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the same motion vectob, ) is assigned to all pixels

Abstract. The rat trained block matching algorithm (RCBMA, . : . _
oo e rate constrained block matching algorithm ( ) within a particular block in frame, 6(P)= 6y n) if P

Jjointly minimizes displaced frame difference (DFD) variance and en-

tropy, or conditional entropy of motion vectors for determining the €Bi(V(m,n))- In exhaustive search MDBMA the motion
motion vectors. It is intended for use in low rate video coding appli- vector s minimizes the cost functiocMP (£€) among
cations, where the contribution of the motion vector rate to the over- (m.n) (m,n)

all coding rate might be significant. The DFD variance versus motion all the candidate motion vectogsin the search area’,
vector rate performance of RCBMA employing size K X K blocks is

shown to be superior to that of the conventional minimum distortion MD

block matching algorithm (MDBMA) employing size 2K X 2K C(m,n)( &)= d(xt(v(m,ﬂ)) ’Xr(v(m,n) —£) ()
blocks. Constraining of the entropy or conditional entropy of motion

vectors in RCBMA results in smoother and more organized motion . MD

vector fields than those output by MDBMA. The motion vector rate S(mm=arg min Ci,(€). )
of RCBMA can also be precisely controlled for each frame by ad- e’y

justing a single parameter. © 1998 SPIE and IS&T.

[S101779909(98)02301-0] Without loss of generality, the search area is taken to be a

square.” of side length 2 concentric with the block
1 Introduction Bi(Vm,n) and the distortion metricj(.,.), isinduced by the

| i timation f id di the widel Euclidean norm. In Eq(2) eachK? dimensional vector
n motion estimation for video coding, the Widely recog- Xi(V(m,n)), made up of the pixel intensity values in a size

nized minimum distortion block matching algorithm . . . 2 &
(MDBMA) minimizes the displaced frame difference KK block in framet, is matched with the< dimen-

(DFD) variance between two frames. Consider a temporally Sional vectorX;(V(mn = 8(m,n)), made up of the pixel in-
predicted target frameand a reference framein a video ~ tensity values in a siz& XK block with upper left corner
sequence, as illustrated in Fig. 1. Let a block of size  V(mn)~ &(m,n) in the reference frame. Figure 1 illustrates
XK with upper left cornerP in framet be denoted by the relationship established by the candidate motion vector
B:(P), and the vectorized intensity values of the pixels in it ¢ between the two vectors of mtensny values. Since the
be denoted by,(P). The upper left comers of the blocks search area in the reference framie centered at the vector
t . _ . _ . o
in frame t are at the vertices of a uniform gridY/(, ¢=0, the vectors in the sefX(Vnnm—£):¢c./o} are

=(mKnK)', where 1 indicates a transpose operation. The most likely highly correlated WithX(V(m,n). MDBMA
index combination if1,n) assumes value in a finite set resembles an adaptive minimum distortion vector quantiza-

. . -~ tion scheme. However, in conventional vector quantization
(m,n) e .#. The motion model for MDBMA assumes uni- d

, ) - X a single codebook is used to code all the vectors of inten-
form, translational motion of rigid objects rather than rota-

i | moti . lUsi ffect th tsity values (source vectods in frame t, whereas in
lonal motion, camera zooming, or occlusion efiects, so thaty A 5 unigue codebook is used to code each vector of

intensity values in frame. Let.””, ,={&e.”:p(&)>0},
where p(-) is the probability mass function(pmf).
MDBMA partitions the set of vectors of intensity values
(source vectopsof a frame into|.v"; ¢ clusters, each of
Paper VCP-02 received Sep. 1, 1997; accepted for publication Oct. 1, 1997. which i_S assoc_iated with a different motion V?_C(ODde-
1017-9909/98/$10.00 © 1998 SPIE and IS&T. vector index with nonzero occurrence probability. Hence

*Awarded “Best Student Paper” at the IS&T/SPIE 1997 Visual Communications
and Image Processing Conference in San Jose, California.
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r t motivation here is to exploit the local tren@a the form of
correlation) in the motion vector field for the predictable
motion vectors and global trends in the motion vector field
for the unpredictable motion vectors. The minimized cost
function for each block incorporates either an entropy or a
conditional entropy constraint term. Imposing a constraint
on entropy or conditional entropy helps reduce the disor-
derliness and noise in the motion vector field. In many
respects the rate constrained block matching algorithm
(RCBMA) shares similarities with entropy constrained vec-
tor quantization(ECVQ),! and conditional entropy con-
strained vector quantizatioitECVQ)? algorithms.

