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ABSTRACT

The inefficiency of separable wavelets in representing smooth edges
has motivated the researchers to pursue new two dimensional trans-
formations. One of the successful transformations in image com-
pression is the directional wavelets. Although researchers have
empirically shown that the directional wavelets outperform the
separable wavelets in compression, there is no theoretical anal-
ysis to demonstrate this phenomena, specially when the direc-
tional wavelets are combined with partitioning algorithms such as
quadtree. In this paper, we calculate the rate-distortion performance
of the directional wavelets on a class of images. Our analysis shows
that the quadtree partitioning deteriorates the performance. There-
fore we propose another scheme, called megablocking. Our theoret-
ical and simulation results confirm that megablocking outperforms
the quadtree approach.

Index Terms— Rate-distortion, quadtree, wavelet transforms,
image coding, directional transforms.

1. INTRODUCTION

In the last decade, several schemes have been proposed to overcome
the limitations of the traditional separable wavelets by incorporating
directional representations. Most of the well-known transformations
such as ridgelets [1], curvelets [2], contourlets [3], and shearlets
[4] provide theoretically optimal approximation power on different
edge models. However, they are highly overcomplete and therefore
not useful for compression purposes. In this paper, we adopt the
rate-distortion framework. This framewrok is better suited to the
compression problem than the approximation power.
Le Pennec and Mallat used a similar approach [5] to prove that
bandelets are nearly optimal. However, their analysis does not pro-
vide any insight on why the simpler directional wavelets are more
successful and why the quadtree does not perform well in practice.
Other approaches such as wedgelets [6, 7] and platelets [8] address
the compression problem on edge-like image models, as well. How-
ever, there are two main disadvantages with these approaches. 1.
They are not yet optimal for more complicated geometries that are
clearly present in images [9]. 2. They perform poorly in dealing
with textures. There have been efforts to improve the performance
of these algorithms on natural images such as [10]. But still these
algorithms do not outperform the current state of the art.
Another area of research which has shown the most promise for
the compression is the directional wavelets. The main idea is to
apply the wavelet along the direction of the edges and get much
fewer large wavelet coefficients. Many different approaches have
been considered for directional wavelets including an application
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of shearing step to the image before a separable wavelet [11], sub-
sampling and filtering along digital lines using lattices [12], and
finally using lifting schemes for applying the directional wavelets
[13]-[16]. All these approaches use a partitioning scheme to parti-
tion an image into blocks with just one dominant direction and apply
the wavelets in that direction. In this paper, our goal is to analyze
these algorithms theoretically. As a consequence of our analysis,
we will show that the combination of the quadtree partitioning and
directional wavelets proposed in several papers is not optimal in the
rate-distortion setting [13, 16]. We will then propose the megablock-
ing (first proposed in [7] for wedgelets) and claim that it improves
the performance of the directional wavelets. The performance of
our new scheme will be tested on natural images in the simulation
section.

2. DIRECTIONAL WAVELETS

Consider a two dimensional function f(t1, t2) ∈ L2(R
2). Di-

rectional wavelets, as the name suggests, is the application of the
wavelet in two directions θ1 and θ2. We use the following notation
for defining the wavelet coefficients,

W θ1,θ2
j1,j2,n1,n2

=

∫∫
f(cos(θ1)t1 + cos(θ2)t2, sin(θ1)t1 + sin(θ2)t2)

ψj1,n1(t1)ψj2,n2(t2)dt1dt2, (1)

where ψj1,n1 is applied in the direction of θ1 and ψj2,n2 is applied
in the direction of θ2. Clearly, we may replace either one or both
of the ψ functions with φ, the father wavelet, to get the other coef-
ficients. For the sake of brevity we do not rewrite those equations
and refer the reader to [20]. Since images have complicated geome-
tries, we have to partition an image to blocks and choose a direction
for each block. A popular approach for partitioning images is called
quadtree [5, 6, 16]. Quadtree partitioning approach starts from the
whole image and recursively partitions each block to four smaller
blocks if a certain criteria is met. We will explain our criteria in Sec-
tion 5.1. After finding the partitions, the best direction is chosen for
each partition and the wavelet is applied in that direction.

3. RATE-DISTORTION ANALYSIS

3.1. Our framework

Consider a class F of functions f ∈ L2(R2). Also, consider a
compression scheme with an encoder E : F → {1, 2, . . . , 2R} and a
decoder D : {1, 2, . . . , 2R} → F . The distortion of a compression
scheme on F at bit rate R, is the distortion of the least favorable
function in this class, i.e.,

D(R) = sup
f∈F

‖f −D(E(f))‖2. (2)
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Fig. 1. A sample function in H3.

The performance of the best compression scheme under this frame-
work is characterized by Kolmogorov ε- entropy [17]. In our anal-
ysis we are interested in high bit rate performance of different algo-
rithms and the constants derived in this paper are not the best possi-
ble constants.

