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Abstract. I measured the rates of elongation at the 
barbed and pointed ends of actin filaments by electron 
microscopy with Limulus sperm acrosomal processes 
as nuclei. With improvements in the mechanics of the 
assay, it was possible to measure growth rates from 
0.05 to 280 s -l. At 22°C in 1 mM MgC12, 10 mM im- 
idazole (pH 7), 0.2 mM ATP with 1 mM EGTA or 50 
txM CaCI2 or with EGTA and 50 mM KCI, the elon- 
gation rates at both ends have a linear dependence on 
the ATP-actin concentration from the critical concen- 
tration to 20 lxM. Consequently, over a wide range of 
subunit addition rates, the rate constants for associa- 
tion and dissociation of ATP-actin are constant. This 
shows that the nucleotide composition at or near the 
end of the growing filament is either the same over 
this range of growth rates or has no detectable effect 
on the rate constants. Under conditions where poly- 
merization is fastest (MgCI2 + KCI + EGTA) the rate 
constants have these values: 

ATP-actin ADP-actin 

Barbed Pointed Barbed pointed 

k+ (gM-ls -~) 11.6 1.3 3.8 0.16 
k- (s -l) 1.4 0.8 7.2 0.27 
Compared with ATP-actin, ADP-actin associates 
slower at both ends, dissociates faster from the barbed 
end, but dissociates slower from the pointed end. Tak- 
ing into account the events at both ends, these con- 
stants and a simple Oosawa-type model account for 
the complex three-phase dependence of the rate of 
polymerization in bulk samples on the concentration 
of ATP-actin monomers observed by Carlier, M.-E, 
D. Pantaloni, and E. D. Korn (1985, J. Biol. Chem., 
260:6565-6571). These constants can also be used to 
predict the reactions at steady state in ATE There will 
be slow subunit flux from the barbed end to the 
pointed end. There will also be minor fluctuations in 
length at the barbed end due to occasional rapid dis- 
sociation of strings of ADP subunits but the pointed 
end will be relatively stable. 

T H~ mechanism of actin polymerization has been stud- 
ied in detail (see reviews by Korn, 1982; Frieden, 
1985; Pollard and Cooper, 1986), both because it is a 

model for other macromolecular self-assembly reactions and 
because knowledge about actin polymerization is a limiting 
factor in understanding the mechanisms of all of the actin- 
binding proteins. The goal of this work on actin is a full 
quantitative model for polymerization that includes the rate 
constants for each step. Spontaneous polymerization from 
actin monomers involves several unfavorable nucleation 
steps that are rate limiting and much more rapid elongation 
reactions in which actin molecules bind to and dissociate 
from the two ends of the filaments. Much more is known 
about elongation than nucleation, because there are direct 
methods to measure elongation but not nucleation. 

There are still open questions about elongation, because 
we have not had reliable values for all of the rate constants 
and there is some uncertainty about the number of the reac- 
tions. At the very least, we must know nine different rate 
constants: the association and dissociation rate constants for 
ATP-actin and ADP-actin from both the fast (barbed) end 

and the slow (pointed) ends of the actin filaments and the rate 
constant for ATP hydrolysis by polymerized ATP-actin 
molecules. Many of the elongation rate constants have been 
measured (Pollard and Mooseker, 1981; Bonder et al., 1983; 
Coluccio and Tilney, 1983; Pollard and Weeds, 1984; Doi 
and Frieden, 1984; Pollard, 1984; Lal et al., 1984a, b; 
Carlier et al., 1984; Coue and Korn, 1985; Selve and 
Wegner, 1986; Carlier et al., 1986a, b). However, as dis- 
cussed by Coue and Korn (1985), the published values of the 
constants for ATP-actin and ADP-actin at the slow (pointed) 
end of the filament are problematic, because it has been 
difficult to interpret solution experiments where capping pro- 
teins (Doi and Frieden, 1984; Coue and Korn, 1985; Selve 
and Wegner, 1986) or cytochalasin (Carlier et al., 1986a, b) 
were used to inhibit reactions at the barbed end. Complica- 
tions with these assays have precluded the direct determina- 
tion of the dissociation rate constant for ATP-actin at the 
pointed end in bulk samples (Coue and Korn, 1985; Carlier 
et al., 1986a, b). 

In reality the nine minimal rate constants may not account 
for all of the important reactions involved in the elongation 

© The Rockefeller University Press, 0021-9525/86/12/2747/8 $1.00 
The Journal of Cell Biology, Volume 103 (No. 6, Pt. 2), Dec. 1986 2747-2754 2747 

 on July 9, 2009 
jcb.rupress.org

D
ow

nloaded from
 

 Published December 1, 1986

http://jcb.rupress.org


process. For example, Pantaloni et al. (1985a, b) point out 
that the association and dissociation rate constants may de- 
pend not only on the nucleotide content (ATP vs. ADP) of 
the reacting subunlt but also on the nucleotide content of 
neighboring subunits at the ends of the filament. Further- 
more, the rate constant for ATP hydrolysis by polymerized 
ATP-actin may depend on the nucleotide composition of the 
neighboring subunits. Pantaloni et al. (1985a, b) proposed a 
sophisticated model with several interesting features that can 
account for the complex dependence of the elongation rate 
in bulk samples on the concentration of ATP-actin. For the 
present discussion, there are two important features of their 
model. First, the rates of association and dissociation of ac- 
tin from the ends of filaments are highly dependent on the 
nucleotide composition of the two terminal subunits; ATP- 
actin binds tighter to an end where only the two adjacent 
subunlts have ATP than to an end with a large "cap" of ATP 
subunits. Second, the rate of ATP hydrolysis is much higher 
on actin subunits located at a boundary between the internal 
ADP-actin core and the ATP-actin "cap" near the end of 
growing filaments than on either internal subunits sur- 
rounded by other ATP-actins or on the two terminal ATP 
subunits at the end of the filament. 