Entropy or conditional entropy coding requires entropy
or conditional entropy decoding tables to be constructed at
the receiver. The approach adopted here is the frame adap-
tive transmission of three first order pmfs that are used to
construct these tables at the receiver. Transmission of only
first order pmfs is critical for keeping the overhead rate
low. The approximations used to derive these functions will
be explained in the following sections.

RCBMA allows the user to control the rate allocated to

the motion vector index for each block can be Conveyed tothe motion vectors of each frame. Ideally the distribution of

the receiver at a rate of lglg’, ¢| bits per motion vector by ~ the overall rate to motion vectors and DFD compression
a fixed-rate code. ' must be optimized. However, this is a difficult problem,

A better alternative to fixed-rate coding of the motion since the coding characteristics of DFD is dependent on the
vectors is the variable-rate entropy coding of the motion ¢0ding characteristicéor rate of the motion vectors in a
vectors, in which case the motion vectdesée., o} are not-so-easily tractable manner. Therefore, in this work, rate

assigned variable length entropy codewords with a shortercONtrol is employed on a frame by frame basis and is only
expected length. One might assume that the motion presenfS€d for targeting a desired rate at which performance com-
in each frame is concentrated only in certain directions andParsons can be made with MDBMA.

magnitudes without exhausting all possibilitieg.e., o

|74 ol <|.70]). Under this assumption the entropy code- 1.2 Related Approaches for Constraining the Rate

word lengths or probabilities can be transmitted on a frame- of Motion Vectors

by-frame basis at a negligible overhead rate for frame adap{viotion vector quantizatiofiMVQ)3# constrains the size of
tive entropy coding of motion vectors. Considerably low the index set", (| by a clustering algorithm similar to the
motion vector rates can be achieved by frame adaptive en4 jnda, Buzo, Gr'ay(LBG) algorithm. The motion vector
tropy coding of motion vectors estimated by MDBMA. fields obtained by this technique are smoother than those
However, MDBMA imposes no constraints on the entropy obtained by MDBMA. Yet, a size constraint on the motion
contribution of individual motion vectors, as they are de- yector set is equivalent to a fixed-rate constraint and does
termined by the minimum-distortion search. A candidate not ensure a distinct rate_distortion advantage over
motion vector may be chosen over another candidate mo\DBMA when the motion vectors are entropy coded.
tion vector with significantly less contribution to entropy mMacro motion vector guantizatiotMMVQ)® extends the
and Sl|ght|y more contribution to distortion. As a result, the MVQ approach_ The correlations between motion vectors
generated motion vector field is not smooth and containsef neighboring blocks are better exploited by constraining
numerous spurious motion vectors. the size of the set of their joint occurences.

. . ) A variable-length tree-structured segmentation algo-
1.1 Rate Constrained Block Matching Algorithm rithm can be used to determine the best spatial resolution of
Entropy coding of motion vectors can yield even better the motion vectors for region based very low rate video
motion vector compression performance if the motion vec- coding. A similar idea has also been employed for variable
tors generated by MDBMA were not so noisy and so dis- block size motion estimation by variable length quadtree
continuous at the boundaries of moving objects. In this pa-structure$. In both of these approaches the generated vari-
per the discontinuity problem is addressed by partitioning able length tree structures are rate constrained, reminiscent
the set of motion vectors of a frame into two classes. Forof variable length tree structured vector quantization
the class ofpredictablemotion vectors, which are highly codebooks:® The rate includes the contribution due to the
correlated with their neighbors, the spatial prediction error compression of DFD, and correspondingly, distortion is the
vectors of motion vectors are entropy coded in a re- variance of the quantization error of DFD. Although the
stricted sense, the motion vectors are conditional entropyvariable length tree structures are rate constrained, the pro-
coded. The class ofinpredictablemotion vectors are sim-  cess employed to map a block to a node of the tree attempts
ply entropy coded.(Note that the names given to the to minimize only distortion.

classes may not be truly representative of all the motion Explicit rate constraints have previously been incorpo-
vectors and are merely used to distinguish between the sperated into the cost function of block matchifg®!! In

cific actions taken for the constituents of each cla$be Stiller and Lappé, the cost function minimized is heuristi-

