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Abstract We propose a new lossless progressive compres-

sion algorithm based on rate-distortion optimization for

meshes with color attributes; the quantization precision of

both the geometry and the color information is adapted to

each intermediate mesh during the encoding/decoding pro-

cess. This quantization precision can either be optimally de-

termined with the use of a mesh distortion measure or quasi-

optimally decided based on an analysis of the mesh com-

plexity in order to reduce the calculation time. Furthermore,

we propose a new metric which estimates the geometry and

color importance of each vertex during the simplification in

order to faithfully preserve the feature elements. Experimen-

tal results show that our method outperforms the state-of-

the-art algorithm for colored meshes and competes with the

most efficient algorithms for non-colored meshes.

Keywords 3D mesh · Progressive compression · Rate

distortion optimization · Adaptive quantization · Color

attributes

1 Introduction

3D meshes are becoming increasingly used in numerous ap-

plications, especially in the field of scientific visualization
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where they constitute one of the principal representation

to model outcomes from post-processing algorithms. Also,

with the technological development of acquisition and com-

putational devices, the complexity of 3D meshes has rapidly

increased to represent objects with more and more details.

The ever-increasing amount of these meshes, which gener-

ally include attributes such as colors or various scalar fields,

requires efficient compression techniques to reduce the stor-

age size and especially to improve the transmission time

over networks, which is often the bottleneck for collabora-

tive visualization and manipulation.

Two different approaches exist for mesh compression:

single-rate approaches and progressive approaches. The

benefit of the single-rate approaches is that they give a gen-

erally high compression rate. However, the reconstruction

is only available when all of the data are received at the

decompression stage. The progressive approaches are more

relevant, especially in a scenario of remote collaborative vi-

sualization that not only requires fast data transmission but

also an adaptation of the complexity of the model to the re-

source capacity of the client terminal. Indeed, progressive

compression approaches allow achieving high compression

ratio and also to produce different levels of detail. They pro-

vide the possibility to rapidly obtain a coarse version of the

original object and to refine it gradually until the level of

detail is the most suitable for the terminal.

The rate-distortion (R-D) trade-off is an important cri-

terion for assessment of progressive compression methods,

since the user wishes to obtain the intermediate mesh of the

best quality for a given amount of received bits. Therefore,

optimization of the R-D performance is an essential issue in

progressive transmission techniques.

In the literature, the encoding of color data attached to

mesh vertices has often been neglected in spite of its contri-
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bution to the visual quality and its considerable size regard-

ing the geometry and the connectivity.

In this context, the objective of this work is to propose

a new R-D optimization method for meshes with color at-

tributes. Our algorithm encodes the original mesh in a loss-

less manner, allowing only a negligible quantization error.

Our main contributions are as follows.

1. We propose an R-D optimization technique based on the

adaptation of geometry quantization for meshes without

color. The use of a new determination of optimal quan-

tization based on an analysis of geometric properties has

considerably reduced the calculation time compared to

our previous work [19].

2. We extend our R-D optimization technique to colored

meshes by adapting both the geometry quantization and

the color quantization. We also propose complexity mea-

sures for the geometry and the color for prompt determi-

nation of their optimal quantization for all intermediate

meshes.

3. A new metric which measures the importance of a vertex

regarding the geometry and the color is also proposed to

more faithfully preserve feature elements, especially at

low resolutions.

4. Although our approach is based on the compression

method of Alliez and Desbrun [3], all our contributions

cited above are generally applicable and thus can be eas-

ily adapted to other methods.

In the next section, we provide a review of the state-

of-the-art of 3D mesh compression, associate attribute data

compression, and R-D optimization. In Sect. 3, we describe

the base algorithm used for our approach. In Sects. 4 and 5,

we present our R-D optimization techniques and results for

meshes without and with color data, respectively. The con-

clusions are drawn in Sect. 6.

2 Related work

The first work on mesh compression was a single-rate

algorithm, introduced by Deering [9] based on general-

ized triangle strips. Then, Taubin and Rossignac [29] pro-

posed a topological surgery approach by encoding two span-

ning trees. Rossignac introduced the EdgeBreaker algo-

rithm [26], which encodes the mesh connectivity by stor-

ing five symbols obtained by using an edge conquest. This

method guarantees 3.67 bits per vertex (bpv) as a worst

case for the connectivity coding. Gumhold and Straßer intro-

duced a similar algorithm called Cut-border machine [11].