3.2. Edge model

In this paper we focus on piecewise linear models for edges. Let
PLQ(Ix, A) be the space of piecewise linear functions on the inter-
val Ix, where Q is the number of singularity points and A is an up-
per bound on the magnitude of these functions. Let Ix = [0, d] and
A = d. For any h(x) ∈ PLQ(Ix, d), we define a two-dimensional
function

fh(x, y) =

⎧⎨
⎩

1 if y ≤ h(x),
(h(x) − y + w)/w if h(x) ≤ y ≤ h(x) + w,
0 if y > h(x) + w,

(3)

where h(x) is the edge and w is the width of the edge. For the sim-
plicity of the notation, all the linear pieces of the edge are assumed to
have the same width. This may be relaxed without any major change
to our analysis. Now we consider the class of two dimensional func-
tions

HQ = {fh(x) : h(x) ∈ PLQ([0, d], d)}. (4)

3.3. Rate-distortion analysis of separable wavelets

For the sake of brevity we do not explain the definition of the separa-
ble wavelets and we refer the reader to [18] for the definitions. The
following theorem shows the rate-distortion behavior of the separa-
ble wavelets on H0. In all the theorems of this section we assume
that, the wavelets have finite support of length � and their first mo-
ment is equal to zero [18].

Theorem 3.1. On H0, a coding scheme based on separable
wavelets and uniform quantization of the wavelet coefficients re-
sults in the following rate distortion at high bit rates:

D(R) = O(R− 3
2
√

log2 R).

See [20] for the proof.
Clearly, except for the constants the decay rate of the distortion-rate
function remains the same for HQ as well.

3.4. Rate-distortion analysis of the directional wavelets

For the directional wavelets the first step is to code the directions.
Suppose that we assign b′ bits to θ. Then the precision of the scheme

in θ is Δθ = π/2b′ . The next step is to apply the directional wavelets
in the quantized direction closest to the direction of the edge and
code the wavelet coefficients again with uniform quantizers.

3.4.1. Analysis of one piece

Theorem 3.2. The coding scheme that uses the directional wavelets
with uniform quantization, achieves the following rate distortion on
H0,

D(R) = O(2−c3
√

R),

where c3 is a constant that just depends on d and � the length of the
wavelet filters.

Refer to [20] for the proof.

3.4.2. Quadtree

Now consider HQ space and invoke the directional wavelets based
on a quadtree partitioning scheme. We first fix the depth of the tree
and up to that depth, each block that has more than one piece in it is
divided. The next theorem shows the rate distortion performance of
this algorithm.

Theorem 3.3. On HQ the directional wavelet coder with uniform
quantization and quadtree achieves the following rate distortion

D(R) = O(
6
√

R2−c3
3√

R).

Refer to [20] for the proof.

4. MEGABLOCKING: A SOLUTION TO THE
SUBOPTIMALITY OF QUADTREES

Comparing Theorem 3.3 with Theorem 3.2 leads us to a conclusion
that quadtree partitioning degrades the performance of the direc-
tional wavelets. In this section we prove that megablocking approach
fixes this issue. Megablocks are formed by first applying quadtree
partitioning and then merging neighboring blocks which contain no
singularity points of the edge. We have explained the details of the
megablocking approach in the simulation section. For the sake of
brevity we do not repeat the details here.

Theorem 4.1. On HQ the coding scheme that uses the directional
wavelets, uniform quantization and megablocking achieves the fol-
lowing rate distortion,

D(R) = O(2−c5
√

R),

where c5 is constant that just depends on d, �, and Q.

Refer to [20] for the proof.
Clearly, megablocking does not deteriorate the performance of the
directional wavelets and in that sense this partitioning scheme is op-
timal for the directional wavelets.

5. IMPLEMENTATION

Our implementation includes the following steps: First, the image
is partitioned using the quadtree algorithm and the best direction is
selected for each block. The next step is to align the directions and
create megablocks to find a better partition of the image. Finally, the
wavelet is applied to the megablocks in the specified directions. In
this section we will explain each step briefly.
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5.1. Direction selection using quadtree partitioning

For each pixel, the best direction is the one that minimizes the pre-
diction error. However, the pixel-wise direction assignment is not
practical for image compression. Therefore, we first partition input
image into non-overlapping blocks using the well-known quadtree
algorithm. In this algorithm each block is divided into four sub-
blocks if the smaller partitions reduce the total cost. Following the
proposal of [14, 16] for a given block Bb we consider the Lagrangian
cost function defined as

C(Bb) = min
d

{‖Bb − B̂
d

b‖ + λ1Rd}, (5)

where λ1 is a constant that will specify the complexity of the parti-
tions, Rd denotes the number of bits spent on coding direction d and

finally B̂
d

b is the low pass approximation of Bb in the direction of d.
Direction d is chosen from a finite set of quantized directions. The
best direction is also defined as,

d�
b = arg min

d
{‖Bb − B̂

d

b‖ + λ1Rd}, (6)

5.2. Megablocking

The goal of this section is to address the implementation and techni-
cal challenges of the megablocking idea. Let us define a megablock
more formally. Suppose that we have a partition of an image with
blocks called Bb. We use the notation N (Bb) for the neighbors of
the block Bb. Two blocks are called similar, depicted by Bb ∼ Bb′ ,
if their directions are the same. A path Bb1 ↔ Bb2 ↔ . . .BbN

is a sequence of blocks such that Bbi−1 ∈ N (Bbi) for every i ∈
{2, . . . , N}.

