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Abstract. The rate constrained block matching algorithm (RCBMA)
jointly minimizes displaced frame difference (DFD) variance and en-
tropy, or conditional entropy of motion vectors for determining the
motion vectors. It is intended for use in low rate video coding appli-
cations, where the contribution of the motion vector rate to the over-
all coding rate might be significant. The DFD variance versus motion
vector rate performance of RCBMA employing size K 3 K blocks is
shown to be superior to that of the conventional minimum distortion
block matching algorithm (MDBMA) employing size 2K 3 2K
blocks. Constraining of the entropy or conditional entropy of motion
vectors in RCBMA results in smoother and more organized motion
vector fields than those output by MDBMA. The motion vector rate
of RCBMA can also be precisely controlled for each frame by ad-
justing a single parameter. © 1998 SPIE and IS&T.
[S1017-9909(98)02301-0]

1 Introduction

In motion estimation for video coding, the widely reco
nized minimum distortion block matching algorithm
~MDBMA ! minimizes the displaced frame differenc
~DFD! variance between two frames. Consider a tempor
predicted target framet and a reference framer in a video
sequence, as illustrated in Fig. 1. Let a block of sizeK
3K with upper left cornerP in frame t be denoted by
Bt(P), and the vectorized intensity values of the pixels in
be denoted byXt(P). The upper left corners of the block
in frame t are at the vertices of a uniform grid,V(m,n)

5(mKnK)†, where † indicates a transpose operation. T
index combination (m,n) assumes value in a finite se
(m,n)PG . The motion model for MDBMA assumes un
form, translational motion of rigid objects rather than ro
tional motion, camera zooming, or occlusion effects, so t
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the same motion vectord (m,n) is assigned to all pixels
within a particular block in framet, d(P)5d (m,n) if P
PBt (V(m,n)). In exhaustive search MDBMA the motio
vectord (m,n) minimizes the cost functionC(m,n)

MD (j) among
all the candidate motion vectorsj in the search areaS 0 ,

C~m,n!
MD ~j!5d~Xt~V~m,n!!,Xr~V~m,n!2j!! ~1!

d~m,n!5arg min
jPS 0

C~m,n!
MD ~j!. ~2!

Without loss of generality, the search area is taken to b
squareS 0 of side length 2a concentric with the block
Bt(Vm,n) and the distortion metric,d(.,.), isinduced by the
Euclidean norm. In Eq.~2! each K2 dimensional vector
Xt(V(m,n)), made up of the pixel intensity values in a siz
K3K block in frame t, is matched with theK2 dimen-
sional vectorXr(V(m,n)2d (m,n)), made up of the pixel in-
tensity values in a sizeK3K block with upper left corner
V(m,n)2d (m,n) in the reference framer . Figure 1 illustrates
the relationship established by the candidate motion ve
j between the two vectors of intensity values. Since
search area in the reference framer is centered at the vecto
j50, the vectors in the set$Xr(V(m,n)2j):jPS 0% are
most likely highly correlated withXt(V(m,n)). MDBMA
resembles an adaptive minimum distortion vector quant
tion scheme. However, in conventional vector quantizat
a single codebook is used to code all the vectors of int
sity values ~source vectors! in frame t, whereas in
MDBMA a unique codebook is used to code each vector
intensity values in framet. Let S 1,05$jPS 0 :p(j).0%,
where p(•) is the probability mass function~pmf!.
MDBMA partitions the set of vectors of intensity value
~source vectors! of a frame intouS 1,0u clusters, each of
which is associated with a different motion vector~code-
vector index! with nonzero occurrence probability. Henc
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the motion vector index for each block can be conveyed
the receiver at a rate of log2uS 1,0u bits per motion vector by
a fixed-rate code.

A better alternative to fixed-rate coding of the motio
vectors is the variable-rate entropy coding of the motio
vectors, in which case the motion vectors$j:jPS 1,0% are
assigned variable length entropy codewords with a sho
expected length. One might assume that the motion pres
in each frame is concentrated only in certain directions a
magnitudes without exhausting all possibilities~i.e.,
uS 1,0u!uS 0u!. Under this assumption the entropy code
word lengths or probabilities can be transmitted on a fram
by-frame basis at a negligible overhead rate for frame ad
tive entropy coding of motion vectors. Considerably lo
motion vector rates can be achieved by frame adaptive
tropy coding of motion vectors estimated by MDBMA
However, MDBMA imposes no constraints on the entrop
contribution of individual motion vectors, as they are d
termined by the minimum-distortion search. A candida
motion vector may be chosen over another candidate m
tion vector with significantly less contribution to entrop
and slightly more contribution to distortion. As a result, th
generated motion vector field is not smooth and conta
numerous spurious motion vectors.