The valence-driven algorithm proposed by Touma and

Gotsman [30] is considered to be one of the most efficient

single-rate algorithms in terms of compression rates. Based

on the edge-centered conquest, they encode the connectiv-

ity by storing valence codes of mesh vertices with some ad-

ditional incident codes. Therefore, this algorithm is mainly

efficient for regular meshes. In [4], an improved valence-

driven algorithm is presented by Alliez and Desbrun.

All the algorithms explained above are single-rate loss-

less algorithms which tolerate only quantization error of the

mesh geometry. Isenburg et al. [14] proposed a method to

encode, in a lossless way, vertices coordinates, for the pur-

pose of preserving the original float precision.

For progressive encoders, Hoppe introduced the first al-

gorithm in [13], called progressive mesh. A given mesh is

successively simplified by applying a sequence of edge col-

lapses which removes one vertex and two faces adjacent to

the edge. The reconstruction, at the decompression stage, is

accomplished by the vertex split operation. To optimize the

approximation quality of intermediate meshes, each edge

collapse is chosen based on geometric criteria at the expense

of some overhead of coding rate due to the cost needed for

the localization of the inverse operations.

Several approaches were then proposed to improve the

compression ratio. Taubin et al. [28] introduced a progres-

sive algorithm which uses the forest split operation, reduc-

ing the connectivity coding cost to 7–10 bpv. In [22], Pa-

jarola and Rossignac grouped vertex splits into batches by

marking vertices to be split using 1 bit at each resolution,

performing 7 bpv for the connectivity. The position of a new

vertex is coded based on the butterfly-like prediction using

its neighboring vertices. Karni et al. [15] proposed a simi-

lar approach: a sequence of edges which traverses all mesh

vertices is first built. Then a group of edge collapses is per-

formed to every pair of adjacent vertices to generate dif-

ferent resolutions. Due to the good locality and continuity

properties of this sequence, applying edge collapses within

the sequence leads to an improvement of compression rates

and rendering speed.

In [8], Cohen-Or et al. proposed the patch coloring tech-

nique for the progressive transmission. This algorithm suc-

cessively removes a set of vertices by using vertex removal

operations. The hole left by the deletion is retriangulated

in a deterministic way. The coding cost of the connectiv-

ity is achieved to 6 bpv. Alliez and Desbrun [3] proposed

a valence-driven progressive coder which benefits from the

native compact distribution of vertex valences to efficiently

encode the connectivity. This algorithm is also based on

vertex removal, and a deterministic retriangulation tries to

maintain the mesh regularity as much as possible to opti-

mize the approximation quality of intermediate meshes and

the coding cost of the connectivity. The connectivity is com-

pressed to an average of 3.7 bpv. Recently, Ahn et al. [2] im-

proved the coding rates and rate-distortion trade-off of [3] by

using a connectivity-based Karhunen-Loeve transform and a

bit plane coder for the geometry encoding.
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All the progressive algorithms described above are con-

nectivity-driven techniques, meaning that priority is given to

the connectivity coding. However, as geometry data occupy

usually more space than connectivity data in the compressed

file, geometry-driven algorithms have been introduced more

recently.

Gandoin and Devillers [10] proposed the first geometry-

driven algorithm based on the kd-tree space subdivision.

This algorithm is performed in two passes; the first pass

consists of encoding only geometry data. They recursively

divide the space in two cells until there remains only one

vertex in each cell. The number of vertices in one cell is

then encoded. The second pass encodes the connectivity

changes caused by each cell subdivision using a general-

ized vertex split. In terms of compression ratio, this tech-

nique outperforms connectivity-driven algorithms and can

even compete with the single-rate coders like [11][30][26].

Peng and Kuo [25] introduced an improved geometry-driven

approach based on the octree subdivision. Efficient predic-

tion for both the connectivity and the geometry brought an

improvement of 10 to 20 % compared to [10]. Geometry-

driven algorithms generally outperform connectivity-driven

algorithms in terms of lossless compression ratio. However,

their efficiency is limited for progressive compression since

they provide quite poor approximation quality for interme-

diate meshes.

