
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 8, AUGUST 2012 4969

Rate Distortion Behavior of Sparse Sources
Claudio Weidmann, Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—The rate distortion behavior of sparse memoryless

sources is studied. These serve as models of sparse signal repre-

sentations and facilitate the performance analysis of “sparsifying”

transforms like the wavelet transform and nonlinear approxima-

tion schemes. For strictly sparse binary sources with Hamming

distortion, is shown to be almost linear. For nonstrictly

sparse continuous-valued sources, termed compressible, two

measures of compressibility are introduced: incomplete moments

and geometric mean. The former lead to low- and high-rate upper

bounds on mean squared error , while the latter yields lower

and upper bounds on source entropy, thereby characterizing

asymptotic behavior. Thus, the notion of compressibility

is quantitatively connected with actual lossy compression. These

bounding techniques are applied to two source models: Gaussian

mixtures and power laws matching the approximately scale-in-

variant decay of wavelet coefficients. The former are versatile

models for sparse data, which in particular allow to bound

high-rate compression performance of a scalar mixture compared

to a corresponding unmixed transform coding system. Such a

comparison is interesting for transforms with known coefficient

decay, but unknown coefficient ordering, e.g., when positions

of highest-variance coefficients are unknown. The use of these

models and results in distributed coding and compressed sensing

scenarios are also discussed.

Index Terms—Entropy, memoryless systems, rate distortion

theory, sparse signal representations, transform coding.

I. INTRODUCTION

S PARSE signal representations are the basis of state-of-
the-art lossy compression and applied compressive sam-

pling/compressed sensing (CS). The fundamental appeal of
sparsity lies in the property that a small number of coefficients
carry the bulk of the signal energy, or more generally the part of
the signal that is relevant to the application, e.g., perceptually.
In the case of traditional lossy compression, sparsity provides
a first stage of compression by reducing the number of coef-
ficients needed for approximate reconstruction [by nonlinear
approximation (NLA)] [1]. In the case of sparse sampling
[2] and CS [3], [4], sparsity enables sampling a signal below
its apparent Nyquist rate, while incurring a minimal increase

Manuscript received December 19, 2008; revised October 10, 2011; accepted
February 03, 2012. Date of publication May 30, 2012; date of current version
July 10, 2012. Part of this work stems from C. Weidmann’s Ph.D. thesis and
was supported by an ETHZ/EPFL fellowship. This paper was presented in part
at the 1999 and 2000 IEEE Data Compression Conferences and in part at the
2001 IEEE International Symposium on Information Theory.
C. Weidmann was with the Audiovisual Communications Laboratory, EPFL,

CH-1015 Lausanne, Switzerland. He is now with ETIS—ENSEA, University of
Cergy-Pontoise, CNRS UMR 8051, F-95000 Cergy-Pontoise, France (e-mail:
claudio.weidmann@ieee.org).
M. Vetterli is with the Audiovisual Communications Laboratory, EPFL,

CH-1015 Lausanne, Switzerland, and also with the Department of Electrical
Engineering and Computer Science, UC Berkeley, Berkeley CA 94720 USA
(e-mail: martin.vetterli@epfl.ch).
Communicated by E. Ordentlich, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2012.2201335

in distortion. This is achieved by “universally” sampling the
signal (e.g., using an appropriate random basis) and imposing
a sparsity constraint on its reconstruction. Part of the appeal
of such methods comes from the fact that the computational
complexity of “sparsifying” transform and NLA is moved from
the encoder (sampling device) to the decoder (reconstruction
device), that is, the encoder is kept “simple” and nonadaptive.
The analysis of both NLA and CS has long focused on

the number of coefficients/samples required to achieve recon-
struction at a given distortion level. However, this ignores
the fact that most applications involve some form of digital
transmission or storage, which requires quantizing analog con-
tinuous-valued coefficients. The approach taken in this paper is
to study the number of bits needed to achieve a given distortion,
by modeling the output of a sparsifying transform as a sparse
source, whose rate distortion behavior can be characterized.
Such analysis has the advantage that it characterizes the ulti-
mate compression tradeoff between rate (in bits/sample) and
distortion, independently of the scheme under consideration.
Under the assumption that the sparsifying transform is known
to both encoder and decoder, it does not matter whether the
transform is used at the encoder (as in quantized NLA, i.e.,
adaptive lossy compression) or at the decoder (CS with quan-
tized samples), provided that the ultimate goal is to reconstruct
the sparse source signal with the smallest distortion possible for
a given bit budget. This means that such information-theoretic
analysis does not take into account practical complexity issues
like encoders with limited processing capabilities, which might
favor CS over NLA.
A central aspect of our approach is how to model sparse

sources and how to measure their (approximate) sparsity. We
focus on simple memoryless models that suffice to gain insights
on the relation between sparsity and rate distortion behavior.
Wavelet coefficients will serve as a practical example of a sparse
source throughout this paper, since the material presented here
has its roots in our work on understanding wavelet image com-
pression. Besides this, the wavelet transform is perhaps the best
known sparsifying transform, and it also plays a key role in
recent CS applications such as the “single pixel camera” [5].
Since unitary transforms (or nearly unitary ones, like the pop-
ular 9/7 biorthogonal wavelet) leave vector norms unchanged,
for mean squared error (MSE) distortion measure it is suffi-
cient to study the rate distortion function of sparse sources mod-
eling the transform coefficients. The main focus of this paper
is thus the characterization of nonstrictly sparse continuous-
valued sources. We adopt the often-used term compressible to
denote such sources. The key questions that will be addressed
are how to quantitatively measure sparsity and how to relate
such measures with the rate distortion properties of a source.
Sparsifying transforms, which are the main tool for obtaining

sparse signal representations, have been studied in various com-
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Fig. 1. (a) Operational distortion rate points of a wavelet coder applied to the
Lena image. The knee shape, leading from the steep decay at low rates to the
asymptotic slope, is typical for such image coders. (b) At low rates,
only a small fraction of coefficients are quantized to nonzero values; all the
others are not used in the reconstruction of the image.

pression-related settings. For example, the success of wavelet-
based coding is often attributed to the ability of wavelets to
“isolate” singularities; something Fourier bases fail to do effi-
ciently [1]. Thus, a piecewise smooth signal is mapped through
the wavelet transform into a sparse set of nonzero transform
coefficients, namely coefficients around discontinuities, as well
as coefficients representing the general trend of the signal [6].
While this behavior is well understood in terms of NLA power
(that is, approximation by the largest terms of the wavelet
transform, see [7] for a thorough treatment), the rate distortion
behavior is more open. Early work on NLA of random func-
tions [8] concentrated on approximation error as a function of
the number of approximation terms, neglecting the tradeoff be-
tween the rate needed to identify these terms and the rate used
to quantize each term. Mallat and Falzon [9] were the first to
analyze the operational low-rate behavior of image transform
coding, which is very different from the behavior expected from
classic Karhunen–Loève transform (KLT) theory. In essence, at
low rates only few wavelet coefficients are involved in the ap-
proximation of piecewise smooth functions, leading to a decay
of the distortion rate function that is steeper than the classic ex-
ponential decay in the case of Gauss–Markov processes and the
KLT. This result had been observed experimentally in low-rate
image coding; see Fig. 1 for example.
A key difference between compressing jointly Gaussian pro-

cesses using the KLT and compressing piecewise smooth pro-
cesses with the wavelet transform lies in the identification of
the set of significant coefficients that are quantized and used
for reconstruction. In the KLT case, the optimal rate allocation
strategy is reverse water-filling [7, Sec. 11.3], [10, Sec. 13.3.3],
meaning that statistical signal properties (the eigenvalues of the
covariance matrix) determine a priori the set of coefficients
for a given reconstruction quality. The KLT approximation is

“linear” (up to quantization) and nonadaptive, in the sense that
two sample vectors with the same covariance matrix will be ap-
proximated using the same set of coefficients, which spans a
subspace. In the wavelet approach, the approximation is “non-
linear” and adaptive, since the set of coefficients is chosen a
posteriori based on the transformed signal realization and may
thus change from instance to instance. This underlines the im-
portance of coding the positions of the significant coefficients in
a sparse vector; see [11] for a thorough analysis in the context
of wavelets.
The previously cited results indicate the interest to study the

rate distortion behavior of sparse signal representations in more
depth, in particular, to narrow down rates and distortions within
constants, avoiding the loose factors in the exponent that are
often present in approximation results. Recently, sparse sources
have also received renewed attention with the work on sparse
sampling [2] and CS [3], [4]. Their rate distortion behavior is
still being studied, with some initial results in [12]. Thus, this
paper fills a gap, giving either precise results or tight bounds on
the rate distortion behavior of models that serve as benchmarks
for these methods.
The remainder of this paper is organized as follows. Section II

presents three classes of source models, namely strictly sparse
binary sources and mixed discrete/continuous “spike” sources,
as well as nonstrictly sparse continuous sources. It also briefly
introduces some essential information-theoretic definitions and
tools.
Section III looks at strictly sparse sources. Binary vec-

tors with Hamming distortion are studied in Section III-A
as a model for coding the positions of a set of coefficients.
Closed-form expressions for are derived for the case
when the number of nonzero entries is known; these hold also
for nonsparse sources. For sparse binary sources, is
found to be essentially linear. Section III-B then considers a
mixed discrete/continuous spike source, in which a Bernoulli
(position) source switches a Gaussian (value) source ON or
OFF. The MSE distortion rate behavior is characterized using
upper bounds. Sparse spikes help explaining the steep distortion
decay in low-rate NLA, but they fail to model the behavior at
medium to high rates, for which continuous sources are more
appropriate.
Section IV opens the main theme by introducing two ways

of measuring compressibility (nonstrict sparsity) of continuous-
valued sources: using incomplete moments and using the geo-
metric mean. Based on incomplete moments, Section V intro-
duces upper bounds on MSE and applies them to a pop-
ular power-law model for approximately scale-invariant data,
such as wavelet coefficients. Section VI then presents lower and
upper bounds on the source entropy using the geometric mean
and the variance, thereby characterizing the asymptotic rate dis-
tortion behavior of a source as a function of its compressibility.
In fact, these bounds on and entropy hold for continuous
sources with arbitrary compressibility, i.e., also for nonsparse
sources.
The theme of compressible sources is continued in

Section VII, which considers Gaussian mixture (GM) models,
showing that simple two-component mixtures already capture
the essential characteristics (the knee shape) of sparse
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sources. Based on incomplete moments, a notion akin to classic
transform coding gain is introduced. In the case of Gaussian
transform coefficients, it is possible to bound the loss in coding
gain if the coefficients are randomly mixed (that is, if one
knows only their variances, but not their positions).
Finally, Section VIII briefly outlines how the results on com-

pressible sources can be applied to distributed coding and CS
scenarios.