1.1 Rate Constrained Block Matching Algorithm

Entropy coding of motion vectors can yield even bett
motion vector compression performance if the motion ve
tors generated by MDBMA were not so noisy and so d
continuous at the boundaries of moving objects. In this p
per the discontinuity problem is addressed by partitioni
the set of motion vectors of a frame into two classes. F
the class ofpredictablemotion vectors, which are highly
correlated with their neighbors, the spatial prediction err
vectors of motion vectors are entropy coded~or in a re-
stricted sense, the motion vectors are conditional entro
coded!. The class ofunpredictablemotion vectors are sim-
ply entropy coded.~Note that the names given to the
classes may not be truly representative of all the moti
vectors and are merely used to distinguish between the s
cific actions taken for the constituents of each class.! The

Fig. 1 Relationship between the motion vector and the vectors of
intensity values (pixel blocks) in the target and reference frames.
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motivation here is to exploit the local trends~in the form of
correlation! in the motion vector field for the predictabl
motion vectors and global trends in the motion vector fie
for the unpredictable motion vectors. The minimized co
function for each block incorporates either an entropy o
conditional entropy constraint term. Imposing a constra
on entropy or conditional entropy helps reduce the dis
derliness and noise in the motion vector field. In ma
respects the rate constrained block matching algorit
~RCBMA! shares similarities with entropy constrained ve
tor quantization~ECVQ!,1 and conditional entropy con
strained vector quantization~CECVQ!2 algorithms.

Entropy or conditional entropy coding requires entro
or conditional entropy decoding tables to be constructed
the receiver. The approach adopted here is the frame a
tive transmission of three first order pmfs that are used
construct these tables at the receiver. Transmission of o
first order pmfs is critical for keeping the overhead ra
low. The approximations used to derive these functions w
be explained in the following sections.

RCBMA allows the user to control the rate allocated
the motion vectors of each frame. Ideally the distribution
the overall rate to motion vectors and DFD compress
must be optimized. However, this is a difficult problem
since the coding characteristics of DFD is dependent on
coding characteristics~or rate! of the motion vectors in a
not-so-easily tractable manner. Therefore, in this work, r
control is employed on a frame by frame basis and is o
used for targeting a desired rate at which performance c
parisons can be made with MDBMA.

1.2 Related Approaches for Constraining the Rate
of Motion Vectors

Motion vector quantization~MVQ!3,4 constrains the size o
the index setuS 1,0u by a clustering algorithm similar to the
Linda, Buzo, Gray~LBG! algorithm. The motion vector
fields obtained by this technique are smoother than th
obtained by MDBMA. Yet, a size constraint on the motio
vector set is equivalent to a fixed-rate constraint and d
not ensure a distinct rate-distortion advantage o
MDBMA when the motion vectors are entropy code
Macro motion vector quantization~MMVQ !3 extends the
MVQ approach. The correlations between motion vect
of neighboring blocks are better exploited by constrain
the size of the set of their joint occurences.

A variable-length tree-structured segmentation alg
rithm can be used to determine the best spatial resolutio
the motion vectors for region based very low rate vid
coding. A similar idea has also been employed for varia
block size motion estimation by variable length quadtr
structures.6 In both of these approaches the generated v
able length tree structures are rate constrained, reminis
of variable length tree structured vector quantizati
codebooks.7,8 The rate includes the contribution due to th
compression of DFD, and correspondingly, distortion is
variance of the quantization error of DFD. Although th
variable length tree structures are rate constrained, the
cess employed to map a block to a node of the tree attem
to minimize only distortion.

Explicit rate constraints have previously been incorp
rated into the cost function of block matching.9,10,11 In
Stiller and Lappe,9 the cost function minimized is heuristi
erms of Use: http://spiedl.org/terms
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Downl
cally derived and is not optimal in the rate-distortion sen
The cost functions used in Chung, Kossentini, and Smi10

and Hoang, Long, and Vitter11 incorporate rate constraint
similar to ours. In Chung, Kossentini, and Smith10 only the
most probable motion vectors are tested in a descen
order to determine the best motion vector by compar
their cost function values against experimentally det
mined thresholds. The entropy constraints for estimat
and the entropy codes for transmitting the motion vect
are not adapted to their occurence frequencies, which
with the particular sequence or particular frame of the
quence coded, or with the coding rate. While this appro
conforms to fixed entropy coding/decoding in the intern
tional standards such as MPEG-2 and H.263, we main
that the adaptive transmission of first order pmfs at a l
overhead rate is not only feasible, but also makes entr
constraining and coding more efficient and obviates t
restriction.

