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Abstract

Recent rate distortion analyses of image transform coders are based on a
trade-off between the lossless coding of coeflicient positions vs. the lossy coding
of the coeflicient values. We propose spike processes as a tool that allows a more
fundamental trade-off, namely between lossy position coding and lossy value
coding. We investigate the Hamming distortion case and give analytic results
for single and multiple spikes. We then consider upper bounds for a single
Gaussian spike with squared error distortion. The obtained results show a rate
distortion behavior which switches from linear at low rates to exponential at
high rates.

1 Introduction

The current paradigm for the analysis of low bit rate image transform coding relies es-
sentially on non-linear signal approximation theory [2, 6]. Images are considered to be
highly non-Gaussian processes that are not suited for the familiar linear approach, i.e.
to (pre)compute coefficient bit allocations based on statistical parameters. Instead,
the non-linear approximation tries to find the “best” basis for a given individual signal
and a given rate. In all practical schemes (wavelet, JPEG) which have been analyzed
in this non-linear framework, the “best” basis consists in specifying the indices of a
small number of quantized significant coefficients which describe the signal with the
desired accuracy. This works very well with wavelet transforms of piecewise regular
functions, since there will be only a small number of non-zero coefficients, mostly
around the signal singularities [4, 7]. The key aspect is the rate trade-off between the
lossless code for the coefficient positions and the lossy code for the values of those
coefficients.

By assuming that the signal belongs to certain functional spaces, for which the
coefficient decay behavior is known, the rate trade-off for a given proportion of sig-
nificant coefficients can be computed. This result can be used in turn to get an
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approximate operational rate distortion curve. We stress the fact that in general this
is not the information-theoretic rate distortion (R(D)) function, which provides a
lower bound for the rate necessary to describe a random signal within a given dis-
tortion. While operational R(D) is useful to characterize e.g. a family of coding
algorithms, it does not tell us how far from the theoretical optimum they operate.

Our goal is to find an alternative, i.e. information-theoretic, framework for the
R(D) analysis of such non-linear approximation schemes. As a tool we introduce
the spike process, which captures the idea of a single isolated non-zero coefficient.
This can be extended to multiple spikes by independent superposition or by (more
efficient) joint description. We take the simplest possible approach to lossy position
coding by using a Hamming metric, i.e. we do not consider the precision with which a
position is specified. The next section starts with a rather general definition of spike
processes and then investigates the R(D) behavior for Hamming distortion. Along
the way we will recall the relevant results from rate distortion theory. Section 3 deals
with spikes having Gaussian-distributed values and mean squared error distortion.
We finish with first conclusions and some outlooks.

2 Spikes, Hamming Distortion and R(D)

2.1 Definitions and single spike case

In the following definition the spike location will be restricted to a finite set. This
makes sense, not only because in practice one always deals with a finite number of
transform coefficients, but also because a continuous distribution of spike locations
would require infinite rate for zero distortion.

Definition 1 A spike process is a memoryless random process which oulputs or-
dered pairs (U, V) of random variables, where the position U has a finite alphabet
U with [U| = N, while the value V is drawn from an alphabet V with no particular
restrictions.

We will assume U = {1,2,..., N}, since any other alphabet of size N can always
be represented by that set. Further we suppose that V is a ring. Then a spike process
sample (u,v) can be mapped to a V¥ -vector simply by ¢(u,v) = ve,, where e; is the
i-th basis vector.

Definition 2 Let X' be the source alphabet, and X the reconstruction alphabet. A
single-letter distortion measure (or fidelity criterion) is a non-negative real-
valued function p(z,z) : X X X = [0,00[. In the spike case we have © = (u,v),
X =U xV, and analogously , x.