II. MODELS, DEFINITIONS, AND TOOLS

A. Models for Sparse Sources

When using sparse signal representations as building blocks
for lossy source coding, the goal is to concentrate most of the
signal energy in as few coefficients as possible. Lossy compres-
sion then proceeds by selecting a subset of coefficients that will
be quantized. NLA methods will generally select the largest co-
efficients first; other (linear) methods might select a fixed set de-
pending on the coding rate or some other criterion. The quality
of the reconstruction from the quantized coefficients will be
measured with an appropriate distortion measure.
The coefficients representing the signal will be modeled as

coming from a memoryless sparse source , which emits an
i.i.d. sequence of random variables . For simplicity,
we will use to denote both the source and the random vari-
able(s) that it emits. Before presenting the different models, we
need to clarify the notion of “sparse source.” We will say that a
source is strictly sparse if it emits the value zero with positive
probability. Clearly, the closer this probability to 1, the sparser
the source. A natural measure of sparsity in this situation is
the normalized Hamming weight of a sample vector, ,
which asymptotically equals , such that
smaller values indicate a sparser source. The Hamming weight
is , where
and are the Hamming distances between
vectors and symbols, respectively.
A more general notion of sparsity will encompass sources

that emit sparse sequences affected by weak background noise,
which has negligible energy compared to the sparse component.
Such compressible (nonstrictly sparse) sources can be modeled
by proper continuous random variables. These have

, and therefore, Hamming weight cannot be used to
measure their sparsity; alternative measures will be proposed
in Section IV.
Three different classes of sparse source models will be

studied.
1) Sparse binary sources might model a significance map or
sparsity pattern, that is, the binary map recording the posi-
tions of significant coefficients in an NLA scheme. (These
are the coefficients which are actually used to reconstruct
the signal.) We will analyze both sources emitting vectors
of length containing exactly 1s and Bernoulli- (bi-
nary memoryless) sources, emitting sequences of i.i.d. bi-
nary random variables.

2) Spike sources are a generalization of sparse binary
sources, where each binary 1 is associated with a con-
tinuous random variable. In particular, we will study the
product of a Bernoulli- source (emitting 0 or 1) and a

memoryless Gaussian source, using the MSE distortion
measure. This might serve as a crude model of very low
rate wavelet-based NLA coding, when only a tiny subset
of coefficients is used to represent the signal.

3) Compressible sources are memoryless sources emitting
i.i.d. continuous random variables with a peaked unimodal
density (the mode is assumed to be zero). Examples are
power laws, Laplacians, and generalized Gaussian den-
sities with exponent smaller than 1. Such sources can be
used as a first-order model for wavelet coefficients in, e.g.,
image coding [13]. In particular, we will show that very
simple GMs are sufficient to capture the key aspects of the
rate distortion behavior of sparse wavelet coefficients.

B. Definitions and Tools

The rate distortion function of a source was introduced
by Shannon to measure the minimal amount of information rate
required to describe the source output within average distor-
tion [14], [15]. It is the minimal rate needed by an optimal
(high-dimensional) vector quantizer, that is, by an optimal lossy
compressor. This operational definition is found to be equal to
the information rate distortion function [10, Theorem
13.2.1]

(1)

where is the reconstruction random variable defined via
the conditional probability mass (or density) function (pmf

or pdf) , is the mutual

information between and , and is the distortion
measure. The expected distortion is obtained over the joint
distribution . Equality (1) implies that
the information-theoretic function describes the ul-
timate performance limits of lossy compression (and it also
allows us to drop the superscript in the following). These
definitions and results hold for discrete and continuous sources,
as well as mixed discrete/continuous sources, under appropriate
conditions on and [10], [16, Ch. 13]. Closed-form
expressions for are known for the binary memoryless
(Bernoulli- ) source with Hamming distortion and the Gaussian
source with squared error distortion. Alternatively, the distor-
tion rate function , the inverse of , measures the
minimal distortion achievable with a given description rate. We
use both functions interchangeably, but in figures we always
plot distortion over rate.
This study considers only memoryless sources and single-

letter distortion measures. For the first of the aforementioned
models, sparse binary sources, a natural distortion measure is
the Hamming distance . The other two models, spike
sources and compressible sources, output continuous values and
correspond to situations where signal energy will be measured
with the square norm. Hence, we will use the MSE as distortion
measure, corresponding to .
Two key results on continuous sources that will be used as

tools throughout this paper are as follows. The Gaussian upper
bound states that the MSE distortion rate function of a memo-
ryless continuous source with variance is upper-bounded by
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the distortion rate function of a Gaussian source with the same
variance [14, Theorem 23]

(2)

Note that in this study, all rates are expressed in nats and all
logarithms are natural, unless otherwise stated. The Shannon
lower bound (SLB) states that the MSE rate distortion function
of a memoryless continuous source is lower-bounded by that
of a Gaussian source with the same differential entropy [14,
Theorem 23]

(3)

where is the differential entropy of the
source. For a large class of sources with sufficiently “nice” den-
sities, the MSE SLB (3) is asymptotically tight for small distor-
tions (large rates), that is, as ;
see, e.g., [16, Sec. 4.3.4] or [17]. Thus, we will use bounds on
the entropy of compressible sources to characterize their asymp-
totic rate distortion behavior.

III. STRICTLY SPARSE SOURCES

A. Sparse Binary Sources

We will first study memoryless binary vector sources that
emit exactly 1s in a vector of length , after which we look
at the simple scalar binary memoryless (Bernoulli- ) source.
Reconstruction fidelity is measured with Hamming distortion,
which is equivalent to a frequency of error criterion where both
types of errors have the same cost (coding a 1 when there is none
and vice versa).

Definition 1: The binary source is a memoryless
source that emits binary vectors of length and Hamming
weight , with uniform probability over the possible pat-
terns.
Since the source alphabet size is finite, the rate distortion

problem is not a proper vector-valued problem and can actu-
ally be solved with the methods for discrete memoryless sources
summarized in Appendix A.

Binary Vectors of Weight 1: The simplest case of a binary
source is equivalent to a memoryless uniform source

with alphabet . Using the standard basis
vectors , we can write . It can be shown (see [16, Th.
14] in Appendix A) that just one additional reconstruction letter
is needed to achieve the Hamming rate distortion bound, and it
will map to the all-zero vector . To see that it can only be the
all-zero vector, consider the source alphabet ,
which consists of all vectors of Hamming weight 1. Any other
nonzero vector will be at Hamming distance 1 or more from
these vectors and thus can only worsen the distortion achieved
by the all-zero vector, which is exactly 1. If we define

and , then everything fits nicely. Using
corresponds to not coding the position. We get the distortion
measure

Fig. 2. for the binary source with Hamming distortion,
(bottom to top curve). The rate has been normalized by . For
, becomes a straight line; see (4).

Thus, “giving the right answer” has zero distortion, a wrong
answer two, and not answering costs one distortion unit.

Proposition 1: The Hamming rate distortion function of a
binary source for is

(4)

where is the binary
entropy function.
The proof appears in Appendix B; Fig. 2 shows a set of typ-

ical functions. As becomes large, the linear segment
dominates the rate distortion characteristics. In the special case

, the solution degrades to twice the function of a
binary symmetric source.

Binary Vectors of Weight : The general binary
source for emits one of the binary vectors of length
and Hamming weight , uniformly at random. Its Hamming

rate distortion function can be obtained in similar fashion to
the source, if the additional reconstruction letter is the
all-zero vector [18, Sec. 3.2.2]. However, this choice of is
optimal only for low distortions. Determining the best for
higher distortions requires a cumbersome case-by-case analysis
that can be avoided in view of the following result for sparse
Bernoulli- sources.

Sparse Binary Memoryless Sources: The simplest model
of a sparse binary source is a Bernoulli- binary memoryless
source (BMS) with . Its extension to
blocks of symbols may be considered as a randomized version
of the aforementioned binary vector models, since blocks of
samples will contain close to 1s on average, instead of a
fixed number .

Proposition 2: Consider a Bernoulli- source with
normalized distortion , where is Hamming distor-
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tion. Then the normalized rate distortion function is asymptoti-
cally linear when

Proof: The rate distortion function of the BMS is
for [10, Th. 13.3.1]. Therefore

fromwhich, by applying the Bernoulli-de l’Hospital’s rule twice

Proposition 2 shows that if we normalize the rate and the dis-
tortion by their maxima, and , respectively, the rate dis-
tortion function becomes linear for sparse binary sources with

.

Remarks: For both the vector model and the BMS the rate
distortion function becomes linear for very sparse sources, for
which the average Hamming weight approaches zero. The in-
terest of the vector model lies mainly in the fact that it yields
analytic expressions for , of which there are not many ex-
amples in rate distortion theory.
The consequence of this “almost linear” behavior of sparse

binary sources is the following: to encode sequences of length
at intermediate rates , it is not necessary to

use a complex lossy encoder, but one can simply encode the po-
sitions of the ones in sequential fashion using a lossless encoder
(e.g., an arithmetic coder), until the bit budget is used up.

B. Spike Sources

The previous section studied sparse binary sources that may
model the position of significant coefficients. Now we also con-
sider the values of those coefficients, by modeling them as con-
tinuous random variables. The resulting model is a discrete-time
stochastic process that is zero almost all the time, except in a few
positions, where spikes stick out. Distortion will be measured
by the MSE. A simple model of a spike source can be obtained
by multiplying the outputs of a binary source (emitting 0 or 1)
and a memoryless continuous source. The binary source simply
switches the value source ON or OFF. Here, we consider only
Gaussian-distributed values, because they provide a worst-case
benchmark for MSE distortion.