Fig. 1 Relationship between the motion vector and the vectors of
intensity values (pixel blocks) in the target and reference frames.
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Fig. 2 Spatial relationship between the two search areas.

cally derived and is not optimal in the rate-distortion sense.
The cost functions used in Chung, Kossentini, and Sthith
and Hoang, Long, and Vitt€rincorporate rate constraints
similar to ours. In Chung, Kossentini, and Smftonly the
most probable motion vectors are tested in a descendin
order to determine the best motion vector by comparing
their cost function values against experimentally deter-
mined thresholds. The entropy constraints for estimating
and the entropy codes for transmitting the motion vectors

are not adapted to their occurence frequencies, which vary"

with the particular sequence or particular frame of the se-

guence coded, or with the coding rate. While this approach

conforms to fixed entropy coding/decoding in the interna-

the motion vector of the current blockn(n). For a first

order prediction, the prediction vectéfm,n) for the current
block is obtained as the MAP estimate of the current mo-
tion vector from the neighboring motion vectors to the left
and to the top,

A&(m,n): arg ma)p(§| 5(mfl,n) 15(m,n71))-

=84

)

The set of conditional probabilities{p(¢|&m-1n),
dm,n—1))} for each possible pair&m-1 ), dmn-1)) Must

be available at the receiver so that it can track the estima-
tion process. This is usually not feasible with a moderately
large.” due to the order of the product space underlying
the conditional pmf. The conditional pmf may be approxi-
mated by the product of horizontal and vertical marginals

d)([§| Om-1n)»O(mn—1)) = Pn(é| 5(mfl,n))pv(§| Smn-1))

=Pi (€| 8(m-1n)) Pi(&l Smn-1)):
(4)

here the conditional pmf is further assumed to be isotro-
pic in the second approximation. These approximations re-
duce the order of the product space by 1.

Once the prediction for the current motion vector is

tional standards such as MPEG-2 and H.263. we maintainmade in this manner, the conditional entropy constrained

that the adaptive transmission of first order pmfs at a low

cost function for block n,n) is written as

overhead rate is not only feasible, but also makes entropy Ec
constraining and coding more efficient and obviates this C ) (§)

restriction.

2 Predictable Motion Vectors

By definition, a predictable motion vector is highly corre-
lated with its neighbors and also with the prediction vector
S(m,n) for the motion vector. Therefore the prediction error
vector for a predictable motion vectéy, ) should lie in a
small search area”;(0) centered at the zero vector O

Without loss of generality, the smaller search area for the,,

prediction error vector is taken to be a square of sibe 2
X2b and centered at the zero vector such théf(0)
=[—b,b]X[—b,b] with b<a. This definition is used

consistently throughout this paper. The spatial relationship

between.”,, (the search area for a motion vegtoand

tif/‘l(?S(myn)) (the smaller search area for a predictable mo-
tion vectoy, is depicted in Fig. 2.
The overall cost functional minimized for predictable

d(Xe(V ) Xe (Vimm = €)= 1 1085 p(€ 8 )

for £€€.71(Smm) N0

for £€e.70\%1(8mn)
)

ee]

where.”1(P)={7+P:7€.71(0)}.

This cost function incorporates the transmission cost of
e predictable motion vector given by its conditional en-

tropy codeword length- log,[ p(¢] ;5(m,n))]- Spatial prediction

error vectors outside of the search arég0) are automati-
cally disregarded by setting the cost function to infinity.
The blocks with such large spatial prediction error vectors
are classified as unpredictable as is discussed in the follow-
ing two sections. Also, whep =0, it is worth noting that

the above cost function reduces to that of MDBMEQq.

(D).

motion vectors between target and reference frames can The conditional pmp(&|¢) for all ¢ .7, must also be

then be written ad; =D+ uR;. D, is the DFD variance
of target frame blocks with predictable motion vectdgs.

is the entropy of the spatial prediction error vectors of pre-
dictable motion vectorgor the conditional entropy of mo-
tion vectors$ in .&3(0).