Definition 1. Two blocks Bb and Bb′ are connected if and only if
there is a path of similar blocks between them.

Definition 2. A megablock is a union of two or more blocks such
that any pair of blocks are connected.

Finally a megablock Mb is called maximal iff there is no other
megablock Mb′ with Mb ⊂ Mb′ .

One of the main issues in megablocking is that, in many regions
of natural images there is no dominant direction and therefore the
direction chosen is somewhat ‘random’. Therefore, there is a need
for finding unreliable blocks (the ones without considerable cost dif-
ference while predicting along various directions) and change their
directions accordingly. To do this, we will propose a global align-
ment scheme that will be explained later in this section.

5.2.1. Alignment step

Usually there are two types of unreliable blocks in the presence of
noise: 1. small blocks and 2. blocks without dominant directional
features e.g. blocks of smooth regions. Aligning the directions of
such blocks and their neighbors may result in larger megablocks
and improves the performance. Clearly we need a global alignment
scheme, i.e. an alignment scheme that deals with all the blocks at

the same time. If di is the current direction of each block and d̂i is
the direction after the alignment, we use the following optimization

for calculating d̂i.

min
d̂

∑
i

wi(d̂i − di)
2 + λ2

∑
j

∑
i∈N(Bj)

|Bj |(d̂i − d̂j)
2

(7)

where |Bi| is the size of the block Bi, λ2 is the Lagrange multiplier,
and wi is a measure of the reliability of the direction di and is defined
as

wi = |C+
i − C−

i | (8)

where C+
i and C−

i are, respectively, the minimum and the maximum
cost of predicting block i according to (5).

5.2.2. Creating megablocks

If a partition of an image with corresponding directions of the
blocks are given, in this step we start joining the blocks until all
the megablocks are maximal. For coding the new partition we use
the following scheme. We define two block types: 1. inner blocks,
which all 4-neighbors are belonging to the same megablock, and 2.
boundary blocks with at least one neighbor from another megablock.
Now scanning the blocks in a left to right and top to bottom order,
we code each boundary block by 0 and each inner block by 1. Notice
that scanning of blocks with different sizes is performed according
to their origins. The above process is also reversible and the decoder
can retrieve the structure perfectly. This approach uses one bit per
block to code the structure of the megablock.

6. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
megablocking scheme with quadtree-based directional wavelets,
JPEG2000 and also DA-DWT proposed in [14]. In our implemen-
tation the choice of λ1 is the same for these algorithms and is a
decreasing linear function of bit rate. λ2 is fixed and is empiri-
cally set to 0.3. We encode wavelet coefficients by TCE embedded
bit-plane coder [19]. We also invoke run-length and variable run-
length coding to encode megablocks and their related directions,
respectively.

Due to the lack of space, we only focus on megablocking per-
formance in dealing with noisy images since this may seem as a
challenging situation for the alignment scheme. More advantages of
our scheme can be found in [20]. Quadtree-based algorithms are ex-
tremely sensitive to even small values of noise. They result in lots
of small blocks and, consequently, significant portion of bit budget
is spent on coding the side information. Megablocking, however,
reduces the overhead by changing unreliable directions and forming
larger megablocks. Figure 2 gives the PSNR of the four mentioned
algorithms for Lena and Monarch images as a function of PSNR
of input noisy images. Images are corrupted by zero-mean Gaus-
sian white noise. Accordingly, the proposed megablocking approach
outperforms the quadtree-based algorithm by 1.80 and 2.23 dB, on

Fig. 2. Compression performance of the proposed megablocking,
DA-DWT, the quadtree-based algorithm and the JPEG2000 at 0.1
bpp.
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Fig. 3. Reconstructions of noisy Lena image at 0.1 bpp. PSNR of
the original image is 30.01dB.

average, in the case of Lena and Monarch, respectively. It also per-
forms better than JPEG2000 by up to 0.95 dB for lena and 0.49 dB
for Monarch. Although the improvement over DA-DWT is up to .50
and .22 dB, respectively, for Lena and Monarch, the reconstruction
from megablocking obviously better represents image geometries as
shown in Figure 3. In this figure, the reconstruction results of four
algorithms for noisy Lena at 0.1 bpp is provided. JPEG2000 clearly
introduces ringing artifacts to image geometries. In DA-DWT and
quadtree results the visual quality is affected by brushstroke-like ar-
tifacts. Reconstruction from megablocking, on the other hand, is
clearly superior to JPEG2000 (the ringing effects are totally disap-
peared) and in comparison with DA-DWT and quadtree, megablock-
ing better represents image geometries (the brush-like effects are
mostly absent).

7. CONCLUSION

In this paper, we present a rate-distortion analysis for the directional
wavelets transform. Our analysis led us to a new scheme for parti-
tioning images, called megapartitioning. Theoretical and simulation
results confirmed that our new partitioning scheme is able to outper-
form the quadtree partitioning and DA-DWT which are two of the
recent successful implementations of the directional wavelets.
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