More recently, Valette et al. [31] proposed a progressive

approach based on a reconstruction scheme. They start from

a coarse version of the original model which is refined pro-

gressively by inserting a vertex to the longest edge using

edge split operation, aiming to generate uniformly sampled

intermediate meshes. By restoring the original connectiv-

ity only at the end of the transmission and by adapting the

quantization level by transmitting progressively vertex coor-

dinates, this algorithm performs efficiently in terms of rate-

distortion trade-off. In [32], an other technique which trans-

mits gradually vertex coordinates is proposed. Nevertheless,

this technique is not fully progressive as the connectivity is

kept unchanged during the transmission.

Peng et al. [24] proposed a new progressive technique

which generates different levels of detail by successively

applying a vertex set split using a generalized Lloyd algo-

rithm. In this technique, they took into account geometric

features to optimize the quality of each level of detail and

to perform adaptive quantization. This feature-driven opti-

mization of model representation in the whole hierarchy to-

gether with efficient prediction of the geometry and the con-

nectivity achieves outstanding rate-distortion performance.

When the user needs to preserve only the shape of the 3D

model, a remeshing algorithm can be performed prior to the

compression step to change the mesh connectivity to a struc-

tured connectivity. The use of transformations like wavelet

is then applicable, permitting one to considerably reduce the

coding rate. The first progressive algorithm based on the

wavelet transform was proposed by Khodakovsky et al. [17].

Later on, Khodakovsky and Guskov [16] introduced a more

efficient wavelet-based coder using the normal mesh repre-

sentation [12]. Recently, Valette and Prost [33] extended the

wavelet-based algorithm to handle irregular meshes. Mamou

et al. [21] used a shape approximation of the original mesh

to encode the mesh geometry. Their method gives a satisfac-

tory result; however, its computational complexity is high,

and only the geometry is refined during the reconstruction.

Up to the present, only a few researchers focused on cod-

ing of color information. Among the single-rate compres-

sion techniques, only [9] [5] [29] proposed encoding meth-

ods for vertex-bind color information. However, the predic-

tion used for the color encoding is the same as for the ge-

ometry encoding regardless of its different nature. Recently,

Ahn et al. [1] and Yoon et al. [34] introduced new meth-

ods adapted for color data. Ahn et al. [1] used a mapping

table method based on the vertex layer traversal algorithm.

Instead of encoding color coordinates of each vertex, they

encode the index of the vertex color in the mapping table.

A color value in the mapping table is encoded when it ap-

pears for the first time during the traversal. Yoon et al. [34]

introduced a prediction method using connectivity and ge-

ometry information of neighboring vertices. They consider

different weights for the neighboring vertices based on the

angle analysis. Then, the color value of the current vertex

is predicted from weighted averaged color values. For the

progressive algorithms, Cirio et al. [7] recently introduced a

technique that handles color information. However, the qual-

ity of intermediate meshes is quite poor since their algorithm

is based on a geometry-driven algorithm [10].

Bit allocation is a technique which allows optimizing

the rate-distortion trade-off. King and Rossignac [18] intro-

duced an approach which determines the optimal relation-

ship between the number of vertices and the number of bits

of vertex coordinates optimizing the distortion for a given bit

rate, based on a shape complexity measure. For the wavelet-

based compression, Payan and Antonini [23] proposed an

optimized bit allocation. The best quantizer for wavelet co-

efficients of each sub-band is determined so as to minimize

the geometric error for a given bit rate. However, these two

bit allocation techniques are not adapted for the progressive

transmission since even if more bits are received the refine-

ment is not possible.

3 Base algorithm

Generally, connectivity-guided algorithms produce better

approximation quality for the intermediate meshes than

geometry-guided ones, especially at low resolutions. For this

reason, our work is based on the algorithm of Alliez and
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Desbrun [3], which is quite simple and nevertheless one of

the most efficient connectivity-driven algorithm. This algo-

rithm extends the concept of the valence-driven single-rate

approaches [30] [4] for progressive encoding. The valence-

driven scheme profits from the beneficial statistical distribu-

tion of vertex valences to efficiently encode the connectivity

information.

The algorithm of Alliez and Desbrun [3] successively ap-

plies two conquests which remove a set of vertices, generat-

ing different levels of detail (LODs): decimation and cleans-

ing conquests. The decimation conquest traverses the mesh

in a deterministic way using a gate-based traversal; when the

valence code of the current front vertex is inferior or equal

to 6, this vertex is removed and then the hole left is retrian-

gulated. Similarly, the cleansing conquest removes vertices

of valence equal to 3.