Motion vector information is conveyed to the receiver
row by row, each row scanned from left to right. The
neighboring motion vectors outside the nonsymmetric half
plane (NSHP support are not available to the receiver

available at the receiver for entropy coding/decoding. To
keep the overhead rate low, the conditional pté| ) also
governs spatial prediction by letting(£]Z)=p(&|Z). By
Bayes'’s rule

p({€)p(€)
Seer PULEP(E)

p(¢lo)= (6)

when the current motion vector is determined. The neigh- The equalityp(Z|&) =p,({— &) is valid for some first order

boring motion vectors to the left and to the t6fm— 1)
andé(m, n- 1) respectively have the highest correlation with

pmf p,(-) when the joint probability density function fdy
¢ is Gaussian. Hence the conditional pmf can be approxi-
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mated by the first order pnp(Z|&)=p.({— &), allowing
us to work with spatial prediction error vectors of the form

§-¢.

3 Unpredictable Motion Vectors

Classification of all the motion vectors as predictable leads

to large prediction errors at the boundaries of moving ob-
jects or at places of nonuniform motion as a result of rota-
tion or zooming of camera. The global information in the
motion vector field may also be more important for a par-
ticular motion vector than the local information from its

neighboring motion vectors. The cost functional minimized

coding/decoding to prevent the overlap of nonzero prob-
abilities of candidate motion vectors under different
classes.

“ a;t 5 )y if z (6)=1
p,(§|5(m,n)):[01 p(§| e othé?ﬁi)se ! (12
whereay=1-3( ., = y_qP(r] S(mm) and

_l .
, _ja p(g) if Z(m,n)(f)zo
p ('5)_[0 otherwise (13

for the class of unpredictable motion vectors between target

and reference frames can be writtenJassD,+ uR,. D,

is the DFD variance of blocks with unpredictable motion
vectors.R, is the rate of transmission of the unpredictable
motion vectors in”,. The entropy constrained cost func-
tion for block (m,n) is written as

EC
(m,n)

C (f):d(xt(v(m,n))vxr(v(m,n)_f))_ﬂ log, p($).

(7)

This cost function incorporates the transmission cost of the

unpredictable motion vector given by the entropy codeword
length —log[p(&)].

4 Classification and Block Matching
CEC

If p(&)>p(é|dmn) then CEry(&)<CGrm(e) for
56(7/1(;5@1”))0(7/0 follows from comparing Eq(5) with

Eq. (7). Hence the class bit of the candidate motion vector
& for block (m,n) is set as

0 if p(&)>p(&ldmn)

z = 8
mn (&) 1 otherwise ®
for £€.71(8(mn)N-7o, and as

Z(m,n)(f)zo (9)

for 56,7”0\,71(3(,“’@). The overall cost function is defined
as

EC

C(m,n)(g) if Z(m,n)(f)zo
C(m,n)(f): CCEC . (10)
mm(§)  otherwise
which is minimized by the motion vectaf, ;) as
Smm=arg min Cy ) (§). (12)

(e

The class bit map is the set of class bits for all blocks and

is denoted a$zm ny(S(mn)}-
4.1 Moaodifications of pmfs for Entropy Coding and
Decoding

once the set of bit§zy, n(£):€€.7oN.71(Smn)} is de-
termined for a block with index r,n), the estimates
{p(&)} and {p(§|$(m,n))} are modified prior to entropy
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wherea,=1-3(., = (y-1,P(7).

5 RCBMA Motion Estimation Algorithm

The RCBMA algorithm iteratively estimates the
motion vectors{ §m ) :(M,n) e ¥’} and the sets of prob-
abilities  {p(£€):ée. 7o}, {Pn(7):ve.71(0)}, Pcec=1
—Pec=Pr{Zmn(dmn)=1}. The probabilities are esti-
mated from the observed frequencies of motion vectors or
their prediction error vectors, and are, in turn, used to form
the rate constraint terms in the cost functions and spatial
predictor at the next iteration to yield a new set of motion
vectors.

The first part of each iteration consists of three stages.

For block (m,n), the first stage is the prediction ?6fm,n).
Several special circumstances are handled in different
ways. For instance, if the two neighboring motion vectors
conflict with each otheti.e., p(¢|8m-15)) P&l S(mn-1))
=0), then the spatial prediction vector for the current mo-
tion vector is their mean instead of the MAP estimate given
by Eg. (3). In the second stage, the class Hitg, ) (£):&
e .%o} and the overall cost functiofC , n)(§):é €./} are
evaluated in accordance with Eq8) and(9) and Eqs(5),
(7), and (10). Then the minimum ofC (&) over all
&e.y is determined by Eq(11) to yield 5, ). RateR,
distortionD, and total cosf for framet are updated by the
contributions of block ,n) before the next block is pro-
cessed. After the motion vectors for all blocks are deter-
mined in this mannerR and J are further corrected by
AR,,, the overhead rate for the transmission @fgc,
{p(&):£e.70}, {pn(y):ye.71(0)}. The computation of
AR,, Will be explained in Section 7.