To test whether these complications are important, I used 
electron microscopy and improved techniques for specimen 
preparation to evaluate directly over a wide range of mono- 
mer concentrations the rate constants for the association and 
dissociation of ATP- and ADP-actin at both ends of the actin 
filament. The result is that these elongation rate constants are 
constant over a wide range of reaction rates. One interpreta- 
tion is that the nucleotide composition of the actin molecule 
that binds or dissociates is the major determinant of the reac- 
tion rates and that the nucleotide composition of the adjacent 
subunits at the ends of the filament does not have a detectable 
effect on the elongation reactions. When one takes the reac- 
tions at both the barbed and pointed ends into account, a sim- 
ple mechanism can account for the complex polymerization 
curves of Carlier et al. (1985) and Pantaloni et al. (1985b). 
Further, the availability of a complete set of rate constants 
makes it possible to predict events at steady state. In ATE 
KCI, MgC12, and EGTA there will be a slow flux of 
subunits from the barbed end to the pointed end, but this flux 
will be damped by the slow dissociation of ADP-actin from 
the pointed end. 

Materials and Methods 

Protein Purification 
Actin was purified from rabbit skeletal muscle (Spudich and Watt, 1971) and 
monomers were separated from oligomers and minor contaminants by gel 
filtration on Sephadex G-150 (MacLean-Fleteher and Pollard, 1980). ATP- 
actin was stored in Buffer G (2 mM imidazole [pH 7.5], 0.5 mM 
dithiothreitol [D'ITI, 0.2 mM ATE 0.1 mM CaCI2, 0.5 mM NAN3) at 4°C 
and used within 1 wk. Mg-ATP-actin was prepared at a concentration of 20 
~M by adding MgCI2 to a concentration of 50-80 ttM and EGTA to 
125-250 ttM and incubating at 4°C for 10-20 min. Mg-ADP-actin was pre- 
pared by the Selden et al. (1986) modification of the method of Pollard 
(1984) as follows. Mg-ATP-actin was incubated with 20 U/ml of yeast hexo- 
kinase and 1 mM glucose for 4 h at 4°C. Part of this 20 ttM Mg-ADP-actin 
was reconverted to Mg-ATP-actin by diluting to 5 ttM into Mg-EGTA buffer 
with 1 mM ATP and incubating for 75 rain at 4°C. The final concentrations 
were 0.55 mM ATE 0.25 mM ADP, and 0.25 mM glucose-6-phosphate. 

Figure 1. Electron mic rograph  of  actin f i laments  grown f rom the 
ends  o f  Limulus acrosomal  p rocesses  and then bundled  jus t  before 
staining by t rea tment  with 5 m M  spermine .  Solution condi t ions  as 
in Fig. 2, 17.5 t tM ATP-ac t in  for 4 s. The  center  o f  the  acrosomal  
process  is c ropped to save space.  Bar, 1 tun. 

Elongation Rates 
Electron microscopy was used to measure the rates of elongation at the two 
ends of the actin filament. The present method is a modification of and a 
substantial improvement over the methods used previously (Pollard and 
Mooseker, 1981; Bonder et al., 1983; Pollard and Cooper, 1984). Limulus 
sperm acrosomal processes (APs) 1 were used as morphologically identi- 
fiable nuclei. The APs were isolated from fresh sperm by a modification 
of the method of Tilney (1975). About 100-200 I.tl of sperm were washed 
three or four times in 1.5 ml of ice cold, filtered sea water by centrifuging 
5 s in an Eppendorf Model 5414 centrifuge. This 11,000 g spin pelleted the 
sperm and left contaminating cells, immature sperm, and debris in the su- 
pernatant. The pelleted sperm were resuspended very gently with a Pasteur 
pipet to avoid lysis of the nuclei. The sperm were then resuspended very 
gently in 1.5 ml of ice cold 30 mM Tris-C1 (pH 8.0), 3 mM MgC12, 1% 
Triton X-103, and centrifuged for 15 s in the Eppendorf centrifuge. This 
pelleted the nuclei and axonemes, leaving the Alas in the supernatant. The 
APs were washed free of soluble materials and detergent by pelleting twice 
in the Eppendorf centrifuge for 7 min. The buffer for washing and final 
resuspension of the APs was 2 x polymerization buffer, generally 100 mM 
KC1, 2 mM MgCI~, 2 mM EGTA, 20 mM imidazole (pH 7.0). The Alas 
for polymerization of actin-ADP were washed in buffer with hexokinase and 
glucose. The APs in 300-500 I~l of buffer were vigorously forced five times 
through a 25-gauge needle to break them into short pieces. A fresh prepara- 
tion was made each day. 