Definition 2: The Bernoulli–Gaussian (BG) spike source
emits i.i.d. random variables that are the product of a bi-
nary random variable with and

and an independent zero-mean Gaussian

random variable with variance . Using Dirac’s delta
function, the “pdf” of the BG spike can be written as

(5)

BG spikes are mixed random variables that have both a dis-
crete and a continuous component. From (5), it is clear that
the distribution function of such random variables is not ab-
solutely continuous in general, and therefore, most results of
standard rate distortion theory do not hold. The spike entropy
cannot be computed with the usual integral, but only via mutual
information conditioned on the discrete part [19, Ch. 2]. With
this method, Rosenthal and Binia [20] derived the asymptotic

rate distortion behavior of mixed random variables,
as well as certain mixed random vectors. Their result coincides
with the simple upper bound (6) presented below if the contin-
uous part is Gaussian; otherwise, their result is tighter. Later,
György et al. [21] extended these asymptotic results to random
vectors with more general mixed distributions and to a wide
class of sources with memory.
A simple upper bound on of the spike source can be de-

rived using an adaptive two-step code: 1) all samples with mag-
nitudes above are classified as spikes and their positions
encoded with a bitmap using ; 2) the spike
values are encoded with a Gaussian random codebook using

[10, Th. 13.3.2]. (A generalization of this
coding scheme was shown to be asymptotically optimal in the
limit of small distortions for some mixed-distribution sources
with memory in [21].) The resulting upper bound expressed as
a function of rate is

(6)

This bound is loose at high distortions (i.e., low rates) and can be
improved by coding only a fraction of the spikes. In particular, a
tighter bound is obtained by varying the classification threshold
and optimizing over the resulting family of upper bounds; the
result is stated in Section V.
Fig. 3 shows the bound (6) and the optimized low-rate bound

(16) from Section V, together with estimated numerically
with the Blahut–Arimoto algorithm [10, Sec. 13.8] for different
values of . The asymptotic distortion decay is on the order of

, which can be much steeper than the
typical of absolutely continuous random variables. This decay
behavior is representative of spike sources, regardless whether
the value is Gaussian or not.
Comparing with Fig. 1, we see that the spike behavior

is very different from the one observed in actual lossy com-
pression. Thus, the spike source is certainly not a good general
model for sparse transform coefficients. However, it explains
the steep decay that can be achieved at very low rates,
when only very few coefficients are used to represent the data.
When the rate is higher, the spikemodel fails, because the abrupt
change from zero to a Gaussian value distribution does not re-
flect the coefficient decay actually observed (i.e., the nonstrict
sparsity that will be considered in the next section). There are
other applications of spikes, such as using them as a benchmark
for transform coding. In the case of data-independent (linear)
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Fig. 3. Distortion rate behavior of BG spikes for different values of the Bernoulli- parameter (normalized to unit variance). (a) (b) and
(c) .

rate allocation, any transform of the spike process yields worse
performance compared to nonlinear approaches [1]. For con-
stant-value spikes (“1 in ” as in Section III-A), any KLT basis
contains the vector and thus always destroys spar-
sity [22].

IV. COMPRESSIBLE SOURCES: MEASURING
NONSTRICT SPARSITY

We introduce two ways of measuring compressibility (non-
strict sparsity) that are both intuitive and useful, in the sense that
they will allow us to bound the MSE distortion rate function or
the source entropy, and thus to connect the notion of compress-
ibility with actual lossy compression performance.

A. Incomplete Moments as Compressibility Measure

A possible qualitative characterization of compressibility
is as follows: for a fixed sample vector of
size , the fewer samples are needed to capture a
large part of the vector’s energy, the more compressible is
the vector. This can be quantified by ordering the samples
according to their magnitudes, e.g., with a permutation such
that , and computing the second
moment (the average energy) of the

largest samples. Then a vector with total energy will
be more compressible if grows more rapidly toward
1, in the sense that the distortion of the approximation by
the largest samples, , will be smaller. For
asymptotic block lengths, this approach can be applied to a
memoryless continuous source with density , by con-
sidering the proportion of largest samples (
for finite lengths) and their second moment . A simple
parametric way to obtain these quantities is to compute two
incomplete moments for the realizations above a magnitude
threshold , namely the probability

(7)

and the second moment

(8)

where is the source variance (we assume that
without loss of generality).
The parametric curve , which runs

from to for , can be used to mea-
sure the compressibility of . The parameter may be elimi-
nated, yielding the moment profile , which
is monotonically increasing, concave- for (see
[18, Sec. 4.2], where the moment profile was first proposed to
characterize compressible sources). Thus, the faster grows for
small , the more compressible is the source.
Clearly, characterizing compressibility with a curve instead

of a single parameter is a bit cumbersome. One alternative is
to determine a special point on , which yields an
upper bound on the differential entropy (see Corollary 4).
A simpler alternative, which however has no straightforward
connection with entropy, is to measure compressibility by the
area under the curve for . In fact, it turns out that
incomplete moments have long been used to measure inequality
in distributions, and that is basically a Lorenz curve [23] for
asymptotically large samples of the squared random variable
. Recent work byHurley and Rickard [24] compared theGini

index— twice the area between and the diagonal from
to – with other measures of sparsity and found it to be one
of the most useful under a number of criteria.
Section V will present upper bounds on that can be

computed directly from the incomplete moments and ,
thus relating compressibility to lossy compression.

B. Geometric Mean as Compressibility Measure

This section introduces the geometric mean, normalized by
the standard deviation, as a single-parameter compressibility
measure. A sequence of positive real numbers, ,
has arithmetic mean and geometric mean

. The classic arithmetic–geometric mean
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inequality is , with equality if and only if all are
equal. The geometric mean equals the side length of an -cube
with the same volume as the rectangular parallelepiped spanned
by the . A small ratio corresponds to a “thin” paral-
lelepiped or a sparse, compressible sequence . Conversely,

yields an -cube, that is the least sparse sequence
. We will use the expected geometric

mean of a block of samplemagnitudes, in the limit of large block
length, to measure the compressibility of a memoryless source.

Definition 3: The geometric mean of a memory-
less continuous source with is

.
To see that is well defined for a memoryless source

with density and is indeed the desired quantity, consider a
block of i.i.d. samples from . The geometric mean of these
samples is , while its expected value

is

since Fubini’s theorem can be applied to the product density.
If we let the block size go to infinity, we obtain the geometric
mean of the source [25, p. 139]

(9)

For a fixed source variance, if more probability mass is con-
centrated around zero, will become smaller and a sample
vector of will look sparser. Due to the fixed variance, the den-
sity will become more heavy-tailed at the same time.
Different sparsity (compressibility) measures have been pro-

posed for a variety of applications: a quite common one is the
quasi-norm with ; see,
for example, [22] and [24] and references therein. The obvious
question is: How to choose ? If is a sample from a memo-
ryless source, choosing will yield the geometric mean
as , by (9). This is a strong argument in favor of the
geometric mean as a compressibility measure for continuous
random variables. In this respect, it is also interesting to observe
that for vectors from a bounded set, is equal to
the Hammingweight , which is the strictest sparsity mea-
sure in the sense that only values that are exactly zero contribute
to sparsity (cf., Donoho’s “norm”).
Section VI will show that the geometric mean in combination

with the variance can be used to bound the source entropy and
therefore characterize asymptotic behavior.

V. COMPRESSIBLE SOURCES: DISTORTION RATE BOUNDS

A. Two Upper Bounds

This section presents two upper bounds on the MSE of
continuous random variables, which will be applied to models
of compressible sources in the following sections. The bounds

are obtained by classifying the magnitudes of the source sam-
ples using a threshold and applying the Gaussian upper bound
(2) to each of the two classes. They are upper bounds on the op-
erational rate distortion function ofmagnitude classifying quan-
tization (MCQ), which sends the classification as side informa-
tion and uses it to switch between two codebooks. The samples
with magnitude above threshold are called significant and are
characterized by the two incomplete moments used to measure
sparsity in Section IV-A, namely the probability (7) and the
second moment (8), where is the source vari-
ance. From these, we compute the conditional second moment
of the significant samples

as well as that of the insignificant samples

The classification decision is sent as side information to the de-
coder, using nats per sample. The encoder can now use
two separate Gaussian codebooks: one for the significant sam-
ples with rate and one for the insignificant samples with rate
. The average rate per sample becomes

(10)

By standard rate allocation (reverse water-filling) over the two
codebooks, we obtain an upper bound.

Theorem 3 (High-Rate Upper Bound): For all

(11)

the MSE distortion rate function of a memoryless continuous
source is upper-bounded by

(12)

where

(13)
The best asymptotic upper bound for is obtained
by finding the threshold that minimizes . Since

, the Gaussian upper bound is always a
member of this family.

Proof: The variances of the insignificant and the signifi-
cant samples can be upper-bounded by the second moments, as

and . By
inserting these into the Gaussian upper bound (2) and weighting
with the respective probabilities, we obtain

For given , the optimal split of the total rate (10) can be found
using Lagrangian optimization. The condition en-
sures that the rates and are nonnegative.

Exploiting the trivial fact that (12) also upper-bounds the
Shannon lower bound , we obtain
an upper bound on differential entropy.
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Corollary 4: Let and yield the
tightest bound in Theorem 3. Define the pmfs

Then the differential entropy is upper-bounded by

(14)

where is the divergence or Kullback–Leibler distance
between the pmfs.
For , that is , the bound (14) reduces to the

Gaussian upper bound on entropy. Highly compressible sources
with a peaked, heavy-tailed pdf will have a much smaller en-
tropy than a Gaussian with the same variance. In that case, the
divergence term in (14) will be large, and the side information
term becomes negligible. In a certain sense, this entropy
bound generalizes and quantifies the concept that the more con-
fined a distribution, the smaller its entropy [14, Sec. 20].
A low-rate bound is obtained by upper-bounding only the sig-

nificant samples, while the other samples are quantized to zero,
thus yielding a distortion floor.