2 Predictable Motion Vectors

By definition, a predictable motion vector is highly corr
lated with its neighbors and also with the prediction vec
d̂ (m,n) for the motion vector. Therefore the prediction err
vector for a predictable motion vectord (m,n) should lie in a
small search areaS 1(0I) centered at the zero vector 0I .
Without loss of generality, the smaller search area for
prediction error vector is taken to be a square of sizeb
32b and centered at the zero vector such thatS 1(0I)
5@2b,b#3@2b,b# with b,a. This definition is used
consistently throughout this paper. The spatial relations
betweenS 0 ~the search area for a motion vector!, and

S 1( d̂ (m,n)) ~the smaller search area for a predictable m
tion vector!, is depicted in Fig. 2.

The overall cost functional minimized for predictab
motion vectors between target and reference frames
then be written asJ15D11mR1 . D1 is the DFD variance
of target frame blocks with predictable motion vectors.R1
is the entropy of the spatial prediction error vectors of p
dictable motion vectors~or the conditional entropy of mo
tion vectors! in S 1(0I).

Motion vector information is conveyed to the receiv
row by row, each row scanned from left to right. Th
neighboring motion vectors outside the nonsymmetric h
plane ~NSHP! support are not available to the receiv
when the current motion vector is determined. The nei
boring motion vectors to the left and to the top~d (m21,n)

andd (m,n21) respectively! have the highest correlation wit

Fig. 2 Spatial relationship between the two search areas.
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the motion vector of the current block (m,n). For a first

order prediction, the prediction vectord̂ (m,n) for the current
block is obtained as the MAP estimate of the current m
tion vector from the neighboring motion vectors to the le
and to the top,

d̂ ~m,n!5arg max
jPS 0

p~jud~m21,n! ,d~m,n21!!. ~3!

The set of conditional probabilities$p(jud (m21,n) ,
d (m,n21))% for each possible pair (d (m21,n) ,d (m,n21)) must
be available at the receiver so that it can track the esti
tion process. This is usually not feasible with a moderat
largeS 0 due to the order of the product space underlyi
the conditional pmf. The conditional pmf may be approx
mated by the product of horizontal and vertical margina

p~@jud~m21,n! ,d~m,n21!!.ph~jud~m21,n!!pv~jud~m,n21!!

.pi~jud~m21,n!!pi~jud~m,n21!!,

~4!

where the conditional pmf is further assumed to be isot
pic in the second approximation. These approximations
duce the order of the product space by 1.

Once the prediction for the current motion vector
made in this manner, the conditional entropy constrain
cost function for block (m,n) is written as

C~m,n!
CEC ~j!

5H d~Xt~V~m,n!!,Xr~V~m,n!2j!!2m log2 p~jud̂ ~m,n!!

for jPS 1~ d̂~m,n!!ùS 0

` for jPS 0\S 1~ d̂~m,n!!

,

~5!

whereS 1(P)5$t1P:tPS 1(0I)%.
This cost function incorporates the transmission cos

the predictable motion vector given by its conditional e
tropy codeword length2 log2@p(jud̂(m,n))#. Spatial prediction
error vectors outside of the search areaS 1(0I) are automati-
cally disregarded by setting the cost function to infinit
The blocks with such large spatial prediction error vect
are classified as unpredictable as is discussed in the fol
ing two sections. Also, whenm50, it is worth noting that
the above cost function reduces to that of MDBMA@Eq.
~1!#.

The conditional pmfp(juz) for all zPS 0 must also be
available at the receiver for entropy coding/decoding.
keep the overhead rate low, the conditional pmfp(juz) also
governs spatial prediction by lettingpi(juz)5p(juz). By
Bayes’s rule

p~juz!5
p~zuj!p~j!

(jPS 0
p~zuj!p~j!

. ~6!

The equalityp(zuj)5pn(z2j) is valid for some first order
pmf pn(•) when the joint probability density function forz,
j is Gaussian. Hence the conditional pmf can be appro
Journal of Electronic Imaging / January 1998 / Vol. 7(1) / 147
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mated by the first order pmfp(zuj).pn(z2j), allowing
us to work with spatial prediction error vectors of the for
j2z.