The polymerization reaction was carried out at room temperature (22°C) 
in a small droplet on pamfilm with the electron microscopy grid floating 
on the surface. First, 15 ttl of APs in 2 x buffer were applied to the paratilm. 
Second, a freshly glow discharged, carbon-formvar-coated EM grid was 
floated on the surface or held there with fine forceps. Third, the reaction 
was started by rapidly pipetting 15 I~1 of actin monomer into the droplet and 
mixing by pipetting in and out three times as fast as possible (generally <0.5 
s). Fourth, 1.5 s before the end of the incubation time the grid was lifted 
from the droplet and its edge was dragged at an angle of 45* across filter 
paper to remove excess fluid. A thin film of reaction solution remained on 
the grid providing that the grid was hydrophilic. Fifth, precisely at the end 
of the incubation time the grid was inverted onto a 250-ttl drop of Ix  poly- 
merization buffer with 5 mM spermine (pH 7.0). This rapidly diluted thin 
film of reactants on the grid and stopped the reaction. The spermine ag- 
gregated the filaments that had grown from the ends of the APs into one or 
several bundles that tapered sharply near their tips (Fig. 1). After 5-10 s in 
spermine, excess fluid was again removed from the grid with filter paper 
and the grid was inverted onto a drop of 1% uranyl acetate for 5 s. After 
removing all but a thin film of stain, the grids were air dried. One person 
could easily prepare samples incubated 10 or more seconds. Two people 
were required for shorter time points, especially since the incubation must 
then be timed with a stop watch. The shortest practical incubation time was 
,x,4 s. If the time points were separated by 30 s or more, the drop size could 
be increased and up to four grids could be floated on a single drop. Routinely 
two or three time points were obtained for each concentration of actin. 

1. Abbreviation used in this paper: APs, acrosomal processes. 
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Figure 2. Time course of the growth of actin filaments from the 
barbed and pointed ends of acrosomal processes. Conditions: 1 
mM MgC12, 50 ~tM CaCI2, 0.3 mM ATE 0.25 mM DTT, 10 mM 
imidazole (pH 7), 22°C. The actin monomer concentration (txM) 
is given beside each plot. Vertical bars are +1 standard deviation. 

When the reaction rate was slow (<30 s -~ at the barbed end), only two 
time points were necessary because the reaction rates were always linear and 
highly reproducible. 

The length of the bundles at the two ends of the APs were measured by 
electron microscopy directly on the viewing screen at a magnification of 
4,500 or 8,900. This was done visually for lengths between 0.5 and 4.5 gm 
by comparing the length of the actin bundle with radius or diameter of the 
field. For lengths up to 2.5 jaM, the method was accurate to within 0.1 lain. 
Between 2.5 and 4.5 Ixm, the measurement was accurate to within 0.2 Ixm. 
Lengths between 0.05 and 0.5 gM were estimated within 0.05 gm by com- 
parison with cross marks in the center of the screen which were 0.25 and 
0.47 Inn long. It was possible to use this rapid method rather than photogra- 
phy, because the bundles of actin filaments were straight or only gently 
curved. 

For each time point, the length of the bundles on at least 20 separate APs 
were recorded. The long end is the barbed end and the short end the pointed 
end (Bonder et al., 1983). Since there are a number of artifacts produced 
by this method, some APs had to be rejected from inclusion in the data sets. 
These artifacts included obvious fractures of the bundles (indicated by 
straight rather than tapered ends or no bundle at all at the barbed end) and 
annealing of bundles of separately nucleated filaments to the ends or sides 
of bundles nucleated by the AP (indicated by grossly uneven lengths of the 
several bundles on one AP or between APs). This latter artifact occurred 
when high actin concentrations were incubated for long times and was 
presumably due to spontaneous nucleation. The problem was avoided by 
limiting the time of incubation, so that there were few or no free actin illa- 
ments in the background on the grid (e.g., <10 s for 20 IxM actin in KC1- 
Mg-EGTA). 

For each actin concentration, the mean length was plotted vs. time to ob- 
tain the rate of growth. The slopes of these plots were the elongation rates. 
The association and dissociation constants and critical concentration were 
obtained from least squares linear regression of plots of growth rate vs. actin 
monomer concentration (Pollard and Mooseker, 1981). 
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Figure 3. Elongation rates at the barbed (open circle) and pointed 
(solid circle) ends of actin filaments as a function of the actin mono- 
mer concentration. Conditions: 50 mM KCI, 1 mM MgCI2, 1 mM 
EGTA, 50 ~tM CaC12, 0.2 mM ATP, 0.5 mM DTT, 10 mM imida- 
zole (pH 7), 22°C. 
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Figure 4. Elongation rates at the barbed (open symbols) and pointed 
(closed symbols) ends of actin filaments as a function of the actin 
monomer concentration. Conditions: 1 mM MgC12, 50 lxM CaCI2, 
0.3 mM ATP, 0.25 mM DTT, 10 mM imidazole (pH 7) with either 
1 mM EGTA (circles) or no EGTA (squares), 22°C. 