Probably the simplest distortion measure that can be applied to spike processes is
the Hamming distance between the position vectors, i.e. the basis vectors e;. It can
be shown that just one additional reconstruction letter is needed to achieve the rate
distortion bound, and it will map to the all-zero vector 0. If we define &/ = {0} U U



and ey = 0, then everything fits nicely. Using & = 0 corresponds to not coding the
position. We get the following distortion measure:

plu,v;,0) = wgl(e, —eg)

= 265(u — @)d(4) + 1 — 8(4) (1)

Thus “giving the right answer” has zero distortion, a wrong answer two, and not an-
swering costs one distortion unit. We proceed with the definition of the (information)
rate distortion function for discrete memoryless sources (DMS), closely following the
notation in Berger’s text [1]. Note that this coincides with the information-theoretic
definition (“infimum of achievable rates”).

Definition 3 (Rate distortion function of a DMS) Let X ~ P be a discrete
memoryless random variable, p(x, ) a single-letter distortion measure, QX|X(]€|]) a
conditional distribution (defining a random codebook), and Py ¢(j, k) = P(7)Q(k|7)

the corresponding joint distribution. The average distortion associated with Q(k|j) is
Z P(7)Q(k|7)p(5, k). (2)

If a conditional probability assignment satisfies d(Q)) < D it is called D-admissible.
The set of all D-admissible Q) is Qp = {Q(k|j) : d(Q) <

information (“description rate”) induced by Q) is

= 3" PGIQ(Hj)log AT )

D}. The average mutual
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where Q(k) =37, P(7)Q(k|j) and log is to the base two*. The rate distortion function
R(D) is defined as
R(D)= min [
(D) = min I(Q)

This convex optimization problem can be solved with the method of Lagrange
multipliers [1],[3, Section 13.7]. We start with the functional

J(Q) = 1(Q) + \d(Q +ZVJZQ1€|]

where the last term comes from the constraint that (k|j) is a proper conditional
distribution, i.e. satisfies ), Q(k|j) = 1. The minimizing conditional distribution
can be computed as

Q(k)e —Ap(4,k)
T Qe w

*All logs in this paper are to the base 2, unless otherwise specified.
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The marginal Q(k) has to satisfy the following N = |X| conditions:

e e(ik)

Z ng()k/)e—Ap(jvk') =1 if Q(k) >0, (5)

P(i)e=Arlik)
Z Z g()k/)e—/\p(j,k’) < 1 if Q(k) = 0. (6)

Inequality (6) stems from the Kuhn-Tucker conditions (for a detailed derivation of
the above see Section 13.7 in [3]). The solution of the problem is further simplified
by the following theorem (2.6.1 in [1]):

Theorem 1 (Berger) No more than N reproducing letters need be used to obtain
any point on the R(D) curve that does not lie on a straight-line segment. At most,
N=N+1 reproducing letters are needed for a point that lies on a straight-line
segment.

As anticipated above, we need just one additional reconstruction letter to achieve
R(D). To see that it can only be the all-zero vector, consider the source alphabet
U= {e;}, which consists of all vectors of Hamming weight 1. Any other non-zero
vector will be at Hamming distance 1 or more from these vectors and thus can only
worsen the distortion achieved by the all-zero vector, i.e. exactly 1.

We are now going to derive the rate distortion function for the Hamming criterion
(1) in the case of equiprobable positions P(j) = 1/N (N > 2), i.e. uniform memory-
less distribution of U: U ~ U{1,2,..., N}. The symmetry of the problem suggests
the marginal distribution

QZ(%,%:(D:---:QN:1;\[%)- (7)

Let us first assume that ¢; > 0 holds for all k. Then the N + 1 conditions (5) have
to be met. We make the substitution 3 = ™ and plug our Q(k) into the equation,
first for k # 0:

B° (N —1)s* _ 1

- + - = ~=N
Wi+ SEF (V=05 b+ SEF (V=05 P()
@((N-1)3*=Npg+1) = 0. (8)
For k = 0 we get almost the same equation:
Np! 1
1— = 5==N
QB + FH(B° + (N — 1)5?) P(j)