Theorem 5 (Low-Rate Upper Bound): The MSE distortion
rate function of a memoryless continuous source is upper-
bounded by

(15)

where

For a given threshold , satisfying the condition given here-
after, this bound can be optimized to yield

(16)

with the locally optimal rate (with respect to ) given by

(17)

where is the reciprocal normalized second tail moment

(18)

and is the second real branch of the Lambert func-
tion, taking values on . (The function solves

.) The condition on in order for to be
well defined is that the argument of in (17) be larger than
or equal to , that is, . The
rate is only locally optimal in the sense that a small vari-
ation of will not tighten (16), but there might exist such
that the corresponding bound is strictly tighter at .
The proof appears in Appendix C, followed by detailed dis-

cussions of when (17) has no solution, i.e., it is not well defined,
as well as its locally optimal character. Furthermore, a corol-
lary shows that the low-rate and high-rate bounds coincide in

the minimum of the latter, that is, as expected there is a contin-
uous transition between the two bounds. Expression (17) can
be simplified, at the price of yielding a looser bound, by re-
placing with an approximation [18, Sec. 2.5]. One may use
(16) to trace an upper bound on by sweeping the threshold

, that is going from to , at
which point the high-rate bound (12) takes over, i.e., it is tighter
for all . Results by Sakrison [26] and Gish and
Pierce [27] imply that the operational distortion rate function

of a magnitude classifier followed by a Gaussian scalar
quantizer (adapted to the class variance) will be at most a factor
of (1.53 dB) above these bounds. Actually, this gap is even
smaller at low rates, since the distortion is trivially
achieved for the insignificant samples.
The high-rate bound (12) does not apply to the spike source

(5), since its distribution is not continuous; cf., the discussion
following (5). However, the low-rate bound (16) holds for any
threshold , as the significant samples then have a contin-
uous density. In the limit of arbitrarily small positive , such
that , (15) becomes the simple spike upper bound (6).
For many sparse sources, the low-rate bound (16) turns out to
be much tighter than the Gerrish–Schultheiss bound [28]; see
[18, Sec. 3.5] for an example.
The bounds can also be computed directly from the moment

profile , without resorting to the underlying source pdf,

since is the only additional quantity needed
to compute (16) [18, Sec. 4.2]. This reinforces the usefulness of
the moment profile as a measure of compressibility.
For most source densities, it is very difficult, if not impos-

sible, to compute the distortion rate function in closed form. A
popular escape route is to discretize the density and apply the
Blahut–Arimoto algorithm to compute a numerical approxima-
tion of [10, Sec. 13.8]. To obtain plausible results, one
needs to pay close attention to the discretization and to the ar-
tifacts due to finite entropy (i.e., distortion falsely dropping to
zero), particularly for highly compressible sources. Thus, the
bounds presented here can be a valuable alternative, since the
required incomplete moments can be easily computed for most
densities, at least numerically. Perhaps even more interesting is
the possibility to compute empirical distortion rate bounds from
a sample of the source, fromwhich the needed quantities , ,
and can be easily estimated.

B. Application to a Power-Law Source Model

As an example, we apply the aforementioned bounds to a
power-law model for wavelet coefficients studied e.g., in [9],
[7, Sec. 11.4]. The rate in the optimized
high-rate bound (12) provides an estimate of the beginning
of the high-rate region, in which distortion decays with

. Together with the corresponding distortion bound
it localizes the end of the typical knee

between the low-rate region with fast distortion decay and the
high-rate region.
Consider a normalized order statistic that ranks the

magnitudes of wavelet image transform coefficients in de-
creasing order according to the normalized rank , such that

is the largest coefficient magnitude and the smallest.
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The power-law model is based on the empirical observation
that the magnitudes of the larger half decay
approximately like a negative power of , that is
up to about . The exponent is on the order of 1 for
typical images.
The connection with the high-rate bound is made by noticing

that the classification threshold divides the coefficients (now
thought to come from a memoryless source) into two groups:
one with magnitudes above and one with magnitudes below
. The expected rank of a coefficient with magnitude will
be . Thus, we may equate and .
As mentioned in Section IV-A, the threshold can be elimi-
nated altogether by substituting it with in the integral defining
, yielding the moment profile . Since
is generally not square integrable, we change the model

to , where is a positive constant
that ensures integrability. Finally, the coefficient decay above

is observed to be almost linear (i.e., the magnitudes of
the 50% smallest coefficients are almost uniformly distributed).
This results in the following composite model for the moment
profile:

(19)

The median magnitude and the exponent can
be estimated from a sample, the normalization constant is

, while can be determined numeri-
cally from the condition .
The distortion rate bounds can be computed based on the

moment profile alone, but if needed the implicit proba-
bilistic source model can be easily deduced. The pdf of

the magnitudes is obtained parametrically from

and . If desired, a symmetric source model pdf

is .
Fig. 4 displays a grid of points obtained from

the model (19) for a range of parameter values. Interestingly,
the parameters have nearly orthogonal influences over a wide
range: the exponent affects mainly the rate , while the
median magnitude affects the distortion . In terms
of the source pdf, a small implies that most of the source
energy is in the pdf tail; in turn, controls the tail decay, which
will be slower for smaller (“heavy tail”). Points that lie on a
line with slope correspond to asymptotically equal
upper bounds, i.e., to sources that can be compressed equally
well at high rates. The median can be seen as an indi-
cator of sparsity that has a strong influence on asymptotic com-
pressibility. The exponent controls how fast the asymptotic
regime is reached; to have high compression at low rates, both

and need to be small, i.e., the source pdf must be
peaked at zero and heavy-tailed at the same time.
Also shown in Fig. 4 are the bounds (12) and (16) for ,

, which are the approximate parameters of the
wavelet coefficients used to draw Fig. 1. The estimated start of

Fig. 4. Beginning of a high-rate region, i.e., approximate location where the
knee in the curve ends, for the power-law wavelet coefficient model (19).
The points of the grid indexed by the model parameters (exponent and median
magnitude ) correspond to the points where the optimized high-
rate bound (12) starts to hold, i.e., starting from where decay is
predicted. Also shown are the bound (16) for rates up to , and
the bound (12) for rates above bits (solid line), for the parameters
, , as well as the Gaussian (all with unit variance).

the high-rate region is , ,
matching quite well with Fig. 1. Due to the roundness of the
knee, it is hard to visually estimate where the asymptotic decay
of begins. GM models (see Section VII) may show
much sharper knees.
The power-law model (19) provides a valuable empirical tool

for analyzing wavelet coefficients or other approximately scale-
invariant data. However, it lacks the generality and versatility,
as well as the theoretical apparatus, of the GM models that will
be studied in Section VII. In particular, not every sparsifying
transform will necessarily produce the approximately scale-in-
variant coefficients implied by the power-law model.

VI. COMPRESSIBLE SOURCES: ENTROPY BOUNDS

The geometric mean introduced as a measure of compress-
ibility in Section IV-B can be used to obtain bounds on source
entropy.

A. Lower Bounds on Differential Entropy

The logarithm of the geometric mean (lgm) yields
a lower bound on the entropy of continuous random variables
with one- or two-sided monotone densities. Through the SLB
(3), this can be used to bound asymptotic for .
We first prove a weaker bound that has the appeal of dis-

playing the relationship with an analogous bound for discrete
entropy. Then we will prove a bound which is tight for the class
of monotone densities considered.
Notice that in general the geometric mean has to be normal-

ized by the standard deviation, , before it can be
used as sparsity measure. However, in the following results this
is not done, since the entropy would also have to be normalized
(as in ) and the two normalizations
cancel each other.
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Proposition 6: Let be a finite variance random variable
with a monotone one-sided pdf and domain or

. Then

Proof: Without loss of generality, consider a pdf which is
monotone nonincreasing on . The monotonicity implies
that is Riemann-integrable, and the finite variance ensures that
the entropy integral is finite (by the Gaussian upper bound on en-
tropy, [10, Th. 9.6.5]). We will approxi-
mate the integral

by a Riemann sum with step size . Let
and , for . By monotonicity,

we have and hence

(20)

Thus, we can write

where the inequality follows from taking the logarithm of (20).

Remark: Inequality (20) was used byWyner to prove an anal-
ogous bound for discrete entropy [29].
Using a different proof technique, we obtain a stronger result.

Theorem 7: Let be a finite variance random variable with
a monotone one-sided pdf and domain or .
Then

(21)

with equality if and only if is a uniform density.
Proof: For simplicity, we assume to be nonincreasing on
. Let be the set of all such monotone nonincreasing,

finite variance densities on . It is easy to verify that is
a convex set. Its boundary is the set of all finite variance
uniform densities

(22)

where

To see that (22) is indeed the boundary of , observe first that
no uniform density can be written as a nontrivial convex
combination of two distinct monotone nonincreasing densities.

Moreover, any once differentiable can be written as a
convex combination of elements of

(23)

where , as can be shown with some simple cal-
culus. is a proper density if has finite variance (in particular,

) and if , which is indeed the case
for monotone decreasing . Using the standard extensions to
distributions, (23) also holds if contains a countable number
of steps, e.g., if it is piecewise constant. In fact, (23) is nothing
but a disguised version of the “layer cake” representation1 of ,
namely , where is the in-
dicator function of the level set . The existence of
this representation follows from the monotonicity of .
Looking at (21), we see that

(24)

is a concave- functional of , since is concave and
is linear in . Therefore, a minimum of (24) over the

convex set must necessarily lie on its boundary . We insert
an arbitrary boundary element in (24) to
obtain

(25)

Since (25) holds for any , we conclude that it is the global
minimum, thus proving (21) and one part of the “if and only
if.” To prove the other part, it suffices to observe that

is a strictly concave functional and thus will be larger
than (25) in the interior .

Remark: The tightened bound (21) can be used in turn to
tighten Wyner’s discrete entropy bound [29], leading to im-
proved performance bounds for a class of lossless codes [31].