Results 

The improved methods for measuring rapid actin filament 
elongation rates and for preparing ADP-act in  made it possi- 
ble to re-investigate the elongation process at high rates and 
to measure the elongation rate constants for ADP-ac t in  at 
both ends of  the filament. Growth is linear with t ime (Fig. 
2). Subunit addition rates up from 0.05 to at least 280 s -1 
can now be measured routinely by electron microscopy. 

In three different buffers, plots of  elongation rate vs. 
ATP-actin monomer  concentration were linear up to 20 txM 
actin (Figs. 3 and 4) at both ends. Under optimal conditions 
(50 mM KC1, 1 mM MgC12, 1 mM EGTA) with 20 lxM ac- 
tin the absolute rate was 280 molecules/s -I. At the barbed 
end, the fits to straight lines were excellent with correlation 
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Table L Elongation Rate Constants Measured in This Study 

Conditions Experiment 

Barbed Pointed 

k+ k_ ,'T~ k+ k_ ,,i~ 

50 mM KCI, 1 mM MgCl2 
1 mM EGTA, 0.2 mM ATP 

50 mM KCI, 1 mM MgCI2 
1 mM EGTA, 0.2 mM ADP 

1 mM MgC12, 1 mM EGTA, 0.3 mM ATP 

1 mM MgCI2, 50 ~tM CaC12, 0.3 mM ATP 

A 11.3 3.0 0.26 1.0 0.5 0.50 
B 13.3 1.7 0.13 1.1 0.7 0.62 
C-1 12.6 1.2 0.10 1.2 0.7 0.57 
C-2 12.6 1.2 0.10 1.2 0.4 0.34 
C ( ~ v e r s ~ )  10.9 1.1 0.10 - - - 
D 10.2 0.3 0.03 1.5 1.2 0.77 
D (reverse)  10.4 1.1 0.11 1.5 1.2 0.77 

Mean 11.6 1.4 0.12 1.3 0.8 0 . ~  
SD 1.2 0.8 0.07 0.2 0.3 0.17 

C 3.7 6.2 1.7 0.15 0.22 1.5 
D 3.8 8.t 2.1 0.17 0.31 1.8 

Mean 3.8 7.2 1.9 0.16 0.27 1.7 

E 5.3 2.4 0.55 1.0 5.7 5.7 
F 6.4 3.4 0.54 1.5 6.8 4.6 

Mean 5.9 2.9 0.55 1.3 6.3 5.2 

G 5.7 8.6 1.5 0.8 3.7 4.5 

Units: k+ (~tM-~s-~); k_ (s-~); .g~ (~tM). (reversed) signifies samples of Mg-ATP-actin that were converted to Mg-ADP-actin and then reversed back to Mg-ATP- 
actin. 

coefficients of 0.993 to 0.998. The data for the pointed ends 
fit to straight lines with correlation coefficients of 0.95 to 
0.99. The larger scatter in the data for the pointed end is at- 
tributable to the difficulty in measuring the length of the 
short bundles at that end and to the fact that growth at that 
end is more irregular than at the barbed end. The standard 
deviation of the lengths was usually 10-20% of the mean at 
the barbed end, but usually 15 to 30% at the pointed end. 
The frequency of APs with growth at the barbed end was 
close to 100% at all time points, while in the worst case up 
to 40% of the pointed ends did not exhibit growth at the earli- 
est time point. At later time points up to 90% of the APs grew 
at both ends. For unknown reasons, a small fraction of the 
pointed ends never grew and others started only after a delay 
of a few seconds. 

The slopes and intercepts of these plots give the associa- 
tion and dissociation rate constants at the two ends (Table I). 
These values for the rate constants are based on much more 
extensive data than previous electron microscopic measure- 
ments (Pollard and Mooseker, 1981; Bonder et al., 1983; 
Coluccio and Tilney, 1984) but confirm the main conclusions 
from that work. In ATP, KCI, MgCI2, and EGTA, the mean 
association rate constant at the barbed end is 11.6 lxM-~s -~. 
The mean dissociation rate constant is 1.4 s -t. At the 
pointed end the rate constants are 1.3 I~M-ls -~ and 0.8 s -~. 
These values were highly reproducible over five separate ex- 
periments. The mean critical concentrations are 0.12 ~tM at 
the barbed end and 0.60 ~tM at the pointed end. Under these 
conditions the critical concentration in bulk samples is 0.14 
I~M (Drenckhahn and Pollard, 1986). 

In MgCI2 and ATP without KC1, the association rate con- 
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Figure 5. Elongation rates at the barbed (open symbols) and pointed 
(solid symbols) ends of actin filaments as a function of the concen- 
tration of ATP-actin (open and solid circles, open squares) and 
ADP-actin (open and solid triangles). Conditions: 50 mM KC1, 
1 mM MgCI2, 1.1 mM EGTA, 0.5 mM DTT, 22°C. As described 
in detail in Materials and Methods, Mg-ATP-actin (circles) was 
treated with hexokinase and glucose to convert it to Mg-ADP-actin 
(triangles) and then at the completion of the experiments with Mg- 
ADP-actin, it was reconverted to Mg-ATP-actin (open squares) with 
excess ATE The pointed end rates with Mg-ATP-actin before and 
after conversion to Mg-ADP-actin were the same. 
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stant at the barbed end is ,06 IJ.M-ls -1 -l- Ca ++, while the 
dissociation rate constant is greater in Ca ++ than in EGTA 
(Table I, Fig. 4). At the pointed end the association rate con- 
stants in MgC12 + Ca ++ are similar to those in KCI-MgC12- 
EGTA, but these dissociation rate constants are more than 
five times larger without KCI (Table I). Consequently the 
critical concentrations at the pointed end in MgCl2 alone 
(,05 ~tM) are much larger than in KC1-MgC12. 