For regular meshes, the combination of these two con-

quests performs the inverse
√

3 subdivision as shown in

Fig. 1, and the connectivity coding is also optimal for this

case. For non-regular meshes, the retriangulation follows a

deterministic rule so that the mesh connectivity is kept as

regular as possible during the simplification process. For

these meshes, besides valence codes of the removed vertices,

incident codes need to be encoded, introducing some coding

overhead.

For the geometry coding, the authors first applied a global

and uniform quantization to the mesh vertex coordinates.

Assuming the smoothness and the regularity of the mesh, the

authors use a local prediction which is a barycentric predic-

tion. When a vertex is removed, its position is predicted from

the average position of its 1-ring neighboring vertices and

the difference is encoded. To further reduce the bit rate, they

also separate tangential and normal components as pointed

in [17], by adopting a local frame (Frenet frame). In our pre-

vious work [19], we proposed an improved geometric coder

based on a discrete bijection which brings an overall cod-

ing gain between 3 and 20%. In this paper, we use the mesh

traversal and the connectivity encoding method of [3] and

the geometry coder of [19].

The principal objective of our work is to propose an effi-

cient progressive encoding method for colored meshes. Nev-

ertheless, as most researchers focus only on non-colored

Fig. 1 A regular mesh (a) is simplified by the decimation conquest

(b) and the cleansing conquest (c) in the algorithm of [3]. We can see

that the resulting mesh is also regular

meshes, we have also derived a simpler version for meshes

without attributes, which is presented in the next section.

4 Rate-distortion optimization for meshes without color

attributes

In this section, we focus on the optimization of the rate-

distortion (R-D) trade-off for meshes without color data.

One important factor of the R-D performance is the quan-

tization precision of the mesh vertex coordinates which is

defined by the quantization step applied at the beginning of

the algorithm. In our approach, the quantization precision is

adapted to each LOD according to its number of elements to

optimize the R-D performance.

The high precision induced by the initial quantization is

indeed necessary for intermediate meshes at high resolutions

where the number of mesh elements is important; however,

this high precision is not needed for meshes at low resolu-

tions. In Fig. 2, we reduce the quantization precision from

12 bits to 6 bits for the Rabbit model. This reduction of

the quantization precision produces highly visible artifacts

when applied on the original high resolution model (top

row); however, for the low resolution model (bottom row),

both geometric and visual distortions are quite similar for

the 12-bits and 6-bits quantized versions.

Fig. 2 Comparison of distortion values of the Rabbit model at differ-

ent resolutions and with different quantization precisions



Rate-distortion optimization for progressive compression of 3D mesh with color attributes

Fig. 3 Our algorithm (red arrow) also reduces the geometry quanti-

zation precision, contrary to the classic progressive algorithms (blue

arrow)

This observation proves that each intermediate mesh can

be adaptively quantized regarding its complexity and its

number of elements, without significantly degrading the ge-

ometry quality. As the quantization is directly related to the

coding rate, this adaptation of quantization will optimize the

R-D performance.

Figure 3 describes the principle of our algorithm com-

pared to classic connectivity-driven algorithms. In tradi-

tional progressive frameworks, the initial mesh, M
Q
n , which

is quantized with Q bits, is iteratively simplified. After n it-

erations, the base mesh M
Q
0 is obtained, and its quantization

precision is still Q. In our work, the geometry quantization

precision, Q, is also gradually reduced, allowing R-D per-

formance optimization.

To achieve this optimization, two principal issues have to

be addressed.

1. The quantization precision has to be adapted to each in-

termediate mesh. Hence, during the encoding process,

the choice of the next operation between decimation and

decrease of quantization precision has to be optimally de-

termined at each iteration.

2. The decrease of quantization precision must also be effi-

ciently encoded so as to avoid a significant coding over-

head.

4.1 Encoding of quantization precision change

We describe here our method to decrease the quantization

resolution and to efficiently encode the inverse operation.

The initial quantization using Q bits consists in dividing

the bounding box of the input mesh into 2Q ∗ 2Q ∗ 2Q cubic

cells and in moving each vertex to the center of its corre-

sponding cell. If Q is reduced to Q − 1, the dimension of

Fig. 4 At the encoding process, child cells (a) are merged to form a

parent cell (b). The vertex is then moved to the center, and the correct

child cell index is encoded

each cell becomes twice as long along the three axes, and

each vertex is shifted to the center of the new bigger cell.