Definition 4: A weakly unimodal density with mode is a
pdf which is monotone nondecreasing on and mono-
tone nonincreasing on .

Corollary 8: Let be a finite variance random variable with
weakly unimodal pdf such that , where
is the mode. Then

(26)

For a density that is symmetric about ,
, (26) reduces to

(27)

1The term “layer cake” representation stems from the picture of cutting the
area between and the abscissa into thin horizontal stripes with widths cor-
responding to the level sets [30, Sec. 1.13].
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Fig. 5. Probability density (28) of a “uniform spike.”

The bound (27) is asymptotically attained by a “uniform spike”
with finite variance and parameters
defining the density

(28)

as the tail width .
Proof: We view the weakly unimodal pdf as a mixture

of two nonoverlapping monotone one-sided densities, and
, with weights and , respectively. Without loss of

generality, we can assume . Then

where the last inequality follows from Theorem 7, proving (26).
It is easily verified that “uniform spikes” exist for

; see Fig. 5. Using and defined in (28) , the asymp-
totic entropy is

and the asymptotic lgm is

Hence, the lower bound (27) is asymptotically attained by a
random variable concentrating its probability uniformly over

(since ), with an infinite tail con-
tributing only to its variance. A peakier density with the same
variance and entropy will have a smaller geometric mean.

Remark: Since only monotonicity and finite variance are
needed for Theorem 7 to hold, it can be seen that Corollary 8
holds also for bounded randomvariableswith range
and a pdf that is monotone nonincreasing on and
monotone nondecreasingon (e.g., a “bathtub” shape).

B. Upper Bound on Differential Entropy

If both the variance and the geometric mean are known, an
upper bound on the entropy can be easily obtained via the max-
imum entropy approach. Owing to the assumptions made in
this variational approach, the results in this section hold for
random variables which have an absolutely continuous distri-
bution function with probability density .

Proposition 9: The maximum entropy pdf given the con-
straints and is

(29)

where is the gamma function (Euler’s integral of the
second kind) defined as
[32, 8.31]. The shape parameter is obtained by solving

(30)

where [32, 8.36]. For any , there
is a unique solution, since is strictly monotone in-
creasing in . The resulting entropy is

(31)

Setting yields the Gaussian density and thus the global
entropy maximum given the variance constraint alone.
The proof appears in Appendix D.

Corollary 10: The entropy of any random variable with
probability density satisfying and
is upper-bounded by (31).
The corollary is implied by the maximum entropy approach.

Theorem 11: The maximum entropy (31) for a finite variance
has the following asymptotic behavior as the geometric mean
goes to zero, resp. :

The symbol denotes asymptotic equality, i.e., as
means that .
Proof: Note that corresponds to . Let

(32)

To prove , which is slightly stronger than re-
quired, we use the functional relationships ,

, and the truncated series expansions

, ,
both for (see, e.g., [32, 8.3]; is Euler’s
constant). We have

Hence, is equal to the limit of the logarithm in (32).
But
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Fig. 6. Differential entropy bounds for symmetric weakly unimodal densities
(normalized to unit variance). The square denotes the uniform density for which
the lower bound is tight.

This can be easily seen by extending the fraction by and ob-
serving that . By putting these steps to-
gether, we obtain .

Fig. 6 shows the lower bound (27) and the upper bound (31)
as a function of for unit-variance random vari-
ables with symmetric unimodal densities. The global maximum
of the upper bound corresponds to the unit-variance Gaussian
density, which has . As a consequence of Theorem
11, the gap between the lower and upper bounds is asymptoti-
cally equal to . The crossing between upper and lower
bounds is only a seeming contradiction, because in fact it simply
means that to the right of the crossing there exist no unimodal
densities satisfying both the geometric mean and variance con-
straints. Also shown are the points corresponding to
the family of unit-variance generalized Gaussian pdfs

with as a parameter. It can
be shown that for one has
and lies asymptotically halfway between upper and lower
bound at distance .

VII. COMPRESSIBLE SOURCES: GM MODELS
AND CODING GAIN

The discussion on spikes in Section III-B pointed out that
continuous densities are more appropriate for modeling com-
pressible transform coefficients. GMs are a popular approach
to model and estimate unknown densities and have been used
quite successfully in various applications; see, e.g., [33] and ref-
erences therein. In this section, we will study a simple memo-
ryless GM source model with pdf

(33)

mixing zero-meanGaussian components with variances

with weights satisfying . The spike model
in Section III-B may be regarded as a special case of a two-com-

ponent GM, where one source has zero variance. For a general
GM source (with possibly nonzero component means), the
SLB (3) is tight for all , since then
may be expressed via a “backward test channel” as the sum

of a GM with variances and independent noise
[28]; is also known as critical distortion.

Thus, the asymptotic behavior is determined by the GM
entropy, which in general cannot be expressed in closed form.
This motivates the bounds presented in the first two sections,
which are followed by a discussion of the relationship with
coding gain and some examples.

A. Distortion Rate Bounds for GMs

The upper bounds introduced in Section V are easily com-
puted for GM models, but they do not exploit the particular
model structure. A GM source may be viewed as containing
a hidden discrete memoryless source that switches between

Gaussian sources with selection probabil-
ities . A lower bound on is found by
assuming that an oracle provides the hidden variable to the
source encoder. Since form a Markov chain, we
have

where the conditional mutual information is defined as
. Computing the lower

bound , with
, is equivalent to

solving the following standard rate allocation problem:

(34)

subject to

This yields the lower bound , which can also
be seen as a special case of a conditional rate distortion function
[34]. The lower bound may be turned into an upper bound by
expanding as follows:

using the fact that the mixing variable is discrete. Thus, we
have

(35)

Clearly, these bounds are not very tight in the case of a GMwith
large and close to uniform distribution of . Using
Fano’s inequality, we may see that if can be estimated from
with low probability of error, then will be close to the

upper bound. Conversely, for large it will
be harder to estimate and will be closer to the lower
bound.
As an example, we used the EM algorithm to estimate

the parameters of a two-component GM (33) modeling the
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Fig. 7. Distortion rate bounds for a two-component GM model of wavelet co-
efficients.

wavelet coefficients of the Lena image transformed with the
classic 9/7 biorthogonal wavelet. The parameters obtained are

, , and (normalized
to unit variance). Plots of bound (16) for
bits, bound (12) for , and the bounds (35)
appear in Fig. 7 together with a numerical estimate of
computed with the Blahut–Arimoto algorithm. The gap in (35)
is bits wide. Also shown in Fig. 7 are
the points achieved by a simple embedded (successive
refinement) scalar quantizer (see, e.g., [7, Sec. 11.5]), applied
to pseudorandom samples. The significance maps were
entropy coded, sign and refinement bits were left uncoded. It
can be seen that at low rates, thresholding with simple scalar
quantization performs very close to the optimum.
Up to the typical knee, distortion decays faster than

, since mainly the sparse coefficients from the
high-variance source are retained by the thresholding opera-
tion. At higher rates, the coefficients from the low-variance
source also start being significant. If the model (33) is extended
to Gaussian components, the knee in becomes
rounder, but the basic behavior is unchanged [compare also
with Fig. 1(a)]. From these observations, we can reach two
conclusions: first, two-component GMs suffice to capture the
essential features of image coding , and second, the rate

in the high-rate bound (Theorem 3) is confirmed as
estimate of the beginning of the high-rate compression region
(see Section V-B). The first observation is also supported by
[35], which considers the joint numerical optimization of a
classifier and (high-rate) uniform quantizers for each of
classes corresponding to GM components. Simulation results
in [35] suggest that for typical image data components
yield a substantial improvement over a single Gaussian, while
adding more components gives only minor additional gains.
A general theoretical framework for classified vector quan-

tization (CVQ) of GMs has been introduced by Gray in [36].
Ideally, CVQ would be applied to samples from a multivariate
GM having distinct modes, leading to reliable classification.
The high-rate bound (12) could be seen as a special case of
CVQ, where two mixture components differ only in variance.

Fig. 8. Differential entropy bounds for two-component GMs, normalized to
unit variance. The “cloud” sweeps the pairs corresponding
to and . A line in the cloud corre-
sponds to sweeping the variance ratio while keeping the weights fixed.

However, the CVQ approach is different in spirit, since CVQ
will usually be applied directly to the data, without first trans-
forming it, while our study focuses on a transform coding set-
ting where a transform generates a sparse signal representation,
which is then quantized. The transform coefficients are thought
as coming from a sparse memoryless source, which in the afore-
mentioned example is shown to be modeled quite well by a mix-
ture of two univariate Gaussian densities.

B. Entropy Bounds for GMs

The sparsity of a GM source may be measured by the geo-
metric mean, as proposed in Section IV-B, leading to entropy
bounds that characterize asymptotic behavior. The lgm
of a GM with density (33) is

(36)

where is Euler’s constant. The result follows
directly from integral 4.333 in [32] and leads to a lower bound
on the mixture entropy via Corollary 8. However, this
can be tightened by the same approach as in Section VII-A,
namely by lower-bounding the GM entropy by conditioning on
the hidden mixing variable

(37)

This improves the lower bound (27) by the constant
, as can be seen by inserting (36) into (27)

and comparing with (37). From the expansion
, we obtain the upper

bounds

(38)

with given in (37).
Fig. 8 plots the different bounds that hold for mixtures of

zero-mean Gaussians in general and a two-component GM in
particular, all normalized to unit variance. Also shown is a set of



4982 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 8, AUGUST 2012

points corresponding to different two-com-
ponent GMs. The geometric mean is mainly affected by the ratio

, while the mixing weights determine and thus
the gap between the lower bound (37) and the tighter upper
bound in (38). For large , it is easy to estimate
from and so will be close to the upper bound. The
lower bound can be asymptotically attained with
(then ) for any ; this parallels the
“uniform spike” attaining the lower bound in Corollary 8.
Mixtures of a finite number of zero-mean Gaussian com-

ponents may be considered as a special case of continuous
Gaussian scale mixtures [37], which have also been proposed
in the context of wavelet coefficient models [1, Sec. VIII.A]. It
turns out that the maximum entropy pdf (28) can be expressed
as a Gaussian scale mixture.