The improved method for exchanging ATP and ADP 
bound to actin monomers (Selden et al., 1986) made it possi- 
ble to compare directly, with the same preparation of actin, 
the elongation reactions of ADP-actin and ATP-actin. Un- 
der the conditions used, full activity of the actin was pre- 
served during the exchange of ATP for ADP, since re-ex- 
change of ADP for ATP produced actin monomers with the 
same elongation properties as the starting material (Fig. 5). 

As expected from theoretical considerations, the critical 
concentrations for ADP-actin at the two ends are the same 
(within 10%) (Fig. 5; Table I). For these ADP-actin prepara- 
tions, the critical concentration at the barbed end is * 2 0  
times higher than for ATP-actin in KC1-MgC12-EGTA (Fig. 
4). At the barbed end, the association rate constant of 
ADP-actin is one third that for ATP-actin while the dissocia- 
tion constant is about five times larger (Table I). This was 
expected from previous measurements with bulk samples 
where reactions at the barbed end predominate (Pollard, 
1984; Carlier et al., 1984; Lal et al., 1984a, b). At the 
pointed end, both the association and dissociation rate con- 
stants for ADP-actin are less than for ATP-actin (Table I), 
as predicted from studies with bulk samples (Pollard, 1984). 

Discussion 

Comparison of  Values for the Elongation 
Rate Constants 

For ATP-actin, there is general agreement among the elec- 
tron microscopic measurements of the elongation rate con- 
stants using bundles of actin filaments as nuclei (Table ID. 
Nuclei consisting of individual actin filaments decorated 
with myosin heads give similar results (see Table III in Pol- 
lard and Cooper, 1986). Spectroscopic methods with bulk 
samples have, in general, given lower absolute values for the 
rate constants but approximately the same ratios of k-/k÷. It 
is difficult to conceive how the EM measurements could give 
erroneously high growth rates, so the lower values from bulk 
samples are probably attributable to over estimates of the 
number of growing polymers in these experiments. The 
limited data available on ADP-actin is also consistent with 
EM giving proportionally higher values, at least in KCI- 
MgC12-EGTA. 

The good correspondence of the values obtained by such 
different methods supports the validity of both the electron 
microscopic and spectroscopic methods. The electron mi- 
croscopic method is much more tedious than the spectro- 
scopic method, but it has two important advantages. Electron 
microscopy gives the absolute rate of growth directly and al- 
lows one to measure growth at both ends simultaneously 
without the use of molecules that cap one of the ends. In my 
hands (Pollard, 1983), the spectroscopic method is ,,o100 
times faster than electron microscopy and potentially more 

Table II. Comparison of Elongation Rate Constants from Different Studies 

ATP ADP 

Barbed Pointed Barbed Pointed 

Conditions Method k+ k_ /ij k+ k_ ,~1 k. k_ ,'il k+ k_ 31 Reference 

(nucleus) 

50-100  m M  KCI EM 
1-5 m M  Mg ++ (microviUar cores) 8.8 2.0 0.23 2.2 1.4 0.64 . . . . . .  A 

(acrosomal processes) 12.3 2.0 0 .16 1.5 0.7 0.5 . . . . . .  B 
(acrosomal processes) 3.4 0.3 0.10 0.3 0.3 1.0 . . . . . .  C 
(acrosornalprocesses)  11.6 1.4 0.12 1.3 0.8 0.60 3.8 7.2 1.9 0 .16 0.27 1.7 D 

Fluorescence 
(trimers) 5.2 0.4 0.07 - - - 0.9 1.8 2.0 - - - E 

1 mM MgClz EM 
0.1 mM CaCI2 (acrosomal processes) 5.7 8.6 1.5 0.8 3.7 4.5 . . . . . .  D 

Fluorescence 
(trimers) 1.7 0.2 0.14 - - - 0.8 6.0 8.0 - - - E, F 
(actin-gelsolin) - 0.02 0.05 2.9 . . . . . .  G 
(actin-gelsolin) - 0.1 0.4 4.0 - - - 0.05 0.4 8.0 F 
(filaments + 1.4 0.14"- 0.1"- 0.12 0.45 3.8 0.75 6.0 8.0 0.05 0.43 8.0 H 

cytochalasin D) 4.6 3.3 

1 mM MgCI2 EM 
1 mM EGTA (acrosomal processes) 5.9 2.9 0.50 1.3 6.3 4.9 . . . . . .  D 

Units: k+ (ixM-ts-'); k_ (s-t);/i~ (gM). 
* A range of values were given, with the lowest values measured at low actin monomer concentrations. 
References: (A) Pollard and Mooseker, 1981; (B) Bonder et al., 1983; (C) Coluccio and Tilney, 1984; (D) present report; (E) Lal et al., 1984a, b; (F) Coue 
and Korn, 1985; (G) Doi and Frieden, 1984; (H) earlier et al., 1986a. 
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accurate because the signal is both continuous and the aver- 
age of many more filaments. Furthermore, spectroscopy can 
be used to measure both positive and negative rates, while 
electron microscopy has thus far only been successful with 
positive rates. On the other hand, attempts to measure events 
at the pointed end spectroscopically with capped filaments 
have been difficult as elaborated in the next paragraph. 