The second part of each iteration is the estimation of the
probabilities from the observed frequencies. LBt

:|{(mrn):5(m,n):§}|! N(;EC:|{(mrn):z(m,n)(5(m,n)):11
5(m,n):7+ 5(m,n)}|v and N:|g1:E§e./oN§, NCEC
=3,c,N5"C, where|| denotes cardinality{p(¢):¢

e.%o} {pn(v):ye.71(0)} and pcec are determined from
frequencies as

CEC
NCEC

N

PE)=1s Pa(7)= (14

Ng_ECv pCEC:T

The total cost], total distortionD, and total rateR can
be expressed as
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1 7 Computation of Overhead Rate AR, for
J=Jd1+ 2+ wARy= 2y % Cmm(S(mn)) + LARGy, Adaptive Transmission of Probabilities
’ (15) A fixed-rate code is used to adaptively transmit the signifi-
cant probabilities. Firsts =maxgpg-glé is transmitted
1 with full precision. Next a significance map for
D:mz d(Xe(Vimm) X (Vimm = Smm)), (16) {p*(&):]&]<s} is transmitted. Specifically 1 is sent if
mn p*(£)>0, and 0 is sent ifo* (§)=0 for ée{&|é&<s]).
Finally {p* (&):p*(£)>0} are coded with high precision

1 (12 bits peré) and transmitted. The same method is also
R=— 12y > log, used to transmifpy (y)} andpgec.
{Mun:Z(m,n)(S(m,n) =1} As it may be desirable for rate contrdlR,, increases

as the overall rat®?, increases and decreasesRys de-
creases. This is due to the fact that laggéorces the first
order pmfsp* (¢) andpy (), to be concentrated at or near
£=0 andy=0, respectively.

Note that{p*(&):£e.,} are also transmitted in the
+AR,,, (170 same fashion for MDBMA. The increase in overhead rate
for RCBMA over that of MDBMA is due to the additional

icci * . %% f i
where C i m(8mm) in Eq. (15) is defined by Eqs(10), tranT|m|SS|on of {p}(y):vye.”1(0)}, which is usually
(7), and(5). smatl.

For a givenu, J decreases for the first few iterations and
either converges to or oscillates around a final value for the8 Simulations

rest of the iterations. There is no guarantee thaill In this section we provide performance comparisons be-

monotonically decrease with the iteration number. There-yeen the RCBMA and MDBMA. All simulations are per-
fore RCBMA is terminated after a predetermined number formed with an exhaustive search of the search areas at

of iterations. Let indicate the best iteration with the small- half-pixel accuracy. Search areg,=[—7,7]X[—7,7] is
est total cost J,. The set of motion vectors ged for both algorithms to allow a fair comparison.

X[PcecP(S(mn) S(m,n))]

+ > logo[ (1— pcec) P (mm)])
{m,n:z(m'n)(é(myn)):o}

{8(mny (MN) e 2}, class bit map{z, n)(S(mn)):(M,N) RCBMA is only tested on sequences with motion low
e ¢} and the set of probabilitiegp} (y):ye.71(0)}, enough to be sufficiently represented with vectorsvig.
{p*(&):£€.70}, pPEec are transmitted. More challenging sequences such as “Flower Garden,”

The computational complexity of the algorithm can be “Table Tennis,” and “Football” have not been coded,

kept low by storing {d(X:(Vmm): Xi(Vimm—£)):é since an exhaustive search of a sufficiently large search
e.%5,(m,n) € & }. During each itefation, the distance val- area was too time consuming and/or these sequences had

ues can be read off from a table for the evaluation of the 12r9€ areas of occluded regions or objects.
cost functions.
8.1 Operational Distortion Rate Characteristics for
Selected Frame Pairs

] ) In this section the operational distortion-ra~D variance

The motion vector rate for a particular frame can be con- yersus motion vector rateharacteristics obtained by the
trolled to fall within a target rate intervalR;,Ri2], by application of the RCBMA algorithm on selected pairs of
varying the constraint parameter. Increasingu usually  original frames from several image sequences are analyzed.
results in a decrease in the motion vector ra&g ) and The operational distortion-rate characteristics for two spe-
vice versa. The wayu is varied is governed by the rate cial cases of the RCBMA algorithm are also reported. In
control mechanism, which is described next. the first special case, all motion vectors are classified in the