3 Unpredictable Motion Vectors

Classification of all the motion vectors as predictable le
to large prediction errors at the boundaries of moving
jects or at places of nonuniform motion as a result of ro
tion or zooming of camera. The global information in th
motion vector field may also be more important for a p
ticular motion vector than the local information from i
neighboring motion vectors. The cost functional minimiz
for the class of unpredictable motion vectors between ta
and reference frames can be written asJ25D21mR2 . D2
is the DFD variance of blocks with unpredictable moti
vectors.R2 is the rate of transmission of the unpredictab
motion vectors inS 0 . The entropy constrained cost fun
tion for block (m,n) is written as

C~m,n!
EC ~j!5d~Xt~V~m,n!!,Xr~V~m,n!2j!!2m log2 p~j!.

~7!

This cost function incorporates the transmission cost of
unpredictable motion vector given by the entropy codew
length2 log@p(j)#.

4 Classification and Block Matching

If p(j).p(jud̂ (m,n)) then C(m,n)
EC (j),C(m,n)

CEC (j) for

jPS 1( d̂ (m,n))ùS 0 follows from comparing Eq.~5! with
Eq. ~7!. Hence the class bit of the candidate motion vec
j for block (m,n) is set as

z~m,n!~j !5H 0 if p~j!.p~jud̂ ~m,n!!

1 otherwise
, ~8!

for jPS 1( d̂ (m,n))ùS 0 , and as

z~m,n!~j !50 ~9!

for jPS 0\S 1( d̂ (m,n)). The overall cost function is define
as

C~m,n!~j !5H C~m,n!
EC ~j! if z~m,n!~j !50

C~m,n!
CEC ~j! otherwise

, ~10!

which is minimized by the motion vectord (m,n) as

d~m,n!5arg min
jPS 0

C~m,n!~j !. ~11!

The class bit map is the set of class bits for all blocks a
is denoted as$z(m,n)(d (m,n))%.

4.1 Modifications of pmfs for Entropy Coding and
Decoding

Once the set of bits$z(m,n)(j):jPS 0ùS 1( d̂ (m,n))% is de-
termined for a block with index (m,n), the estimates

$p(j)% and $p(jud̂ (m,n))% are modified prior to entropy
148 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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coding/decoding to prevent the overlap of nonzero pr
abilities of candidate motion vectors under differe
classes.

p8~jud̂ ~m,n!!5H a1
21p~jud̂ ~m,n!!

0

if z~m,n!~j !51
otherwise , ~12!

wherea1512($t :z(m,n)(t)50%p(tud̂ (m,n)) and

p8~j!5 H a2
21p~j!

0
if z~m,n!~j !50
otherwise , ~13!

wherea2512($t:z(m,n)(t)51%p(t).

5 RCBMA Motion Estimation Algorithm

The RCBMA algorithm iteratively estimates th
motion vectors$d (m,n) :(m,n)PG % and the sets of prob
abilities $p(j):jPS 0%, $pn(g):gPS 1(0I)%, pCEC51
2pEC5Pr$z(m,n)(d (m,n))51%. The probabilities are esti
mated from the observed frequencies of motion vectors
their prediction error vectors, and are, in turn, used to fo
the rate constraint terms in the cost functions and spa
predictor at the next iteration to yield a new set of moti
vectors.

The first part of each iteration consists of three stag
For block (m,n), the first stage is the prediction ofd̂ (m,n) .
Several special circumstances are handled in differ
ways. For instance, if the two neighboring motion vecto
conflict with each other~i.e., p(jud (m21,n))p(jud (m,n21))
50), then the spatial prediction vector for the current m
tion vector is their mean instead of the MAP estimate giv
by Eq. ~3!. In the second stage, the class bits$z(m,n)(j):j
PS 0% and the overall cost function$C(m,n)(j):jPS 0% are
evaluated in accordance with Eqs.~8! and~9! and Eqs.~5!,
~7!, and ~10!. Then the minimum ofC(m,n)(j) over all
jPS 0 is determined by Eq.~11! to yield d (m,n) . RateR,
distortionD, and total costJ for framet are updated by the
contributions of block (m,n) before the next block is pro
cessed. After the motion vectors for all blocks are det
mined in this manner,R and J are further corrected by
DRov , the overhead rate for the transmission ofpCEC ,
$p(j):jPS 0%, $pn(g):gPS 1(0I)%. The computation of
DRov will be explained in Section 7.