The decrease of quantization resolution can then be con-

sidered as a merging process in an octree structure as shown

in Fig. 4; eight child cells (initial small cubes) are merged

to form a parent cell (new big cubes). At the decoding pro-

cess, inverse operations are performed to increase the quan-

tization resolution, and the decoder needs to know for each

vertex its original child cell location. For that, we encode the

index of the child cell at the encoding stage.

Without any prediction, the encoding of a correct child

cell index among 8 possibilities costs 3 bits. To reduce this

coding cost, we adopt the prediction method from the algo-

rithm of Peng and Kuo [25]. Based on the location and the

distance of neighboring vertices, a priority value is given to

each child cell. Then, the indexes of the child cells are re-

ordered with respect to the priority values. The new index

corresponding to the correct child cell is then encoded.

4.2 Optimal determination of the next operation

As shown in Fig. 3, at each iteration, we have to deter-

mine the next operation between decimation and decrease

of quantization resolution. This choice of the next operation

is a fundamental key point in our R-D trade-off optimiza-

tion technique. To automatically and optimally determine

the next operation, we calculate the difference of the ge-

ometry distortion ∆D compared to the original mesh M
Q
n ,

and the amount of bits ∆B needed to encode the inverse op-

eration for both cases. For the decimation case, we obtain

∆Bdeci by calculating the entropy of both the connectivity

symbols and the correcting vector for all removed vertices

during the two conquests. The geometric distortion ∆Ddeci

is measured as the geometric distance compared to the orig-

inal mesh. Similarly, ∆Bquan and ∆Dquan are obtained for

the decrease of the quantization resolution. Then, the ratios
∆Ddeci

∆Bdeci
and

∆Dquan

∆Bquan
are compared to determine the next op-

eration. More precisely, we select the smaller one since it

optimizes locally the R-D trade-off.

This automatic selection of the next operation is de-

scribed in Fig. 5. In this example, decimation is chosen since
∆Ddeci

∆Bdeci
is inferior to

∆Dquan

∆Bquan
.
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Fig. 5 Choice of the next operation between the decimation and the

decrease of quantization precision

Note that, in our optimal determination scheme, root

mean square (RMS) distance is used as the geometric dis-

tance obtained by the METRO tool [6]. However, other dis-

tances such as Hausdorff or any user-defined metric can also

be employed.

4.3 Fast quasi-optimal determination of the next operation

Our method to optimally determine the next operation pos-

sesses one inconvenience which limits its effectiveness: the

high computational time. In fact, at each iteration, our op-

timal determination technique needs to calculate the geo-

metric distortion of models generated respectively by the

decimation and the decrease of quantization resolution. To

reduce the calculation time, we propose to determine the

next operation based on an analysis of geometric complex-

ity and on a learning process to eliminate the need for the

time-consuming distortion calculation.

For the optimal case, the next operations are determined

locally, at each iteration. However, we can observe using our

optimal determination method that the correct quantization

precision for a given level of detail (LOD) can be determined

globally, without considering prior operations.

Indeed, in Fig. 6, we show three different paths obtained

by our optimal method when starting from three different

initial numbers of quantization bits for the Bimba model;

the red, blue, and green colored lines represent, respectively,

paths obtained using 12 bits, 9 bits, and 6 bits as initial quan-

tization. The horizontal axis shows resolution levels with n

as the finest level, and the vertical axis describes the quan-

tization precision. For the resolution level n, the optimal

number of quantization bits is determined globally to be

9; indeed higher initial quantization resolutions induce de-

creases of quantization precision, as shown by the red path.

For the resolution level n−4, the best quantization precision

is globally determined to be 6; applying initial quantization

Fig. 6 Paths obtained using different initial quantizations on the

Bimba

using 6 bits causes a series of decimation operations until

the blue path is reached.

These observations tested on several models prove that a

unique optimal quantization precision exists for each inter-

mediate mesh independently of prior operations, and thus it

is possible to determine the quantization precision based on

an analysis of geometric properties.

First, we consider the number of mesh elements to esti-

mate the appropriate quantization precision, since when the

number of elements increases, the quantization has to be

more precise to avoid harmful aliasing problems. We also

take into account the level of complexity, since a more pre-

cise quantization is needed when the shape of a mesh is more

complex.