For the following discussion of the mechanism of elonga- 
tion, a key point hinges on the relative rates of dissociation 
of ATP-actin and ADP-actin from the two ends of the fila- 
ment. There is agreement that ADP-actin dissociates at least 
five times faster from the barbed end than ATP-actin (Table 
II). My EM measurements show that the opposite is true 
at the pointed end, at least in KCI-MgCI2-EGTA, where 
ATP-actin dissociates about three times faster than ADP-ac- 
tin. On the other hand, spectroscopic experiments in MgC12 
with gelsolin (Coue and Korn, 1985) or cytochalasin D 
(Carlier et al., 1986a) to block the barbed ends of fila- 
ments (Table II), suggested that the dissociation constants for 
ATP-actin and ADP-actin at the pointed end are about the 
same. However, with both cytochalasin and gelsolin the de- 
pendence of the elongation rate on the concentration of actin 
was nonlinear above the critical concentration, making it im- 
possible to be certain about the value of the dissociation con- 
stant for ATP-actin. An alternate interpretation consistent 
with my electron microscopy results is that the slope of these 
plots changes near the critical concentration because ATP- 
actin is the predominant terminal species in that range and 
because the association and dissociation rate constants are 
larger for ATP-actin than ADP-actin. This point deserves 
further investigation to learn whether the disagreement is at- 
tributable to the difference in conditions or whether either 
the spectroscopic or electron microscopic measurements are 
in error. 

The  M e c h a n i s m  o f  Elongat ion  

The earliest measurements of the elongation rate constants 
by electron microscopy of individual filaments (Pollard and 
Mooseker, 1981; Bonder et al., 1983) and by spectroscopic 
methods on bulk samples (Pollard, 1983; Lal et al., 1984a) 
were restricted to relatively low positive reaction rates and 
all reported linear plots of elongation rate vs. concentration 
of ATP-actin above the critical concentration. This data was 
consistent with the simple model for elongation proposed by 
Oosawa and Asakura (1975). The elongation rate at the end 
of a filament was simply 

R = k+(AO - k-,  (1) 

where k÷ is the association rate constant, k- is the dissocia- 
tion rate constant, and A~ is the actin monomer concentra- 
tion. The values of the rate constants were quite different at 
the two ends, but even in a bulk sample with many filaments 
growing at both ends the elongation rate was expected to have 
a linear dependence on the concentration of actin monomers, 
since it was the sum of two apparently linear reactions. 

This simple model had to be modified when it was found 
that ADP-actin dissociates faster from the barbed end than 
ATP-actin (Pollard, 1984; Carlier et al., 1984; Lal et al., 
1984b) with the consequence that, even in ATP, plots of elon- 
gation rate vs. actin concentration curve down toward the 
ADP-actin dissociation rate below the critical concentration 
(Carlier et al., 1984). There is now general agreement that 

the nonlinearity in the negative arm of these plots is due to 
the increase toward 100 % in the fraction of ADP subunits 
dissociating from the barbed end as the ATP-actin monomer 
concentration approaches zero. 

Subsequently, Carlier et al. (1985) found for bulk samples 
that at actin concentrations well above the critical concentra- 
tion, the plots of elongation rate vs. ATP-actin concentration 
curve upward. They interpreted this nonlinearity in the posi- 
tive part of the plot as a sharp but small change in the slope 
at n gM actin in 1 mM MgC12 + Ca ++. Both above and be- 
low 11 laaM, the plots of rate vs. concentration appeared lin- 
ear, but the upper arm of the plot had a larger slope (see Fig. 
6 in Carlier et al., 1984, and Fig. 2 in Pantaloni et al., 
1985b). At actin concentrations above 11 lxM, the association 
rate constant was 10-20% larger and the dissociation rate 
constant was five times larger than at lower actin concentra- 
tions. Recently Carlier et al. (1986b) reported the results 
of a similar experiment in the KCI-MgCIz-EGTA buffer 
used in this paper. Again a three-phase plot was obtained, 
but the break in the positive arm of the plot was at 0.9 ltM 
actin rather than 11 IxM. It is important to note that these 
results were obtained with bulk samples where both ends 
contributed to the elongation process. 

There are now two explanations for the complex three- 
phase dependence of the elongation rate on ATP-actin con- 
centration. The first proposed by Pantaloni et al. (1985a, b) 
argues that the nucleotide composition of subunits near the 
end of the filament varies with elongation rate and this in- 
fluences both the association and dissociation rate constants. 
I suggest that the break in the positive part of the plots is sim- 
ply due to the added contribution of elongation at the pointed 
end above its critical concentration. For this to be true, the 
pointed end must be relatively inert below its critical concen- 
tration as observed here. 