Proposition 12: The maximum entropy pdf (28) that satisfies
the constraints and can be expressed
as a continuous GM

(39)

with mixing density

(40)

where the shape parameter is obtained by solving
(30).

Proof: It is easily verified that (29) satisfies the necessary
and sufficient conditions for the existence of the representation
(39) given in [37] and thus the inversion formula from the same
work can be applied, leading to (40). A direct proof can be ob-
tained by substituting in (39) and solving it using
integral 3.382(2) in [32].

It is quite surprising that only Gaussian pdfs up to the max-
imum variance need to be mixed to obtain (29). This is
a direct result of the inversion formula, which involves an in-
verse Laplace transform toward the “time” variable ,
which runs from to . The mixing density (40) has a
“bathtub” shape that concentrates most probability mass close
to and . For , all mass is shifted toward

(the limit for is a Gaussian pdf; see Propo-
sition 9), while for (very sparse sources) the probability
mass is shifted toward . The Laplacian is an example of
a pdf that can be represented as a mixture needing component
variances going to infinity [37].

C. Coding Gain Revisited

In linear transform coding, the coding gainmeasures the ratio
of the asymptotic distortion of a single scalar quantizer to the
distortion of a set of quantizers with rate allocation matched
to the transform statistics,2 with both systems operating at the
same average rate [39, Sec. 8.7], [38]. Here, we will show how

2A different definition considers bit allocation for both the original and trans-
formed data [38]. The distinction is significative if the source is nonstationary,
e.g., emitting Gaussian random vectors with nonconstant autocorrelation vector.

the high-rateMCQ upper bound (Theorem 3) leads to an expres-
sion that is reminiscent of the coding gain of a transform coding
system.
Let us briefly review the derivation of classical trans-

form coding gain. Consider a jointly Gaussian source,
emitting independent zero-mean Gaussian random vectors

, with autocorrelation matrix
such that . (Except for independence, which is not
necessary for the derivation, this may be obtained by taking
blocks of samples from a zero-mean weakly stationary
discrete time Gaussian process.) The vector is multiplied
with an orthonormal matrix , yielding the transformed source
vector , which is then quantized to ,
where models the quantization noise. The reconstructed
vector is . By the Parseval–Plancherel energy
conservation formula [7, Sec. A.3], the quantization error in the
signal domain will be equal to the error in the transform domain

Also, the average variance of the transform coefficients is
equal to the variance of

This holds (by linearity of expectation) assuming zero mean and
can be easily extended to the general case. Let be
the variance of the th transform coefficient. If we use scalar
quantizers to quantize , the optimal high-rate bit allocation
is easily found using Lagrangian optimization.3 We get an av-

erage distortion of the form , with
a constant [38]. This can be compared with the distortion of a

scalar quantizer applied to the s, which is

. The transform coding gain is now de-
fined as the ratio of the distortion of direct scalar quantization of
the source over scalar quantization of the transform coefficients
(with bit allocation)

(41)

In purely algebraic terms, (41) is the ratio of the arithmetic
mean of the coefficient variances to their geometric mean

, which might be used as the “axiomatic” definition of
coding gain. This short derivation pointed out the implied
assumptions, namely high rate and (near-) Gaussianity. In the
jointly Gaussian case, using a KLT will maximize the coding
gain, that is, minimize the geometric mean of the coefficient
variances [7, Sec. 11.3.2].
From the above, it is straightforward to define a measure of

MCQ coding gain by considering the ratio of the Gaussian upper
bound to the high-rate upper bound (12).

3This relies on the assumption that either the source is jointly Gaussian (then
any orthonormal transform will yield Gaussian coefficients) or at least that the
signal components and the transform coefficients have the same marginal
high-rate behavior of the form . For details on high-rate
bit allocation, see, e.g., [38] and references therein.
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Definition 5: The coding gain for high-rate optimal4MCQ is

(42)
where is as defined in Theorem 3, is the threshold
yielding the tightest upper bound, , ,
and .
Except for the additional side information factor , this

definition corresponds to the classical coding gain (41) for two
sources with weights and . This similarity opens a new
perspective on transform coding: instead of considering each
transform coefficient as a distinct random variable, we mix all
coefficients together and use a quantizer for the marginal den-
sity. A transform that has high classical coding gain will have a
peaked marginal density, so that the MCQ coding gain will also
be large. At the same time, the mixing approach obviously en-
tails a loss in coding gain, which we will study by means of an
example in Section VII-D.
In general, MCQ will be suboptimal; the following definition

allows comparing it with an optimal quantizer that asymptoti-
cally achieves the SLB.

Definition 6: The coding gain for a memoryless continuous
source is defined as the ratio of the Gaussian upper bound on

to the SLB

(43)

It measures the coding gain achieved by using a codebook
matched to the source instead of a Gaussian codebook.
These coding gain definitions are connected with the geo-

metric mean of a source (Definition 3) through the fol-
lowing.

Definition 7: The normalized squared geometric mean of a
zero-mean memoryless continuous source is

with the implicit definition
.

By the arithmetic–geometric mean inequality, , with
equality if and only if the source magnitude is constant
.

Corollary 13 (To Theorem 3): The factor in the MCQ
high-rate bound (12) is lower-bounded by

where for general sources , if is symmetric
weakly unimodal (Definition 4), and if is a GM of
the form (33).

Proof: For GMs, using (36) and (38) we obtain

. By definition, we have , so follows.

(For , the bound is trivially tight for .) For

4Here, optimal refers to the tightest upper bound of Theorem 3; directly opti-
mizing a MCQ would yield tighter bounds, because significant and insignificant
samples differ in behavior.

symmetric weakly unimodal , the geometric mean yields an
upper bound on through Corollary 8, leading to

and thus . Finally, for general , we bound
by applying Jensen’s inequality to the significant and

insignificant samples separately

Now subtract from both sides and observe
that . Exponentiating both sides yields .

An immediate consequence of this corollary is that
is an upper bound to the MCQ coding gain (42). On one
hand, a sparse source is a necessary condition for
large MCQ coding gain, that is for the existence of a such
that . On the other hand, if is close to 1,
is necessarily small. The quantity might be called
sample coding gain, since it is the limit in sample size of the
geometric mean of a sample divided by its arithmetic mean (see
also Definition 3).

D. Examples

Coding Gain Loss for GMs: If a transform outputs zero-mean
Gaussian coefficients, such that each coefficient has one of just
two distinct variances, the resulting marginal density will be
a two-component GM (33). The largest coding gain would be
achieved if both encoder and decoder knew the mixing variable
without needing extra rate. Then, two codebooks matched to

the variances could be used, like in a classical KLT water-filling
solution. That situation corresponds exactly to the oracle lower
bound (34) in Section VII-A, and the coding gain is simply the
ratio from the Gaussian upper bound for the average variance
to(34). If instead we mix the sources and apply MCQ, the re-
sulting coding gain loss (at high rate) will be the ratio
of the classical coding gain (41) to the MCQ coding gain (42),
which is equal to the ratio of the high-rate upper bound (12) to
the lower bound (34)

(44)

Note that here are the variances of the sample classes in
optimized MCQ (42), while are mixture component vari-
ances of the model (33). Fig. 9 shows contour plots of 1) the
coding gain and 2) the coding gain loss (both in dB)
for different ratios of the mixture variances
and weights ( yields the Gaussian pdf).
Large and small lead to peaked densities; for example, the
wavelet coefficient mixture from Section VII has and

. From the graph, we see that these values correspond
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Fig. 9. MCQ of two-component GMs with component variances , , and weights , , respectively. (a) Contours of constant coding gain (41)
(in dB) for unmixed, separate sources (equivalent to GM lower bound). (b) Coding gain loss (44) (in dB) relative to for MCQ of the mixture.

Fig. 10. MCQ of two-component GMs with component variances , , and weights , , respectively. (a) Contours of constant coding gain
(43) (in dB) for mixture source (equivalent to SLB). (b) Coding gain loss (45) (in dB) relative to for MCQ of the mixture.

to a loss of about 2.5 dB, which can be verified by checking the
distance between the high-rate bounds in Fig. 7.
The aforementioned definition of coding gain loss is based on

the assumption that two distinct Gaussian sources are
mixed together even though they could be distinguished. That
is, we are comparing a system where encoder and decoder know
the variance (and the pdf) of each sample through some addi-
tional means costing no rate (like in traditional KLT transform
coding) with a system where they know only the mixture pdf.
However, in the case of a truemixture source neither the encoder
nor the decoder know the variance of each sample, i.e., they do
not known fromwhich component source the sample originated.
In that case the lower bound (34) is not tight for , since
the mixing random variable is unknown; see also (35). Then
a better definition of high-rate coding gain loss is the ratio of the
high-rate upper bound to the SLB (which asymptotically equals
the distortion rate function)

(45)

The GM differential entropy has to be computed with
numerical integration methods. Fig. 10 plots the coding gain

and the coding gain loss for that case (both
in dB). The loss is remarkably low over a wide range of pa-
rameter values, which shows that the magnitude classification
quantization approach is very effective for such sources. In this
example, the optimal MCQ threshold was always larger than
the threshold for the maximum likelihood classification,

. This is quite expected, since the goal
of the classification is a tight distortion bound, not the optimal
distinction of the two component sources.
Mixture Versus Vector Coding Gain: The aforementioned

example considered two-component GMs as models for sparse
sources and compared different measures of coding gain. Here,
wewill extend thatmodel to Gaussian components and exploit
the simple relationshipbetween their variancesand thegeometric
mean of their mixture. This can be used to bound the coding gain
of aGMas a function of the coding gain for the unmixed sources.
The goal is to compare the classical vector coding gain for

independent Gaussian sources, on the one hand, with the coding
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gain for a mixture source that outputs one of these sources
uniformly at random, on the other hand. For example, consider
a transform that outputs independent zero-mean Gaussian
components. If we know the variance of each component, like
in the KLT case, we can achieve the vector (transform) coding
gain. If however only the distribution of the variances is known,
then we can design a codebook for the corresponding scalar
mixture source and still achieve the mixture coding gain. This
is akin to a KLT-like transform for which the eigenvalues of the
covariance matrix are known, but not their ordering. Intuitively,
wavelet transforms lie between these two extremes, since, e.g.,
coefficient variances are correlated across scales (but this also
violates the independence assumption in the definition of coding
gain).
Two results from Section VII-B will be useful. The lgm of

variances

(46)

differs only by a constant from the lgm of a GM (36) with com-
ponent variances and uniform weights . (Uniform
weights are assumed for simplicity, but the following results can
be extended to nonuniform weights.) Letting ,
the vector coding gain of -dimensional Gaussian transform
coding (41) relates to the lgm (46) as