Hence, our geometry complexity measure KG uses the

volume of the bounding box, the surface area, and the num-

ber of vertices to estimate properly the required quantization

precision:

KG =
volume of bounding box

surface area ⊗ number of vertices
(1)

The surface area is obtained as the sum of the triangles’

areas. For consistency, the size of the input model is scaled

so that the longest dimension of its bounding box is equal

to 10. In Fig. 7, we plot values of the geometry complexity

measure KG and the corresponding numbers of quantization

bits for all intermediate meshes, computed using our optimal

method on 8 standard meshes.

In total, 81 points are acquired and these points consti-

tute the data set for a learning process which establishes the

appropriate relationship between the geometry complexity

measure KG and the quantization precision. Among the var-

ious types of fitting functions, the logarithm gives good re-

sults, as shown in Fig. 7. The parameters of this fitting curve

are obtained using the least square method. Now a near op-

timal quantization precision can be determined by using

qG = round(−1.248 ∗ log(KG) − 0.954) (2)
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Fig. 7 Values of KG and corresponding optimal quantization preci-

sions obtained by using our optimal determination method on 8 refer-

ence meshes. The fitting curve to these points is also illustrated

where round denotes the rounding process to the nearest in-

teger.

During the encoding process, our quasi-optimal determi-

nation method calculates the estimated quantization preci-

sion qG at each iteration. If the current number of quantiza-

tion bits QG is superior to qG, a decrease of the quantization

precision is performed as the next operation. Otherwise, the

decimation is chosen.

The use of quasi-optimal determination of the next oper-

ation makes our R-D optimization algorithm more practical

by significantly reducing the calculation time (see experi-

mental section).

4.4 Experimental results on meshes without color attributes

In this section, we present our results compared with

the algorithm of Alliez and Desbrun (AD 2001) [3], the

wavemesh of Valette and Prost (VP 2004) [33], the octree-

based algorithm of Peng and Kuo (PK 2005) [25], the IPR

algorithm of Valette et al. (VCP 2009) [31], the method of

Mamou et al. (MDCG 2010) [21], and the method of Peng

et al. (PHKEG 2010) [24].

Table 1 shows the running times of our algorithm as-

sociated with optimal and quasi-optimal determination, in

comparison with the base algorithm (AD 2001) [3] on a

2.80 GHz dual-core Intel CPU laptop computer with 4 GB.

The timings of AD 2001 are estimated using our own im-

plementation, which yields similar bit rates. Our algorithm

using the optimal determination needs a very long time be-

cause of the distortion calculations. For instance, our opti-

mal algorithm takes 3737.5 seconds for the Neptune, while

AD 2001 requires only 4.3 seconds. However, our quasi-

optimal algorithm reduces the timings significantly, con-

suming only 7.5 seconds for the same model. On average,

our quasi-optimal algorithm is only two times slower, com-

pared to AD 2001.

Figures 8 and 9 show the R-D curves for the Horse

and the Rabbit, respectively. The distortion is measured as

Table 1 Comparison of running times between our approach and the

algorithm of Alliez and Desbrun (AD 2001) [3] in seconds

Model #V Q AD 2001 [3] Our

Optimal Quasi-

optimal

Fandisk 6475 10 0.1 38.8 0.2

Venusbody 11362 12 0.2 49.6 0.4

Horse 19851 12 0.5 131.8 0.8

Torus 36450 12 0.3 177.2 0.7

Rabbit 67039 12 1.0 662.1 2.4

Neptune 249425 12 4.3 3737.5 7.5

the maximum of two RMS distances (forward and back-

ward) with respect to the bounding box using the METRO

tool [6]. These meshes are quantized using 12 bits. First,

we can see that our quasi-optimal algorithm yields very

similar results to those of our optimal algorithm in terms

of R-D performance. Note that the Horse model does not

belong to the data set used to establish the quasi-optimal

rule (2).

Compared to the most recent progressive algorithms, our

approach produces a competitive performance. For the Rab-

bit model, our algorithm outperforms AD 2001, VP 2004,

PK 2005, and PHKEG 2010. MDCG 2010 produces a sim-

ilar result to our algorithm up to 4 bpv and yields a bet-

ter result at higher rates. For this mesh, the best R-D per-

formance is obtained by VCP 2009. For the Horse model,

our algorithm obtains the best result at low rates. Above

6 bpv, MDCG 2010 produces the best result. Note that

MDCG 2010 gives very impressive results because it re-

lies on a complex shape approximation for the geometry en-

coding. However it requires a high computational time. Our

quasi-algorithm needs less than 1 second to encode a mesh

with 20,000 vertices while MDCG 2010 requires 3 min-

utes.