The mechanism is started with a given=u?. After predictable claséy lettingzm ,)(£) =1, ¥(m,n), ¥¢) and
each runj —1 of RCBMA, the constraint parametgp? for are conditional entropy coded and constrained using Eg.
the current run is set equal tou! ~?! if the output rate of  (5). In the second special case, all motion vectors are clas-
RCBMA from the previous runRl !, is above the target ~Sified in the unpredictable class and are unconditional en-
interval (Ri1,Rez], and is set equal ta =Y« if R is tropy coded and constrained using Ed@). The classifica-

below the t {int I i tant and satisfi tion decision making is bypassed for the special cases.
elow the target interval 1S a constant and salisties The characteristics obtained for the frame pairs

>1. If Rl falls inside the target interval, the rate control Trevor001-002, Salesman000-002, and Claire000-002, by
mechanism is terminated after a final run of RCBMA. It the application of the RCBMA algorithm and the two spe-

R, andR, “ are on opposite sides of the target interval, cial cases, are shown in Figure 3. These characteristics
W is set equal to the geometric meanwdf * andu/ 2. In have been traced using the rate control mechanism initial-

6 Rate Control Mechanism

this casex is reduced in magnitude. K<1+ e, wheree is ized with =10, k=1.25, andR,,=0. The block size
a small constant, change fropd ~! to ! is negligible and ~ was 8< 8 and the search area for the prediction error vector
the mechanism is terminated. was .71(0)=[—2,2]X[—2,2]. Two other distortion-rate
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DFD variance
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(b) ©

Fig. 3 Variation of (motion vector estimation) distortion with (motion vector) rate for various rate
constraint scenarios. [ represents the first case; V is the second case; — represents RCBMA; * is the
frame difference replenishment; and O represents MDBMA. (a) Trevor001-002; (b) Claire000-002;
and (c) Salesman000-002.

points, corresponding to frame-difference replenishmentby exploiting the memory between some siz& 8 blocks
(zero ratg and entropy coded MDBMA with size 616 with the two class RCBMA algorithm. For example, at the
blocks, are also shown in all three plots. same rate as MDBMA, RCBMA yields the same DFD vari-
The curve for the two class RCBMA algorithm lies be- ance for Trevor001-002, while the PSNR gains for
low the ones for the special one class cases, showing theClaire000-002 and Salesman000-002 are 1.39 dB and 0.47
importance of classification of the motion vectors as pre- dB, respectively.
dictable or unpredictable and employing both conditional  On the other hand, the first special case employing only
(for predictable motion vectorsaand unconditiona(for un- conditional entropy coding and constraint leads to unac-
predictable motion vectorentropy coding and constraints. ceptably poor performance, and the rate and distortion are
It can be seen that as rate steadily decreases for the secontbt tractable by the adjustment pf Even the convex hull
special case, distortion gracefully increases. However, theof the distortion-rate pairs for the first special case lies
plot for Trevor001-002 indicates that the performance of above the other two characteristics for the three selected
MDBMA with size 16X 16 blocks may still turn out to be frame pairs.
better, and MDBMA might be more advantageous to use
due to its simplicity. For example at the same rate as . . . .
MDBMA, the second special case yields an improvement 8-2 Video Coding Simulations
over MDBMA of 0.7 dB for Claire000-002 and 0.47 dB for In this section results are presented and summarized for the
Salesman000-002, and is inferior to MDBMA by 0.38 dB motion estimation/compensation and subsequent compres-
for Trevor001-002. Exploiting only the global information sion of the DFD frames of several video sequences. Impor-
in the motion vector field may not be sufficient. tant parameters about the simulations are summarized in
If the increase in complexity is not an issue for the ap- Table 1. Let the motion vector rate output by MDBMA be
plication, performance can be improved for the second caseR;. The rate control mechanism has been operated with

150/ Journal of Electronic Imaging / January 1998/ Vol. 7(1)
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/10/2013 Terms of Use: http://spiedl.org/terms



Rate constrained block matching algorithm

Table 1 Video coding simulations and parameters.