(47)

Now (46) can also be used to lower bound the mixture entropy
through (36) and (37), which leads to an upper bound on

the mixture coding gain (43). Combining this with (47) yields
, which simply means that mixing does not nec-

essarily inflict a performance penalty. More interestingly, the
same approach can be used with the upper bound on in
Corollary 10, which then yields a lower bound on as a
function of . If is known, the second bound in (37) leads
to a tighter lower bound, but only for large (the gap to the
upper bound will be ).
Fig. 11 displays the upper and lower bounds for GM versus

vector coding gain. The lower curve thus limits the maximum
performance loss (in dB) of a transform coding system that
knows only the expected number of transform coefficients with
a certain variance, but not their positions, compared to a system
in which those positions are known (a priori, in the case of the
KLT). The upper bound implies that the minimal performance
loss is 0 dB.

VIII. APPLICATIONS

The aim of this section is to give a brief overview of the
rate distortion behavior of sparse sources in distributed coding
[Wyner–Ziv (WZ)] settings, as well as the relationship with CS.

A. Sparse Sources in WZ Settings

The WZ problem [40], [41], [10, Sec. 14.9] considers pairs
of dependent random variables and asks for the minimal

rate required to describe the source within average
distortion when side information is available only at the

Fig. 11. Bounds for GM versus vector coding gain.

decoder. We limit our discussion to absolutely continuous
and quadratic distortion measure . The WZ
rate distortion function is given in [40] and [41] as

(48)

where the infimum is taken over all random variables such
that form a Markov chain and there exists a
function such that . It is
lower-bounded by the corresponding conditional rate distortion
function , which is in turn lower-bounded by the con-
ditional SLB [34]

(49)

where is a real-valued random variable. These lower bounds
are asymptotically tight for the quadratic distortion measure
[42]; in particular, the rate loss is zero
for all when are jointly Gaussian [41] and, more gen-
erally, when with independent from , where
only needs to be Gaussian [43].
We further specialize to models where and have zero

mean and their difference can be modeled by an independent
memoryless source, yielding the following two correlation
models that are common in the WZ literature.
1) , Where Are Independent Memoryless

Sources: The case of sparse and is trivial,

since [43] implies ,

where . More interesting is the case of
sparse , since by [42] one has

(50)
where denotes asymptotic equality for and the right-
hand side is the SLB for , the MSE rate distortion func-
tion for (this can also be shown directly using a “Gaussian for-
ward test channel,” see [41, Fig. 4]). Thus, all the presented tech-
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niques for bounding the asymptotic behavior of apply
in this WZ case as well.
2) , Where Are Independent Memoryless

Sources: A Gaussian upper bound is obtained by bounding the
rate achieved with a Gaussian forward
test channel, which consists in letting with in-
dependent Gaussian noise , using an LMMSE reconstruction
function and choosing and such that the dis-
tortion constraint is met (see [41]). The bound is

(51)

where the conditional variance , with equality
on both sides if and only if are jointly Gaussian. By
inserting in (49)
and observing that , one
sees that is asymptotically upper-bounded by

. If , lower
bounding with the entropy power inequality [10,
Sec. 16.7] yields the slightly tighter asymptotical upper bound

. Upper bounds from the
previous sections may be applied; however, if tighter bounds
are desired, all three entropies need to
be bounded individually, which may require sharper tools than
those presented.
Better bounds exist if is a GM of the form (33), with mix-

ture components and weights . By assuming
that both the encoder and the decoder have access to the hidden
mixing random variable , one obtains the lower bound

where is a random variable satisfying
as in (49). This infimum can be evaluated using rate allocation
as in Section VII-A (a version of this bound for binary first
appeared in [44]). Asymptotically for , this simplifies to

where and
denotes asymptotic inequality for . For Gaussian

, this further reduces to

(52)

where are the conditional variances given
a single mixture component . A slightly tighter bound may
be obtained by assuming that only the decoder has access to ,
using techniques from [45], which are however unlikely to yield
analytic expressions even in the Gaussian case.

An asymptotic upper bound for is obtained from

(F. Bassi, personal communication) as

which for Gaussian becomes

(53)

Whether this is sharper than the Gaussian upper bound (51)
needs to be checked on a case-by-case basis. If are jointly
Gaussian (and thus constant), the asymptotic bounds (52) and
(53) coincide and are equal to for all

. Clearly, (52) and (53) mirror(37) and (38) in the stan-
dard case. The same comments on tightness made after
(35) in Section VII-A apply by substituting for .

B. Connections With CS

We briefly outline how lossy coding of sparse sources is re-
lated to CS [3], [4] (see also [46]). A typical example of a CS
problem is the compressive representation of a signal vector

of the form , where is an orthonormal
-by- matrix and has at most nonzero compo-

nents (we say that is strictly -sparse with respect to ). The
problem is then to determine a sampling/compression mecha-
nism for without using the sparsifying basis at the encoder
(e.g., for complexity reasons). CS typically involves sampling
using an -by- random measurement matrix that is “fat”
(i.e., has ) and has low coherence with . The key
question concerns the number of real-valued samples (the
height of ) needed for the exact (lossless) reconstruction of all
-sparse signal vectors with high probability. Compression

is thus achieved in the sense of needing a number of samples
that may be much smaller than . A distributed CS problem
might consider a signal which is known to have a sparse dif-
ference with respect to a reference signal (side information)
available only at the decoder. This can be extended to multiple
correlated signals, which may be composed of sparse and non-
sparse components, and have to be sampled and encoded in-
dependently [47]. A related model, with correlated signals ob-
tained by sparse filtering, is studied in [48]. In practice, the sam-
ples must be quantized, say with bits each, if they are
to be sent to a remote decoder. This implies some loss in the
reconstruction of (if it succeeds at all), which will depend on
the total rate . For benchmarking purposes, it is thus in-
teresting to study an information-theoretic view of this noisy
CS problem,5 by considering the rate needed for approximate
(lossy) reconstruction of almost all , i.e., the rate distortion be-
havior for an appropriate random model of . To simplify the
analysis, one may consider asymptotically long sequences from
a sparse memoryless source underMSE distortionmeasure, e.g.,

5The quantization noise may be modeled by parallel noisy channels,
, whose total capacity, assuming, e.g., independent zero-mean

AWGN channels, depends on the signal-to-noise ratios . The
total channel capacity upper bounds the total rate .
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a BG spike with for modeling strictly sparse signals, or a
GM model for sparse spikes with background noise. Notice that
the CS and information-theoretic models differ in which quan-
tities are considered random, which deterministic, and what re-
construction guarantees are given. The viewpoint here is that for
a practical lossy coding system with an average distortion con-
straint, if the source can be modeled as random, the rate-distor-
tion bounds will apply regardless whether CS is employed in the
system or not. The work [12] is among the first to give sharper
bounds on the behavior of quantized CS of strictly sparse
sources, but it does not provide a purely information-theoretic
analysis framework.
When is assumed known at the encoder, the upper and

lower bounds in this paper may be applied to appropriate
random source models in order to benchmark the operational
rate distortion behavior of practical quantized CS systems. This
also extends to distributed scenarios like the model JSM-3 in
[47], which can be related to the WZ setting
mentioned previously. The key is that knowing , the encoder
can always obtain the signal that is sparse in the standard
basis, which can thus be modeled as a sparse source as outlined.
The theoretical performance limits hold regardless whether a
practical encoder uses or not. If is the rate distortion
function of the sparse source model, given target distortion
, any quantized CS system must satisfy

asymptotically for . This yields a simple tradeoff
between the CS sampling ratio and the rate at which
samples are quantized.
When is unknown at the encoder, two approaches may be

thought of. One is to postulate the existence of an algorithm that
finds a sparsifying basis knowing only the sparsity and the
noisy measurements (for work in this direction,
see [49]). Then one may again assume that is known. The
other approach is to consider as a side information random
variable available only at the decoder and study this particular
kind of WZ problem, as has recently been suggested in [50].
CS with quantized incoherent measurements may be viewed as
a doubly nonadaptive coding scheme that is oblivious of both
the sparsifying basis and the location of nonzero samples.
When , this becomes a singly nonadaptive scheme that
may be implemented with a lossy block code. In [51], such a
code has been constructed by combining a -ary nested uniform
scalar quantizer with a -ary syndrome source code. The scheme
works in a WZ setting if the nonzero values are bounded, while
in the standard case without side information, onemay introduce
a compander to gain a little extra performance, which for a BG
spike (see Section III-B) asymptotically becomes

where is the probability of a spike, its variance, and
the quantizer rate. The total rate is ,

which is the same rate that a “nonlinear” adaptive code would
need; see (6).

IX. CONCLUSION

Sparsity is the key to NLA and CS. Work in these areas is
generally more concerned with the number of real-valued sam-
ples required for achieving a certain approximation error or

exact reconstruction, rather than with the rate distortion tradeoff
that is implicit when samples are quantized. This paper studied
the rate distortion behavior of sparse memoryless sources mod-
eling that situation.We proposed incomplete moments as a com-
pressibility measure and used them to bound low- and high-rate

. Furthermore, we introduced the geometric mean as a
single-parameter compressibility measure and used it to bound
asymptotic via the entropy, and to compare different types
of transform coding gain. Thus, nonstrict sparsity and lossy
compression can be related in quantitative fashion. These results
apply to the MSE distortion criterion, while for Hamming dis-
tortion we showed that can be computed exactly in some
cases and that it becomes almost linear for very sparse sources.

