, the LDPC code we proposed has an average reconciliation
efficiency β of 91.80%, and for higher rates from 0.3 to 1 this number is 96.13%. Because
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the data with rate lower than 0.3 only have a little contribution to reconciliation efficiency,
the practical reconciliation efficiency is close to 96.13%. Compared with the existing scheme,
the proposed LDPC code has a relatively high reconciliation efficiency.

Figure 4. The reconciliation efficiency for different code rate.

From Equation (1), the secret key rate is also related to the hardware processing
efficiency α, which is equal to the ratio of Dout and Din. More specifically, supposing the
times used to load check matrix, load data and decode data are tlm, tld and tdd, separately.
The number of times that check matrix has to be reloaded is n and the number of data
blocks that have to be processed is m. Suppose the secret key rate that optical system can
provide is M, the number of data blocks m is M/L. The hardware processing efficiency α is

α =
1

ntlm + m(tld + tdd)
(14)

Because of the finite-size effects, the block length in the procedure of privacy amplifica-
tion is at least 107, which also takes up abundant hardware resource [26,27], so that not all
the check matrices can be stored in advance. The reconciliation efficiency will be reduced
quickly even if the SNR changes in a very small range. Therefore, other schemes have to
reload the appropriate check matrix and then load and decode data when the rate is higher
than the channel capacity. With our proposed LPDC code, we save the time of reloading
the check matrix. For the block length of 648,000, the times used to load data and decode
data we tested with the FPGA Arria 10 are 13.0 ms and 211.2 ms. Furthermore, the average
time we used to load check matrix of ATSC 3.0 LDPC codes is 11.1ms. From the Figure 5,
we can see that our work keeps a high hardware processing efficiency α with the number of
check matrix changing times n increases. Meanwhile, difference of hardware reconciliation
efficiency between our proposed LDPC code and ATSC 3.0 LDPC code also increases.

Frame error rate is the rate that a data block failed to be decoded. It is mainly caused by
two reasons: the defect of error correcting code and decoding algorithm; the unadaptable
check matrix led by the changing of SNR. The FER caused by the defect of error correcting
code and decoding algorithm can be reduced to 3.25× 10−3, which is far lower than the
FER led by the latter reason [28]. Therefore, we only take the latter reason into account.
It can be seen from Figure 6 that with the number of check matrix changes increases, our
proposed LDPC code has a lower FER than the other scheme.
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Figure 5. The hardware processing efficiency α influenced by the number of check matrix changing
times n.

Figure 6. FER influenced by the number of check matrix changing times N. The number of data
blocks that have to be processed is nine.

Given the excess noise, efficiency of receiver’s detector and electronic noise at Bob’s
side, we can calculate the practical secret key rate [29]. Figure 7 is the comparison of the
practical secret key rate of the proposed LDPC code and ATSC 3.0 LDPC codes. As can be
seen in the graph, our scheme has a better performance with same number of check matrix
changes N and has a lower performance reduction when the N increases. This comes from
the fact that combined action of reconciliation efficiency β, hardware processing efficiency
α and FER.
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Figure 7. Practical secret key rate with reconciliation efficiency of 91.80% for our proposed LDPC
code and 96.00% for ATSC 3.0 LDPC code. The extra parameters ε = 0.01, η = 0.64 and Vel = 0.1.

5. Conclusions

In this study, we design a rule of proposing a RC-LDPC code with single matrix for
SNRs between 0.01 and 15 to solve the problems of great variation of quantum channel
noise and extremely low SNR. First, we use the discretized density evolution algorithm and
differential evolution to acquire good node degree distribution pairs of LDPC codes. Then,
with construction methods including PEG algorithm, random construction, quasi-cyclic
extension and rate-compatible methods including extending and puncturing, we proposed
a convenient and efficient construction method for designing a RC-LDPC code. Considering
the number of check matrix changing times led by the change of SNR, the result shows that
we have a reconciliation efficiency of 91.80%, higher hardware processing efficiency and
lower FER. It has a good performance especially in an extremely unstable channel.
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Appendix A

Table A1. Degree distribution pairs of code rate from 0.01 to 0.1.

Rate Degree Distribution σ SNR C

0.1 v(r, x) = 0.0775r1x2
1x20

2 + 0.0475r1x3
1x22

2 + 0.875r1x3 2.541 0.15 0.0488
µ(x) = 0.0025x11

1 + 0.0225x12
1 + 0.03x2

2x3 + 0.845x3
2x3

0.05 v(r, x) = 0.04r1x2
1x34

2 + 0.03r1x3
1x34

2 + 0.93r1x3 5.91 0.03 0.0213
µ(x) = 0.01x8

1 + 0.01x9
1 + 0.41x2

2x3 + 0.52x3
2x3

0.02 v(r, x) = 0.0225r1x2
1x34

2 + 0.0175r1x3
1x34

2 + 0.96r1x3 2.541 0.15 0.1008
µ(x) = 0.010625x3

1 + 0.009375x7
1 + 0.6x2

2x3 + 0.36x3
2x3
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