(1 -q)(N-1)B*~N3+1) = 0 (9)
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The solution # = 1 corresponds to the point (0, Dyaz) (With Dyer = 1) in the (R, D)

plane, which is achieved by setting go = 1. Therefore the interesting solution is
B =1/(N —1), which when plugged into (4) yields
Q(Klj) = gr(N — 1) 7705, (10)

Putting (10) into (2) we get the average distortion d(Q) = 1 — 2=2(1 — ¢o) and from
(3) the rate I(Q) = %(1 — qo)log(N — 1). Noting that these hold for g5 > 0, we

combine them to eliminate ¢g and get

R N -2
- f
Tog(V 1) or R <

D(R) =1 log(N —1). (11)
When R reaches its upper bound in (11), D reaches 2/N and we have ¢go = 0. At that
point, equation (8) will be satisfied for all 3. According to condition (6), equation
(9) now becomes an inequality:

(N-1)3*—=NB+1>0. (12)

This is satisfied by 8 > 1 or 8 < -, which is equivalent to A > In(N — 1). The first
solution (3 > 1) can be discarded, since it would result in D(R) being larger than 1
and discontinuous. The conditional distribution parameterized by 3 is

0, k=0
Q(M]) = { 3e(3.k) L 7& 0 (13)

1+(N-1)B%°

As before we put this into (2) to get d(Q) = % and into (3) yielding
(V- 1) !
log(N —1)—h
Ty (v g e I+ (N-10p2)’
where h(p) = —plog p— (1 — p)log(1 — p) is the binary entropy function. Eliminating

3 from the last two equations and combining the result with (11) gives the complete
rate distortion function of single spike processes with Hamming distortion measure:

1(Q) =log N —

logN — Zlog(N —1)—h(2), 0<D<2

2

k(D) = { (1 — D)log(N — 1), 2 op<i (14)

Figure 1 shows a set of typical R(D) functions. As N grows large, the linear
segment dominates the rate distortion characteristics. Further we observe that in the
special case N = 2 the solution degrades to the D(R) function of a binary symmetric
source (with doubled distortion).

2.2 Generalizing to multiple spikes

The typical output of an image transform is of course not a single spike in one out of NV
positions, but rather a group of them. Therefore a way to model a transformed picture
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is to specify K out of N coefficient positions, e.g. those above a given threshold. In
the Hamming case this is equivalent to a source emitting one of the (27) binary vectors
of length N and Hamming weight K. We will again assume that all source letters are
equally probable, and that N and K are given. We look only at the case where the
number of ones is K < N/2, since the other case (N/2 < K < N) is complementary.
The analysis is simplified by the fact that the set of source vectors of weight K
forms a group code under permutation. Under the action of the symmetric group Sy,
any vector of the set will again yield the whole set. Thus the code is geometrically
uniform, i.e. the distance (distortion) profile looks the same from any vector of the set.
By decomposing permutations into transpositions, one establishes that the distances
will always be integer multiples of two. Assuming that K < N/2, there are exactly

wd:@)(N;A), d=0... K (15)

vectors at Hamming distance 2d from a given vector. The following identity will also
be very helpful in our development:

=2 ()05 =(3) &

As in the single spike case, the reconstruction alphabet consists of the source alphabet
plus the zero vector, to which we assign the probability ¢y as before. To compute
the slope of the linear part of the rate distortion curve we have to solve the equation

(compare with (8, 9))
K

N\ .
2d K
“ — = . 1
> wif ( K)ﬂ 0 (17)
d=0
The solution 3 =1 corresponds again to maximum distortion, D = K. We will now
assume that somehow we found the interesting root By with 0 < Gy < 1 (for K = 2

it is By = (NQ_Q)_I/Q, for larger K it can be computed numerically). Then the linear
part of the rate distortion function will be

R(D) = (D — K)log B0, D(Bo) <D < K

where the bounds on D guarantee 0 < ¢y < 1 (D(0p) is defined below in (18)). For
go = 0, any 3 < [y will satisfy the Kuhn-Tucker conditions. We define a pseudo-

w82
bd:L d=0.. K.