The second part of each iteration is the estimation of
probabilities from the observed frequencies. LetNj

5u$(m,n):d (m,n)5j%u, Ng
CEC5u$(m,n):z(m,n)(d (m,n))51,

d (m,n)5g1 d̂ (m,n)%u, and N5uG u5(jPS 0
Nj , NCEC

5(gPS 1(0I)Ng
CEC , where u•u denotes cardinality.$p(j):j

PS 0%, $pn(g):gPS 1(0I)% andpCEC are determined from
frequencies as

p~j!5
Nj

N
, pn~g!5

Ng
CEC

NCEC , pCEC5
NCEC

N
. ~14!

The total costJ, total distortionD, and total rateR can
be expressed as
erms of Use: http://spiedl.org/terms
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J5J11J21mDRov5
1

K2N (
m,n

C~m,n!~d~m,n!!1mDRov ,

~15!

D5
1

K2N (
m,n

d~Xt~V~m,n!!,Xr~V~m,n!2d~m,n!!!, ~16!

R52
1

K2N S (
$m,n:z~m,n!~d~m,n!!51%

log2

3@pCECp~d~m,n!ud̂ ~m,n!!#

1 (
$m,n:z~m,n!~d~m,n!!50%

log2@~12pCEC!pd~~m,n!!] !

1DRov , ~17!

whereC(m,n)(d (m,n)) in Eq. ~15! is defined by Eqs.~10!,
~7!, and~5!.

For a givenm, J decreases for the first few iterations a
either converges to or oscillates around a final value for
rest of the iterations. There is no guarantee thatJ will
monotonically decrease with the iteration number. The
fore RCBMA is terminated after a predetermined numb
of iterations. Let* indicate the best iteration with the sma
est total cost J* . The set of motion vectors
$d (m,n)* :(m,n)PG %, class bit map$z(m,n)* (d (m,n)* ):(m,n)
PG % and the set of probabilities$pn* (g):gPS 1(0I)%,
$p* (j):jPS 0%, pCEC* are transmitted.

The computational complexity of the algorithm can
kept low by storing $d(Xt(V(m,n)),Xr(V(m,n)2j)):j
PS 0 ,(m,n)PG %. During each iteration, the distance va
ues can be read off from a table for the evaluation of
cost functions.

6 Rate Control Mechanism

The motion vector rate for a particular frame can be c
trolled to fall within a target rate interval, (Rt1 ,Rt2#, by
varying the constraint parameterm. Increasingm usually
results in a decrease in the motion vector rate (R* ) and
vice versa. The waym is varied is governed by the rat
control mechanism, which is described next.

The mechanism is started with a givenm5m1. After
each runj 21 of RCBMA, the constraint parameterm j for
the current run is set equal tokm j 21 if the output rate of
RCBMA from the previous run,R

*
j 21 , is above the targe

interval (Rt1 ,Rt2#, and is set equal tom j 21/k if R
*
j 21 is

below the target interval.k is a constant and satisfiesk
.1. If R

*
j 21 falls inside the target interval, the rate contr

mechanism is terminated after a final run of RCBMA.
R

*
j 21 andR

*
j 22 are on opposite sides of the target interv

m j is set equal to the geometric mean ofm j 21 andm j 22. In
this casek is reduced in magnitude. Ifk,11e, wheree is
a small constant, change fromm j 21 to m j is negligible and
the mechanism is terminated.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/10/2013 T
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7 Computation of Overhead Rate DRov for
Adaptive Transmission of Probabilities

A fixed-rate code is used to adaptively transmit the sign
cant probabilities. Firsts̄5max$j:p* (j).0%uju is transmitted
with full precision. Next a significance map fo

$p* (j):uju< s̄% is transmitted. Specifically 1 is sent

p* (j).0, and 0 is sent ifp* (j)50 for jP$j:uju< s̄%.
Finally $p* (j):p* (j).0% are coded with high precision
~12 bits perj! and transmitted. The same method is a
used to transmit$pn* (g)% andpCEC* .

As it may be desirable for rate control,DRov increases
as the overall rateR* increases and decreases asR* de-
creases. This is due to the fact that largem forces the first
order pmfs,p* (j) andpn* (g), to be concentrated at or nea
j50 andg50, respectively.

Note that $p* (j):jPS 0% are also transmitted in the
same fashion for MDBMA. The increase in overhead ra
for RCBMA over that of MDBMA is due to the additiona
transmission of $pn* (g):gPS 1(0I)%, which is usually
small.