The Pantaloni model postulates that ATP bound to poly- 
merized actin subunits is hydrolyzed at a relatively high rate 
at the interface between the ADP-actin core of the filament 
and the actin-ATP caps at the two ends, but not on the two 
terminal subunits. At actin concentrations just above the crit- 
ical concentration, hydrolysis is fast enough to keep up with 
elongation so that the ATP cap consists of only two or a few 
subunits. Above I1 IxM ATP-actin, they suggested that the 
elongation rate exceeds the hydrolysis rate so that subunit 
association would be exclusively between ATP-actin mono- 
mers and polymer ends with long ATP caps. According to 
this model, the association and dissociation rate constants 
depend on the length of the ATP cap, so naturally the slope 
of the plots changes above 11 lxM actin. The model includes 
the concept that ATP-actin binds 10 times weaker to ends 
with long ATP caps than short ATP caps, a conclusion based 
on the critical concentration measured spectroscopically in 
solutions of continuously sonicated ATP-actin (Carlier et 
al., 1985). Theoretical plots using some experimental values 
for constants fit the complex, three-phase elongation rate 
plots remarkably well. 

I propose a simple model that differs from the Pantaloni 
model in two major aspects: (a) the rates of subunit associa- 
tion and dissociation depend almost exclusively on the nu- 
cleotide composition of the adding or departing actin mole- 
cule; and (b) the elongation in bulk samples is the sum of 
substantially different reactions at the two ends. (The nucleo- 
tide composition of the subunits at or near the end of the ilia- 

The Journal of Cell Biology, Volume 103, 1986 2752 

 on July 9, 2009 
jcb.rupress.org

D
ow

nloaded from
 

 Published December 1, 1986

http://jcb.rupress.org


ment may affect the reaction rates, but this is not detectable 
with current methods.) As elaborated below, this model can 
also account for the complex, three-phase dependence of the 
bulk elongation rate on actin concentration (Carlier et al., 
1985, 1986b). 

My model is based on the following assumptions. (a) As- 
sociation and dissociation of subunits at each end is by the 
Oosawa mechanism (Eq. 1). (b) The rate of ATP hydrolysis 
is relatively low on the terminal subunit. This is justified in 
a later paragraph for the kinetically more important barbed 
end. Consequently, above the critical concentration ATP-ac- 
tin will be the predominant dissociating species. (c) Below 
the critical concentration the fraction of terminal subunits 
with bound ATP is proportional to the rate of association of 
ATP-actin. Therefore, the fraction with ATP is directly 
proportional to the concentration of ATP-actin monomers. 
In other words, the fraction of ATP ends is 0 when the mono- 
mer concentration is 0 and 1.0 at and above the critical mono- 
mer concentration. This is, of course, an over-simplification, 
but scaling this parameter differently will give qualitatively 
similar results for the combined behavior of the two ends. 
Thus the rate of change of length at the two ends in ATP-actin 
is 

R B = /<+BrAt T + k+BDAtD _ f~r  k ~r _ f B D k _  ' (2) 

R e = k÷PTA( + k+PDA-D --f~rk-eT --fPDk-BD. (3) 

The superscripts are as follows: B for barbed end, P for 
pointed end, T for ATP, and D for ADP. The fractional 
nucleotide composition of the terminal subunits are repre- 
sented by f. Since At D = 0, the second term in each equa- 
tion drops out. The net elongation rate in bulk samples is 
simply 

dAp_  N(Ra + Rp), (4) 
dt 

where Ap is the concentration of polymerized actin and N is 
the concentration of filaments. 

Using these equations, the assumptions stated above and 
the rate constants from Table I, I have calculated the elonga- 
tion rates at each end as a function of the monomer concen- 
tration (Fig. 6). Note that the depolymerization rate at the 
barbed end increases nonlinearly as the monomer concentra- 
tion approaches zero due to the rapid dissociation of ADP- 
actin that constitutes a large fraction of the ends as At T goes 
to zero. Note also that the dependence of the depolymeriza- 
tion rate on the actin concentration at the pointed end is quite 
different. There is a minimum in the curve between At = 0 
and the critical concentration, since ADP-actin dissociates 
slower than ATP-actin from the pointed end. 

When the elongation rates at the two ends are summed to 
obtain the net rate, one obtains a complex, three-phase plot 
(Fig. 6) like that observed by Carlier et al. (1985, 1986b) for 
bulk samples. The important features are a critical concen- 
tration very close to that for the barbed end, a nonlinear 
negative arm below the critical concentration that reaches 
the dissociation rate for ADP-actin at the barbed end, and 
a nonlinear positive arm above the critical concentration that 
bends upward at ,,o0.6 lxM, the critical concentration for the 
pointed end. The key elements producing this behavior are 
the large off rate for ADP-actin at the barbed end, the large 
difference in the critical concentrations at the two ends, and 
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Figure 6. Theoretical plots of elongation rates as a function of 
ATP-actin monomer concentration. Barbed end (dashed line); point 
end (dotted line); sum of two ends (solid line). The assumptions 
are that (a) all association reactions are by ATP-actin monomers; 
(b) above the critical concentrations, the dissociation reactions are 
ATP-actin subunits; (c) below the critical concentration for each 
end the fraction of dissociating subunits with bound ATP is directly 
proportional to free monomer concentration/critical concentration 
and both ATP-actin and ADP-actin dissociate from the end at their 
characteristic rates. KCI-Mg-EGTA buffer as in Fig. 3. k+ ~ = 
11.6; kY r = 1.4; k+ vr = 1.3; k- vr = 0.8; k- pD = 0.27 as measured. 