APPENDIX

A) Rate Distortion Function of a Discrete Memoryless

Source (DMS):

Definition 8 (Rate Distortion Function of a DMS):

Let be a discrete random variable with alphabet
, a conditional distribution defining the dis-

crete reconstruction random variable with alphabet ,
the corresponding joint distribu-

tion, and a bounded nonnegative single-letter distortion
measure. The average distortion associated with is

(54)

A conditional probability assignment satisfying
is called -admissible and the set of all such is

. The average mutual infor-
mation (“description rate”) induced by is

(55)

where . The rate distortion function is
defined as .
This convex optimization problem can be solved with the

method of Lagrange multipliers [10], [16, Sec. 13.7]. We start
with the functional

where the last term comes from the constraint that is a
proper conditional distribution, i.e., it satisfies .
The minimizing conditional distribution is given by

(56)

The marginal has to satisfy the following con-
ditions:

(57)

(58)
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For a tentative solution, given by a marginal satisfying
(57), it can be shown that conditions (58) are necessary and
sufficient to yield a point on the curve, either directly
as in [16, Theorem 2.5.2], or via the Kuhn–Tucker conditions
[10, Sec. 13.7]. The solution is further simplified through the
following theorem by Berger.

Theorem 14 [16, Theorem 2.6.1]: No more than
reproducing letters need be used to obtain any point on the
curve that does not lie on a straight-line segment. At most,

reproducing letters are needed for a point that lies on a
straight-line segment.

B) Rate Distortion of Binary Sources:

Proof of Proposition 1: The following relies heavily on
the results summarized in Appendix A, where it is shown that

can be computed by solving a set of equations involving
the marginal distribution on the reconstruction alphabet.
The symmetry of the source distribution,

, suggests the following marginal distribution (with a
slight abuse of notation):

(59)

Recall that the symbols correspond to
, respectively. Let us first assume that

holds for all . Then the conditions (57) have to be met.
We make the substitution and insert our into the
equation, first for

which after some algebra becomes

(60)

For , we get almost the same equation

which becomes

(61)

The solution corresponds to the point in
the plane, which is achieved by setting . There-
fore, the interesting solution is , which inserted
into (56) yields

(62)

Inserting (62) into(54), we get the average distortion
and from (55) the rate

. Noting that these hold for , we combine
them to eliminate and get

(63)

This proves the first part of (4). When reaches its upper bound
in (63), reaches and we have . At that point, (60)
will be satisfied for all . According to condition (58), (61) now
becomes an inequality

(64)

This is satisfied by or , which is equivalent to
. The first solution can be discarded,

since has already been handled and implies ,
which is ruled out. The conditional distribution parameterized
by is

(65)

As before, we put this into (54) to get and
into (55) yielding

Eliminating from the last two equations yields the second part
of (4).

C) Proof andDiscussion of the Low-Rate Bound on :

Proof of Theorem 5: The bound (15) itself is simply a
Gaussian upper bound on the significant samples, where the rate
is reduced by to account for coding the positions of
those samples, plus the variance of the uncoded in-
significant samples. It holds for all and , but is
nontrivial only for .
The main task is thus to derive the locally optimal rate (17).

The rate tradeoff is no longer between two codebooks, but be-
tween the side information and the rate for signifi-
cant coefficients ; hence, it cannot be solved using water-
filling. Our approach is to temporarily fix a threshold and de-
termine the rate corresponding to the midpoint of the
common tangent of two bounds and ,
for . The resulting point is a can-
didate member of the lower convex hull of the family of bounds
(15) and thus locally optimal (around ). Optimality is only
local, since another bound of the family (15) might lie strictly
below this candidate point; see the remarks after the proof.
We take two curves of the family (15), say and

, and determine their common tangent by solving
the following system of equations:

(66)

(67)

A necessary condition for this approach is that be con-
tinuously differentiable in , such that tangents are well defined.

From , we see that

this is the case for such that . The conditions under
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which the system has no solutions are discussed in the remarks
after the proof.
Using the partial derivative , we solve (66) for

and start inserting this solution into (67)

(68)

where the last equality is actually again (66). For our conve-
nience, we make the substitutions ,

to obtain

(69)

Now we let

(70)

so that (69) becomes

(71)

At this point, we assume and hence by con-
tinuity implies and .6 Therefore, we
can divide (71) by and get

(72)

which can be solved using the Lambert function

(73)

Using the defining equation , it is easy to show
that (73) actually solves (72). Before taking limits, we resolve
the question which is the correct branch of to use. From (70),

6If this assumption does not hold, we also have and thus (71) is always
satisfied. This case corresponds to a pdf with symmetric holes in its support, that
is, a mixture of two (or more) densities with nonoverlapping supports. Picking
the “critical” actually separates the mixture components into two groups.

it is clear that we need negative real-valued solutions. The prin-
cipal branch has domain and takes on values
in , whereas the other real-valued branch has
values in . Since a more negative will yield a tighter
bound [see (70) and (15)], we pick the branch . Its do-
main is , which implies that for a specific pdf and
threshold , (73) might have no real solution, i.e., no common
tangent exists. That case will be analyzed in the remark fol-
lowing the proof.
Because is a continuous function, we may take the

limit of the expressions appearing in its argument

(74)

(75)

By the definitions of and , we have
and ; hence,

, as defined in (18). Inserting (74)–(75) into (73) gives

(76)
and after inserting this into (70) and solving for we obtain
(17).

Remarks: As pointed out in the proof, for some values of
the threshold there might be no solution to the common tan-
gent problem. This occurs when increasing produces a bound

that for all is larger than . Using a
Taylor approximation

we see that there is no common tangent for those satisfying

(77)

To find this minimum, we differentiate with respect to

After discarding the zero at , the rate of the candidate
minimum is found by setting the term in square brackets to 0

(78)

To verify that it is indeed a (unique, thus global) minimum, we
check the second derivative
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Now we insert (78) into (77) and obtain

(79)

If we divide (79) by (thus reversing the inequality)
we see that (77) is equivalent to and
after another sign change we get

(80)

This is a reassuring result: condition (80), and thus (77), is true
exactly if and only if the argument of the function in (17) is
less than , i.e.,when there is no real-valued solution.Never-
theless, this condition alone does not guarantee that we find only
convex hull points, since one of the constituent bounds
might be below all others for a threshold satisfying (77). In
all examples we have studied, it happened to be the Gaussian
bound , if at all. For a Gaussian source, obviously no
upper bound can be tighter than , while for Laplacian
sources all thresholds above a critical value yield slight im-
provements. For pdfs that are even more peaked around zero the
critical threshold is (almost) zero. Informally, these “forbidden”
threshold values mean that the reduction in the number of coded
significant samples is not sufficient to offset the increased side in-
formation rate . From this reasoning, it becomes evident
that such can only lie between 0 and , with .
On the other hand, this means that the bound will be useful at
low rates (larger ), which is exactly what is desired.

Corollary 15: The low-rate bound (16) and the high-rate
bound (12) coincide in proper nonboundary local extrema of

, provided that over

(81)

where is defined in (13) and in (11).
Proof: First we study the last equation. The derivative of
is

(82)

Since we assumed and have by def-
inition, the term in square brackets has to be zero for a proper
local extremum. Since the domain is half open, a
possible boundary minimum at has to be inspected sepa-
rately. (The same applies to the right boundary if the sup-
port is bounded.) Now we inspect the middle equation

which after taking the logarithm is equivalent to

(83)

Inserting this into the defining equation we get

(84)

which is equivalent to

(85)
Observing that shows that the term in brackets is

equal to the bracketed term in (82), so that (85) implies
. Finally, the first expression in (81) is

(86)

Since is not allowed to be on the right support boundary, we
can divide (86) by and after rearranging terms we get
exactly equation (83). Thus, also the first condition is equivalent
to .

Remark: For a fixed threshold , by definition of
the point is the switch point between the low-
rate bound and the high-rate bound, that is, for all
the high-rate bound is tighter. If now the two bounds are op-
timized (“best for given ”), Corollary 15 comes as no big
surprise. In the interesting cases, when has a single local
(thus global) minimum at , the consequence is that for

the low-rate bound will be tighter,
and for the high-rate bound will take over. In
the less interesting cases such as the Gaussian, is minimal
at and takes on a global maximum for some .
At low rates, the bound (16) is again tighter; it becomes looser
up to , while from that rate on (12) will be the loosest
bound. So far we have found no examples of densities that lead
to multiple local extrema of .

D) Maximum Entropy Given Variance and Geometric

Mean:

Proof of Proposition 9: The proof relies on the method for
obtaining maximum entropy distributions outlined in [10, Ch.
11]. The goal is to maximize the entropy over all proba-
bility densities satisfying

(87)
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where all integrals are over . Using calculus of variations, it
can be shown that the maximizing density has the form

(88)

where are chosen such that satisfies the constraints
2, 3, 4 in (87). Using an information inequality, it can then be
shown that if there exists of the form (88) satisfying (87),
then it is the unique maximizer over all densities satisfying (87)
[10, Th. 11.1.1]. Thus, we need only prove that (29) satisfies
constraints (87).
The normalization constraint is satisfied if

and only if . Further-
more, for the integral (and higher moments) to converge, we
must have . Inserting the aforementioned expression for
into (88) yields the second moment

, which satisfies the corresponding constraint if and
only if . To simplify expressions, we
substitute . The condition thus becomes

.
We need to show that is monotone increasing in ,

so that the mapping between and defined by (30) is one-to-
one. By Jensen’s inequality, we have

. Let and
. Using a standard integral representation for

[32, 8.361.3] we obtain

(89)

The first derivative

(90)

is strictly positive for , so is indeed monotone
increasing. By bounding the integral in (89), one can further
show that , which means that all ad-
missible constraints can be satisfied. Thus, there is
a unique satisfying constraint 3 in (87), which to-
gether with in turn determines (satisfying constraint 4)
and finally (satisfying constraint 2).
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