8 Simulations

In this section we provide performance comparisons
tween the RCBMA and MDBMA. All simulations are per
formed with an exhaustive search of the search area
half-pixel accuracy. Search areaS 05@27,7#3@27,7# is
used for both algorithms to allow a fair compariso
RCBMA is only tested on sequences with motion lo
enough to be sufficiently represented with vectors inS 0 .
More challenging sequences such as ‘‘Flower Garde
‘‘Table Tennis,’’ and ‘‘Football’’ have not been coded
since an exhaustive search of a sufficiently large sea
area was too time consuming and/or these sequences
large areas of occluded regions or objects.

8.1 Operational Distortion Rate Characteristics for
Selected Frame Pairs

In this section the operational distortion-rate~DFD variance
versus motion vector rate! characteristics obtained by th
application of the RCBMA algorithm on selected pairs
original frames from several image sequences are analy
The operational distortion-rate characteristics for two s
cial cases of the RCBMA algorithm are also reported.
the first special case, all motion vectors are classified in
predictable class~by lettingz(m,n)(j)51, ;(m,n), ;j! and
are conditional entropy coded and constrained using
~5!. In the second special case, all motion vectors are c
sified in the unpredictable class and are unconditional
tropy coded and constrained using Eq.~7!. The classifica-
tion decision making is bypassed for the special cases.

The characteristics obtained for the frame pa
Trevor001-002, Salesman000-002, and Claire000-002,
the application of the RCBMA algorithm and the two sp
cial cases, are shown in Figure 3. These characteris
have been traced using the rate control mechanism ini
ized with m1510, k51.25, andRt250. The block size
was 838 and the search area for the prediction error vec
was S 1(0I)5@22,2#3@22,2#. Two other distortion-rate
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Fig. 3 Variation of (motion vector estimation) distortion with (motion vector) rate for various rate
constraint scenarios. h represents the first case; , is the second case; — represents RCBMA; * is the
frame difference replenishment; and s represents MDBMA. (a) Trevor001–002; (b) Claire000–002;
and (c) Salesman000–002.
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points, corresponding to frame-difference replenishm
~zero rate! and entropy coded MDBMA with size 16316
blocks, are also shown in all three plots.

The curve for the two class RCBMA algorithm lies b
low the ones for the special one class cases, showing
importance of classification of the motion vectors as p
dictable or unpredictable and employing both conditio
~for predictable motion vectors! and unconditional~for un-
predictable motion vectors! entropy coding and constraints
It can be seen that as rate steadily decreases for the se
special case, distortion gracefully increases. However,
plot for Trevor001-002 indicates that the performance
MDBMA with size 16316 blocks may still turn out to be
better, and MDBMA might be more advantageous to u
due to its simplicity. For example at the same rate
MDBMA, the second special case yields an improvem
over MDBMA of 0.7 dB for Claire000-002 and 0.47 dB fo
Salesman000-002, and is inferior to MDBMA by 0.38 d
for Trevor001-002. Exploiting only the global informatio
in the motion vector field may not be sufficient.

If the increase in complexity is not an issue for the a
plication, performance can be improved for the second c
rnal of Electronic Imaging / January 1998 / Vol. 7(1)
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by exploiting the memory between some size 838 blocks
with the two class RCBMA algorithm. For example, at th
same rate as MDBMA, RCBMA yields the same DFD va
ance for Trevor001-002, while the PSNR gains f
Claire000-002 and Salesman000-002 are 1.39 dB and
dB, respectively.

On the other hand, the first special case employing o
conditional entropy coding and constraint leads to un
ceptably poor performance, and the rate and distortion
not tractable by the adjustment ofm. Even the convex hull
of the distortion-rate pairs for the first special case l
above the other two characteristics for the three selec
frame pairs.

8.2 Video Coding Simulations

In this section results are presented and summarized fo
motion estimation/compensation and subsequent comp
sion of the DFD frames of several video sequences. Imp
tant parameters about the simulations are summarize
Table 1. Let the motion vector rate output by MDBMA b
RT . The rate control mechanism has been operated w
erms of Use: http://spiedl.org/terms
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Table 1 Video coding simulations and parameters.

Sim. Sequence Frame Frame Block size S 1(0I ) size SPIHT

No. Name Dim. Freq. MDBMA RCBMA for RCBMA Rate (bpp.)