the relative inertness of the pointed end below its critical con- 
centration. The sum of the rates at the two ends is almost 
identical if slightly different assumptions are made about the 
nucleotide composition at the pointed end. For example, if 
hydrolysis is tightly coupled to binding as proposed by Coue 
and Korn (1985), then below the critical concentration all 
of the dissociating subunits will have ADP and that part of 
the plot will be linear as observed (Coue and Korn, 1985; 
Carlier et al., 1986a). At or just above the critical concentra- 
tion the slope will change as a higher fraction of ends are oc- 
cupied by at least one ATP-actin. 

Similar calculations for actin in 1 mM MgC12, using the 
rate constants measured by electron microscopy for ATP-ac- 
tin and rate constants for ADP-actin proportional to those 
measured in KC1-MgCI2-EGTA, produce a dependence of 
polymerization rate on ATP-actin concentration remarkably 
similar to the observations of Carlier et al. (1985), except that 
the inflection in the positive arm is at 4 IxM rather than 11 
WVI. Carlier et al. (1985) selected 11 ItM actin for the inflec- 
tion point of the positive arm of their plots largely to include 
3 ~M as the value of the critical concentration for the 'ATP- 
equilibrium polymer,' I have used least squares linear regres- 
sion to fit their experimental data to a straight line and find 
that the fit is actually better with the inflection point between 
3 and 5 lxM rather than at 11 IxM, so my theoretical plots are 
consistent with their data. My model is also consistent with 
the absence of an inflection in the positive arm of such plots 
for Ca+÷-actin (Carlier et al., 1986b), since the critical 
concentrations at the two ends are the same (Pollard and 
Mooseker, 1981). 
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How well do the two models account for the available ex- 
perimental data? Both can explain the complex dependence 
of the elongation rate of bulk samples on the concentration 
of ATP-actin. My model is consistent with the linear depen- 
dence of the elongation rate at both ends on ATP-actin con- 
centration above the critical concentration (Figs. 3-5).  The 
Pantaloni model is not consistent with this data. Providing 
that my data are correct and given that the derivation of the 
Pantaloni model is formally correct, this inconsistency is 
probably attributable to error in one or more of the assump- 
tions required to formulate the model. The absence of a 
break in the positive arm of these plots (Figs. 3-5) also sug- 
gests that the concept of an "ATP-equilibrium polymer" un- 
der continuous sonication (Carlier et al., 1985) needs to be 
re-examined. The rate constants for binding and dissociation 
of ATP-actin to filaments at high elongation rates (where 
there must be a large ATP cap) give a critical concentration 
far below that observed during sonication. The exchange of 
subunits under sonication may include reactions (such as an- 
nealing and dissociations of ADP-actin from broken ends) 
that were not anticipated in the earlier study. The Pantaloni 
model is superior to mine in one way; it can account for the 
kinetic overshoot in the extent of polymerization in the pres- 
ence of capping proteins (e.g., Coue and Korn, 1985). My 
model does not speak to this interesting point. 

Events at Steady State 
The availability of the minimal set of eight rate constants for 
subunit association and dissociation at the two ends makes 
it possible to predict some of the events at steady state in 
ATE First, assuming that the concentration of ADP-actin is 
zero and using the rate constants in Table I one can calculate 
what fraction of terminal subunits would have to hydrolyze 
their ATP before dissociation to yield any steady-state criti- 
cal concentration. The result is that the hydrolysis rate con- 
stant must be <0.2 s -1 to account for the critical concentra- 
tion of 0.14 ~tM observed in bulk samples in KC1-MgClz- 
EGTA (Drenckhahn and Pollard, 1986). 

Second, the rate constants (Table I) can be used to put 
some limits on the subunit exchange rates. Since the critical 
concentrations differ at the two ends, there will be a flux of 
subunits from the barbed end to the pointed end, although 
the exact rate will depend on the rate of hydrolysis of ATP 
on the terminal subunits at each end of the filament, rates that 
are not yet established. Further, as discussed previously 
(Pollard, 1984), there will be minor fluctuations in the length 
of the barbed end when all of the terminal subunits occasion- 
ally have bound ADP and these subunits transiently dissoci- 
ate rapidly until the next ATP subunit binds to and stabilizes 
the end. The new rate constants show that the pointed end 
will be relatively stable, since the dissociation constants are 
low for both ATP- and ADP-actin, as first indicated by 
Coluccio and Tilney (1983). 
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Note Added in Proof. Readers of this paper will be intercsted in a new paper 
(from Keisor, T., A. Schiller, and A. Wegner, 1986, Biochemistry, 
25:4899-4906) titled "Nonlinear increase of elongation rate of actin fila- 
ments with actin monomer concentration7 These authors consider some 
new models to explain the complex properties of the actin filament elonga- 
tion reaction. 
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