17
g0 War 3%

After some calculations, we get a parametric expression for the rate-distortion curve:

distribution

D(3) = i by2d (18)

log ( ) Zbd log by — Zbd log wy (19)

=
=
[



for 0 < B < By. The middle term in the expression for R is the negative entropy of
our pseudo-distribution by (compare with (14)). Figure 1 shows again that for sparse
spikes (low K/N) the linear segment dominates the rate distortion behavior.
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Figure 1: Rate distortion functions for Hamming distortion. Left: Single spike with
N =2 (bottom) up to N =5 (top curve). The rate has been normalized to 1/logs N.
For N — oo R(D) becomes a straight line, see (14). Right: Multiple spikes (N = 32
and K = 4,8,16, top to bottom). Rate and distortion have been normalized to
R = R/log, (27) and D+ = D/K.

3 Single Gaussian Spikes and Squared Error

The coefficients of a wavelet transform are often modeled as having a generalized
Gaussian distribution (or approximately Laplacian). Assuming that a R.V. is Gaus-
sian provides an upper bound to its rate distortion function. Hence a Gaussian spike
with U ~ U{1,2,...,N} and V ~ N(0,0?) is a conservative model for the behavior
of wavelet coefficients at signal discontinuities. The appropriate distortion measure
is the squared error

o, 03,) = [[ve, — deal?
= S(u—a)(v—"2)+ (1 —35u—a))(v?+ 0% (20)
The mixed discrete/continuous nature of the source alphabet X = U x V =

{1,2,..., N} x R makes it difficult to compute (or make an educated guess at) the
rate distortion function. Therefore we approach the problem by constructing several
asymptotically achievable upper bounds. Asymptotic in this context means that we
consider random codes for blocks of n outputs (u;, v;) from the spike process, with the
block length n going to infinity. Furthermore we will work on the inverse function,
that is the distortion rate function D(R). For a memoryless Gaussian process it is
Dg(R) = 0?27 see for example [3]. The first bound is derived by distributing the
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available rate uniformly among the N positions, thus coding for a Gaussian R.V. in
each position:

D(R) < Dg(R/N) = 0?27*¥. (21)

Since this does not consider position coding, we will call (21) the linear approzimation
bound. Another bound, which is tight at high rates, is derived by coding the exact
position with log N bits, and then using the remaining rate, if any, to code the

Gaussian R.V. V:
D(R) < min{o?, Da(R —log N)} = o2 min{1,272(F-lee N (22)

This second bound suggests a two-part coding scheme as follows: suppose the
block length n is large enough, so that we can encode the positions of k& < n spikes
with log N bits each, and split the remaining rate equally among the k£ Gaussian R.V .s.
If we pick an a-priori fixed set of spikes, e.g. the first k, we have nR = k(log N 4+ Ry ),
where Ry is the rate assigned to each V;. For n — oo we can achieve any (rational)
proportion g = % of coded spikes. Obviously 0 < p < 1. The rate available for coding
Vis Ry = p'R —log N and must be non-negative, yielding the condition

0 <p <min{l, R/log N} (23)
The average distortion of such a two-part code will be
Ep(U,V;U,V) = uDg(Ry) + (1 — p)o? = (uN?27" B 1 — 1)o?. (24)

To minimize the average distortion over y we compute the zero of the partial derivative

%Ep(-) = 0?[N?2"%7'B(1 4+ 2In(2)u"'R) — 1] The solution x = —W_l(il:_(f])\?_g)_l_l

involves Lambert’s W function, which satisfies W (x)e = z. The subscript -1
indicates the second real branch of the W function, taking values on [—1, —oco[. We
notice that p~'R depends only on N. The condition (23) is met for all N > 2. If we

plug this solution into (24), we get

21n(2
D(R) < 021:21 Ep(-) = (1 + WT%_Q)R> o?, (25)
which is an upper bound to D(R) as long as p < 1. If the rate is increased beyond
that point, g remains equal to 1, and we have Ep(-) = Dg(R — log N) as in (22).