1 Claire 3523288 15Hz 16316 838 939 0.025

2 Missa 3523288 15Hz 16316 838 939 0.025

3 Salesman 3523288 15Hz 16316 838 939 0.040

4 Caltrain 5123400 30Hz 16316 838 939 0.040

5 Caltrain 5123400 30Hz 83 8 434 535 0.040

6 Susie 3523240 30Hz 16316 838 939 0.040

7 Susie 3523240 30Hz 83 8 434 535 0.040

8 Trevor 2563256 30Hz 16316 838 939 0.040
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Rt150.95* RT , andRt251.05* RT for Simulations 3 and 6,
and withRt150.9* RT andRt251.0* RT for the other simu-
lations. Since only the memory between adjacent block
exploited by spatial prediction, RCBMA block dimension
are half of those of MDBMA to allow a fair comparison.

In motion compensated predictive video coding DF
frames have to be compressed and coded with reason
efficiency so that the reconstruction quality does not
grade throughout the sequence. Ideally the technique
must take full advantage of the roughness of the DFD sp
trum. In this work, set partitioning in hierarchical tree
~SPIHT! coding method,12 which efficiently allocates bits
to the subbands of a low-pass spectrum and exploits
dependencies between the subbands, has been used to
DFD.

The output bit stream of the SPIHT coder, the unpred
able motion vectors, the prediction error vectors of pred
able motion vectors, and the class bits are all adaptive a
metic coded. The details of arithmetic coding of DF
compressed with SPIHT can be found in Said a
lectronicimaging.spiedigitallibrary.org/ on 04/10/2013 T
s

le

d
-

e
ode

-

Pearlman.12 The spatial prediction vector for the motio
vector and/or the class bit information yields the pm
p8(jud̂ (m,n)), p8(j) used for arithmetic coding/decoding o
each motion vector, or its spatial prediction error vector.
this operation, the total number of bits, output by the ari
metic coder for the motion vectors of a frame, appro
mates the sum of the ideal codeword lengths for the p
dictable and unpredictable motion vectors and class bit
that frame. ~The ideal codeword length ofj is
2 log2 p8(jud̂(m,n)) for a predictable and2 log2 p8(j) for an
unpredictable motion vector. The ideal codeword length
class bit z is 2 log2(Pr$z(m,n)(d(m,n))5z%).) The fixed-rate
coded probability estimates are also transmitted with
method outlined in Section 7.

Table 2 summarizes the average values of the PSNR
rate curves before and after the coding of DFD for each
the simulations in Table 1. Curves for two of the simul
tions are also plotted in Figure 4. RCBMA with size
38 blocks has a better temporal estimation performa
Table 2 Average PSNR and rate (before and after SPIHT coding of DFD) for the simulations in Table
1.

Sim. Motion Est. Avg. Motion Avg. Motion Avg. Total Avg. Frame

No. Method Vec. Rate (bpp) Est. PSNR Rate. (bpp) Reconst. PSNR

1 MDBMA 0.0445 37.2641 0.0695 38.5900

RCBMA 0.0406 38.5674 0.0656 39.6163

2 MDBMA 0.0563 36.8680 0.0813 37.8779

RCBMA 0.0506 37.8844 0.0756 38.6014

3 MDBMA 0.0204 33.6742 0.0604 34.9613

RCBMA 0.0185 34.2458 0.0585 35.3424

4 MDBMA 0.0308 29.0304 0.0708 30.0852

RCBMA 0.0282 29.5367 0.0682 30.2163

5 MDBMA 0.1310 30.7097 0.1710 31.4461

RCBMA 0.1242 32.1570 0.1642 32.6794

6 MDBMA 0.0429 33.3571 0.0829 34.6414

RCBMA 0.0394 33.8494 0.0794 34.7800

7 MDBMA 0.1505 34.7814 0.1905 35.8006

RCBMA 0.1348 35.6849 0.1748 36.4429

8 MDBMA 0.0361 32.3899 0.0761 33.3252

RCBMA 0.0308 32.7133 0.0708 33.5227
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Fig. 4 Comparison of MDBMA (16316 blocks) with RCBMA (838 blocks) and variation of PSNR and
rate (before and after SPIHT coding) with frame number. , represents MDBMA motion estimation
PSNR and motion vector rate; 3 is RCBMA motion estimation PSNR and motion vector rate; h