We also evaluate the performance of our optimal and

quasi-optimal algorithms on the Bimba (8,857 vertices) and

the David Head (24,085 vertices) models which have sur-

faces with more small details. Their R-D curves are illus-

trated in Figs. 10 and 11. For both models, our optimal algo-

rithm significantly outperforms AD 2001 and VP 2004. Our

quasi-optimal algorithm performs very similarly to our opti-

mal one for the Bimba model, but its efficiency is degraded

for the David Head model, since the parameters used to es-

timate the optimal quantization precision are calculated us-

ing smooth objects. However, the performance of our quasi-

optimal method is relatively close to our optimal one, and it

outperforms AD 2001 and VP 2004.

We evaluate the stability and the robustness of our quasi-

optimal algorithm by varying the parameters of (2). First,

we modify these parameters by multiplying them by a fac-

tor. The Venusbody and the Dinosaur models are used for



H. Lee et al.

Fig. 8 R-D curve for the Horse

Fig. 9 R-D curve for the Rabbit

this evaluation. When a variation of 5% is applied, the

performance of our quasi-optimal algorithm is quite iden-

tical to our optimal one. The variation of 10% affects

slightly the overall R-D performance and the final com-

pression rates. In the worst case, it leads to a local in-

crease of approximately 3 bpv for the same level of dis-

tortion. Second, we recalculate these parameters using a

new data set (five other models) for our learning process.

The parameters obtained from this new data set are almost

identical to the initial ones (variation is inferior to 5% for

both parameters), and the R-D performance of our quasi-

optimal algorithm with these parameters is quasi similar to

our optimal algorithm. These observations prove that our

quasi-optimal algorithm is robust to variation of its parame-

ters.

In Fig. 12, we show intermediate results of the Horse

model for similar bit rates of our algorithm, AD 2001, and

VCP 2009. At 1 bpv and about 4 bpv, we can see that our al-

gorithm reconstructs more details (see the ears of the horse)

than the other algorithms.
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Fig. 10 R-D curve for the

Bimba

Fig. 11 R-D curve for the

David Head

5 Rate-distortion optimization for meshes with color

attributes

In this section, we present our R-D optimization algorithm

for meshes with color attributes. The quantization precision

of color is also adapted to each intermediate mesh, improv-

ing the R-D performance.

5.1 Coding of color data

The size of color data can be as large as or even larger than

connectivity and geometry without an adaptive compression

method. Therefore, we have proposed a technique to effi-

ciently reduce these data in a previous work [20] that we

describe here briefly.

At the beginning of the encoding, all colors expressed in

the RGB space are transformed into the L.a.b. space. This

representation is more decorrelated than the RGB space;

thus it is more appropriate for data compression. After the

transformation, each component L, a, and b is represented

using 8 bits as in the initial RGB space.

We have observed that the color value of a vertex is gen-

erally very close to at least one of its neighboring vertices’
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Fig. 12 Comparison of

intermediate meshes for similar

bit rates between our algorithm,

the algorithm of Alliez and

Desbrun (AD 2001) [3], and the

algorithm of Valette et al. (VCP

2009) [31]

color. Based on this observation, we have proposed a method

which predicts the color of each removed vertex by selecting

the appropriate color among its neighboring vertices’ color.

For this selection, the average values of color components,

Lmean, amean, bmean are first calculated. Then, for each com-

ponent, we select the one which is the closest to the cor-

responding average component among the neighboring ver-

tices’ colors. The difference between the original and the

selected color is then encoded, allowing the decoder to re-

construct the color value exactly. During the decompression

process, the geometry and the connectivity are first restored

and the color data is added to the newly inserted vertex, al-

lowing the progressive reconstruction.

5.2 Color metric for data-driven progressive coding

With the geometry, the color data contribute highly to the

visual quality of the model. Thus, preserving the feature el-

ements of color is an important issue for the progressive

transmission to increase the approximation quality, espe-

cially at low resolution meshes.