Sim. Sequence Frame Frame Block size 1(0) size SPIHT
No. Name Dim. Freq. MDBMA RCBMA for RCBMA Rate (bpp.)
1 Claire 352x 288 15Hz 16X16 8x8 9%x9 0.025
2 Missa 352% 288 15Hz 16X16 8x8 9x9 0.025
3 Salesman 352288 15Hz 16X16 8x8 9%x9 0.040
4 Caltrain 512X 400 30Hz 16x16 8x8 9%x9 0.040
5 Caltrain 512X 400 30Hz 8x 8 4X4 5%5 0.040
6 Susie 352X 240 30Hz 16X16 8x8 9x9 0.040
7 Susie 352x 240 30Hz 8x 8 4X4 5%5 0.040
8 Trevor 256X 256 30Hz 16X16 8x8 9x9 0.040

Ri1=0.95 Ry, andR,,=1.05 R; for Simulations 3 and 6, Pearlmart? The spatial prediction vector for the motion
and withR,; = 0.9 R; andR,,= 1.0+ Ry for the other simu- ~ Vector and/or the class bit information yields the pmfs
lations. Since only the memory between adjacent blocks isP’ (& 8(m,n), P’ (£€) used for arithmetic coding/decoding of
exploited by spatial prediction, RCBMA block dimensions €ach motion vector, or its spatial prediction error vector. In
are half of those of MDBMA to allow a fair comparison.  this operation, the total number of bits, output by the arith-
In motion compensated predictive video coding DFD metic coder for the motion vectors of a frame, approxi-
frames have to be compressed and coded with reasonablmates the sum of the ideal codeword lengths for the pre-
efficiency so that the reconstruction quality does not de- dictable and unpredictable motion vectors and class bits in
grade throughout the sequence. Ideally the technique useghat frame. (The ideal codeword length of¢ is
must take fgll advantage of thg rqughness of the.DFD spec-—|og, p' (4 ‘5(m,n)) for a predictable and-log, p’(£) for an
trum. In this work, set partitioning in hierarchical trees npredictable motion vector. The ideal codeword length of
(SPIHT) coding method? which efficiently allocates bits class bitz is —100,(Pr{Zgmn(Smn)=2).) The fixed-rate

to the subbands of a low-pass spectrum and exploits the ded probability estimates are also transmitted with the

g?:rl)jendenues between the subbands, has been used to Co%%ethod outlined in Section 7.

The output bit stream of the SPIHT coder, the unpredict- 1 2Pl 2 summarizes the average values of the PSNR and
able motion vectors, the prediction error vectors of predict- Fate curves before and after the coding of DFD for each of

able motion vectors, and the class bits are all adaptive ariththe simulations in Table 1. Curves for two of the simula-
metic coded. The details of arithmetic coding of DFD tions are also plotted in Figure 4. RCBMA with size 8
compressed with SPIHT can be found in Said and X8 blocks has a better temporal estimation performance

Table 2 Average PSNR and rate (before and after SPIHT coding of DFD) for the simulations in Table

1.
Sim. Motion Est. Avg. Motion Avg. Motion Avg. Total Avg. Frame
No. Method Vec. Rate (bpp) Est. PSNR Rate. (bpp) Reconst. PSNR
1 MDBMA 0.0445 37.2641 0.0695 38.5900
RCBMA 0.0406 38.5674 0.0656 39.6163
2 MDBMA 0.0563 36.8680 0.0813 37.8779
RCBMA 0.0506 37.8844 0.0756 38.6014
3 MDBMA 0.0204 33.6742 0.0604 34.9613
RCBMA 0.0185 34.2458 0.0585 35.3424
4 MDBMA 0.0308 29.0304 0.0708 30.0852
RCBMA 0.0282 29.5367 0.0682 30.2163
5 MDBMA 0.1310 30.7097 0.1710 31.4461
RCBMA 0.1242 32.1570 0.1642 32.6794
6 MDBMA 0.0429 33.3571 0.0829 34.6414
RCBMA 0.0394 33.8494 0.0794 34.7800
7 MDBMA 0.1505 34.7814 0.1905 35.8006
RCBMA 0.1348 35.6849 0.1748 36.4429
8 MDBMA 0.0361 32.3899 0.0761 33.3252
RCBMA 0.0308 32.7133 0.0708 33.5227
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Fig. 4 Comparison of MDBMA (16X 16 blocks) with RCBMA (8 X 8 blocks) and variation of PSNR and
rate (before and after SPIHT coding) with frame number. V represents MDBMA motion estimation
PSNR and motion vector rate; X is RCBMA motion estimation PSNR and motion vector rate; [
represents MDBMA+SPIHT reconstructed frame PSNR and total rate; and O is RCBMA+SPIHT
reconstructed frame PSNR and total rate. (a) Simulation 1 (“Claire”) and (b) Simulation 3 (“Sales-
man”).