In hindsight we have obviously found the time sharing (a.k.a. multiplexing) so-
lution between (R, D) = (0,0?%) and the point on (22) whose tangent goes through
(0,0?), as can be easily verified from the solution.

An obvious extension of this “first £” bound is to code those k spikes that are
largest in magnitude. With an additional nh(y) 4+ 1 bits we specify which k& out of
n spikes are coded (we will neglect the +1 term). The rate available to code each
spike value is now Ry = p~'[R — h(u)] — log N. But the average distortion cannot
be computed as in (24), since the k = pn largest Gaussian spike values will have
a variance larger than o2 for 0 < p < 1. We have used a computer simulation to
approximate the functions v1(u) and ve(p) which give the per-spike variances of the
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k = pn largest and n —k = (1 — p)n smallest spikes, respectively (in the limit of large
block sizes, pvy(u) + (1 — )va(u) = o holds). The average distortion now becomes
(compare with (24)):

Ep(U, ViU, V) = poy () N?27 27 TR (1 — oy (). (26)

We get the “k largest” upper bound on D(R) by sweeping p from 0 to 1 and computing
the convex hull of the curves (26) in the (R, D) plane.

Another way to look at this bound is by considering the expected number of coeffi-
cients with magnitudes above a threshold 7. In the limit ¢ and v, 3 become moments
of a Gaussian R.V. restricted to the outside of [T, T (inside for vy). We were able
to find a parametric expression for the achievable (R, D) points, but unfortunately
the formulas are too large to fit in these proceedings. There is very good agreement
between the analytic bound and the above numerical simulation approach.

As can be seen from Figure 2, the “k largest” bound is better than all other
bounds. At high rates, all bounds except linear approximation (21) coincide with
(22), as expected. For small N and low rates, linear approximation beats the “first
k” approach by a small margin.

It is fairly easy to extend these upper bounds to multiple Gaussian spikes, since we
are still using lossless position coding to construct them. That is, only the expression
for Ry will change.

Figure 2: Upper bounds on D(R) of a Gaussian spike with ¢ = 1 and N = 4 (at
left), resp. N = 16 (at right). Dotted: linear approximation (21), dash-dotted: (22),
dashed: “k first” (25), solid: “k largest” bound

4 Conclusion

The analysis of the Hamming spike case was mainly motivated by its relative simplic-
ity. But it could be applied to lossy coding of the significance bitmaps of (embedded)



image coding schemes such as SPIHT [8]. The main problem is to account for the
distortion in the embedded scalar quantization which runs in parallel with the signifi-
cance bitmap encoding. Another application of Hamming spikes is related to universal
lossy source coding. To code a block of N symbols from a memoryless binary source
with unknown distribution p, we count the number of ones (i.e. K) and encode it
with log N bits. After that we use a random code which achieves D(R—log N) for the
given N and K. From there we can get pointwise bounds similar to those presented
in [5].

The Gaussian spike results obtained so far show the same kind of bi-modal rate
distortion behavior as in Mallat and Falzon’s analysis [6]. The main difference is
that in their paper, D(R) is found to decay approximately as R~ at low rates,
while we aren’t yet able to give such a simple characterization of the low rate decay.
But Figure 2 shows clearly that the “k largest” method, which is common to many
practical compression schemes, pays off at low rates.

Our ongoing work is aimed at extending these results to generalized Gaussian
processes and at incorporating the dependencies across scales of a wavelet transform.
And of course the true rate distortion function of Gaussian spikes is still to be found.
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