represents MDBMA1SPIHT reconstructed frame PSNR and total rate; and s is RCBMA1SPIHT
reconstructed frame PSNR and total rate. (a) Simulation 1 (‘‘Claire’’) and (b) Simulation 3 (‘‘Sales-
man’’).
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than MDBMA with size 16316 blocks. This is largely due
to the fact that both local and global information about t
motion vector field are exploited. For the six simulatio
employing RCBMA with size 838 blocks, average motion
estimation gains in the range of 0.32 to 1.30 dB ov
MDBMA have been obtained with a lower average moti
vector rate than that for MDBMA. The average gains
some cases are even higher if one ignores the first
frames of each sequence when computing the avera
Simulations on sequences with more uniform motion a
less occlusion such as ‘‘Missa’’ and ‘‘Claire’’ have yielde
the larger gains. A comparison of the result for Simulatio
5 and 7 with those for Simulations 4 and 6 indicates
appreciable increase in motion estimation advantage
RCBMA compared to MDBMA when smaller size block
are used. However, the use of smaller size blocks may
be justifiable for MDBMA or for RCBMA if the gain in
52 / Journal of Electronic Imaging / January 1998 / Vol. 7(1)
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motion estimation PSNR is offset by a large increase
motion vector rate.

The quantitative performance advantage of RCBMA
also accompanied by the improvement in visual video s
nal quality. For example, for Simulation 1 with MDBMA
reported for ‘‘Claire,’’ large blockiness and distortion o
the chin and cheek areas of the woman’s face was
served, which became very distracting and unpleasant
tween frames 90 to 100. There was also some flickerin
the boundary between the arms, shoulder, and the sta
ary background. For Simulation 1 with RCBMA reporte
for ‘‘Claire,’’ only slight flickering at the chin boundary
and even less flickering at the boundary between the ar
shoulder, and the stationary background was observed.
Simulation 6 reported for ‘‘Susie,’’ both motion estimatio
methods resulted in blockiness at the boundary of the f
with the background. The size 16316 MDBMA blocks
erms of Use: http://spiedl.org/terms
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could actually be distinguished. Blockiness was less d
tracting for RCBMA, since the size of RCBMA blocks ar
a quarter of the size of the MDBMA blocks and the reco
struction PSNR was higher. For Simulation 7 reported
‘‘Susie,’’ smooth reconstruction with very small visibl
granular distortion on the face was achieved with RCBM
MDBMA yielded better visual results in Simulation 7 tha
in Simulation 6 due to the small size blocks, but distorti
was still largely visible on the face of ‘‘Susie.’’ This be
came quite distracting between frames 40 to 60. For Sim
lation 8 reported for ‘‘Trevor,’’ both algorithms yielded
large distortion in the form of blur, and the stripes of t
shirt were not distinguishable in both cases. Backgrou
near the human figure boundary was more blurry, a
blockiness along the left arm was more conspicuous
MDBMA.

Figure 5 shows the DFD frames and Figure 6 shows
final reconstructed frames obtained with MDBMA and wi
RCBMA for Claire092. DFD frame obtained with RCBMA
has noticeably less energy content. Figure 7 displays
motion vector fields output by MDBMA and RCBMA fo
Claire092. Although RCBMA employs small size (838)
blocks, the motion vectors for these blocks are much m
organized than those for the large size (16316) blocks of
MDBMA. As a result, the motion vector fields of RCBMA

Fig. 5 DFD frames between Claire090-092 in Simulation 1: (a)
MDBMA and (b) RCBMA.

Fig. 6 Final reconstructed Claire092 in Simulation 1: (a) MDBMA
and (b) RCBMA.
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have fewer spurious motion vectors than those
MDBMA. Nevertheless, RCBMA does not completely pr
vent some of the stationary blocks with little detail fro
getting assigned nonzero motion vectors.

9 Conclusion

This paper has extended the minimum distortion mot
vector estimation technique of MDBMA by incorporatin
rate constraint terms into the cost function of estimation.
RCBMA, the imposed rate constraint for a motion vector
either conditional or unconditional depending on its p
dictability from its neighbors. The algorithm alternating
and iteratively estimates the probabilities~rate constraint
terms! and the motion vectors, and transmits the estima
probabilities as overhead for frame adaptive entro
coding/decoding. It allows the motion vector rate to
gracefully traded off for DFD variance and either to b
controlled and set at a desired level. Simulations on vari
sequences have shown significant visual improvemen
video quality as well as rate-distortion performance w
RCBMA employing sizeK3K blocks over MDBMA em-
ploying size 2K32K blocks. Motion vector fields outpu
by RCBMA are also smoother and more organized.
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