than MDBMA with size 16< 16 blocks. This is largely due motion estimation PSNR is offset by a large increase in
to the fact that both local and global information about the motion vector rate.

motion vector field are exploited. For the six simulations  The quantitative performance advantage of RCBMA is
employing RCBMA with size & 8 blocks, average motion ~also accompanied by the improvement in visual video sig-
estimation gains in the range of 0.32 to 1.30 dB over nal quality. For example, for Simulation 1 with MDBMA
MDBMA have been obtained with a lower average motion reported for “Claire,” large blockiness and distortion on
vector rate than that for MDBMA. The average gains in the chin and cheek areas of the woman’s face was ob-
some cases are even higher if one ignores the first fewserved, which became very distracting and unpleasant be-
frames of each sequence when computing the averagegween frames 90 to 100. There was also some flickering at
Simulations on sequences with more uniform motion and the boundary between the arms, shoulder, and the station-
less occlusion such as “Missa” and “Claire” have yielded ary background. For Simulation 1 with RCBMA reported
the larger gains. A comparison of the result for Simulations for “Claire,” only slight flickering at the chin boundary

5 and 7 with those for Simulations 4 and 6 indicates the and even less flickering at the boundary between the arms,
appreciable increase in motion estimation advantage ofshoulder, and the stationary background was observed. For
RCBMA compared to MDBMA when smaller size blocks Simulation 6 reported for “Susie,” both motion estimation
are used. However, the use of smaller size blocks may notmethods resulted in blockiness at the boundary of the face
be justifiable for MDBMA or for RCBMA if the gain in  with the background. The size ¥8.6 MDBMA blocks
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Fig. 5 DFD frames between Claire090-092 in Simulation 1: (a) Fig. 7 Motion vector fields between Claire090-092 in Simulation 1:
MDBMA and (b) RCBMA. (a) MDBMA and (b) RCBMA.

could actually be distinguished. Blockiness was less dis-have fewer spurious motion vectors than those of
tracting for RCBMA, since the size of RCBMA blocks are MDBMA. Nevertheless, RCBMA does not completely pre-
a quarter of the size of the MDBMA blocks and the recon- ven'g some_of the stationary mOCkS with little detail from
struction PSNR was higher. For Simulation 7 reported for getting assigned nonzero motion vectors.
“Susie,” smooth reconstruction with very small visible .
granular distortion on the face was achieved with RCBMA. 9 Conclusion
MDBMA vyielded better visual results in Simulation 7 than This paper has extended the minimum distortion motion
in Simulation 6 due to the small size blocks, but distortion vector estimation technique of MDBMA by incorporating
was still largely visible on the face of “Susie.” This be- rate constraint terms into the cost function of estimation. In
came quite distracting between frames 40 to 60. For Simu-RCBMA, the imposed rate constraint for a motion vector is
lation 8 reported for “Trevor,” both algorithms yielded either conditional or unconditional depending on its pre-
large distortion in the form of blur, and the stripes of the dictability from its neighbors. The algorithm alternatingly
shirt were not distinguishable in both cases. Backgroundand iteratively estimates the probabilitiémte constraint
near the human figure boundary was more blurry, andtermg and the motion vectors, and transmits the estimated
blockiness along the left arm was more conspicuous forprobabilities as overhead for frame adaptive entropy
MDBMA. coding/decoding. It allows the motion vector rate to be
Figure 5 shows the DFD frames and Figure 6 shows thegracefully traded off for DFD variance and either to be
final reconstructed frames obtained with MDBMA and with controlled and set at a desired level. Simulations on various
RCBMA for Claire092. DFD frame obtained with RCBMA sequences have shown significant visual improvement in
has noticeably less energy content. Figure 7 displays thevideo quality as well as rate-distortion performance with
motion vector fields output by MDBMA and RCBMA for RCBMA employing sizeK XK blocks over MDBMA em-
Claire092. Although RCBMA employs small size X&) ploying size K X 2K blocks. Motion vector fields output
blocks, the motion vectors for these blocks are much morepy RCBMA are also smoother and more organized.
organized than those for the large size X115) blocks of
MDBMA. As a result, the motion vector fields of RCBMA  References
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