As our connectivity encoding algorithm uses vertex re-

moval as the simplification operator, we propose a data-

driven progressive method by preventing deletion of vertices

which can eventually cause a serious distortion. For that, we

estimate the error caused by the removal of a vertex; then if

the error is larger than a threshold, we forbid removal of this

vertex.

Our metric is composed of the color error term Ecolor,

and the geometry error term Egeometry.

Etotal = Ecolor ⊗ Egeometry (3)

Fig. 13 Ecolor is obtained as the difference between the color of the

vertex to be removed (black) and the color of the centered position of

the middle triangle (brown), which is obtained by the interpolation

In Fig. 13, an example of the Ecolor calculation is de-

scribed. During the encoding process, triangles adjacent to

the vertex to be removed constitute the initial patch and after

the removal the retriangulation leads to the final patch. We

suppose first that the vertex to be removed is located near the

barycenter of the initial patch. We then estimate Ecolor as the

difference between the current vertex color (black) and the

color of the center position of the final patch (brown), which

is obtained by interpolating the vertices’ colors of the mid-

dle triangle.

When we prevent a vertex removal, this penalizes the

coding rate since an additional incident code is needed for

the decoder. Indeed, the use of only Ecolor preserves most

of the color details for all levels of details, causing a signifi-

cant increase of the coding rate. Therefore, the preservation

level of color details has to be adapted to the complexity of

intermediate meshes.

For this purpose, we combine Ecolor with a geometry

error term Egeometry. Egeometry is defined as the ratio be-

tween the average area of the triangles of the initial patch

and the average area of all triangles of the current interme-

diate mesh. This ratio gives the relative size of the surface
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affected by the vertex removal and permits us to adapt lev-

els of color details to the resolution of intermediate meshes.

Even if the color error is important, the vertex removal can

be performed if the patch area is relatively small; inversely

the removal of a vertex associated with a small color error is

prevented if the patch area is relatively important.

The choice of the threshold differs from input meshes due

to the different distributions of colors on mesh surface. To

avoid user intervention to find the optimal threshold, we di-

vide Ecolor by the average of color differences of the current

intermediate mesh. The average of color difference is the

average of color difference between the two vertices of all

mesh edges. With this normalization, the threshold can be

fixed to 0.5 for all colored models.

5.3 Encoding of decrease of color quantization precision

In [20], the color components L,a, b are quantized using

8 bits at the beginning of the encoding algorithm. As for

the geometry, this high color precision is not required for

intermediate meshes at low resolutions.

To decrease one bit of the color quantization precision,

we consider it as a merging process in an octree structure,

similarly to the geometry (Sect. 4.1). During the encoding

process, each group of eight child cells is merged to form

one parent cell, and the correct child cell index is encoded

for each vertex.

We can observe that many vertices have the same color,

unlike for the geometry, and generally there are only a few

dominant colors. Since the vertices with the same color be-

fore the decrease of quantization precision have the same

child cell index, instead of using one common encoder for

all colors, we use one encoder for each color to reduce the

coding rate.

We first traverse the mesh obtained after the decrease.

Then we count the number of present colors and we attribute

an index to each vertex following its color value. When a

new vertex with the color index i is encountered, we use the

encoder i to code its child cell index. No prediction method

is employed here, but using multiple encoders allows an ef-

ficient encoding.

The reconstruction technique is similar. When an in-

crease of color quantization is required, the number of

present colors is first calculated. Then, the traversing of

mesh vertices is performed by restoring their child cell in-

dex using a decoder corresponding to the encountered vertex

color.

5.4 Optimal determination of the next operation

The optimal determination of the next operation for a col-

ored mesh is also similar to the one for meshes without

color attributes. The main difference is that the next oper-

ation must be chosen from three choices: decimation, de-

crease of geometry quantization precision, and decrease of

color quantization precision.

We aim to find the best path which optimizes the R-D

trade-off by combining these three operations. To determine

the best next operation, we have to compare the ratio be-

tween the bit rate and the distortion for each case,
∆Ddeci

∆Bdeci
,

∆Dgeo

∆Bgeo
,

∆Dcolor

∆Bcolor
, and the one with the smallest ratio value is

chosen as the next operation.

To measure the distortion, we use the metric of Roy et

al. [27], which measures the difference between each vertex

color of one mesh and the color of the nearest point on the

surface of the other mesh. This metric takes not only color

differences into account but also geometry differences by the

nearest point computation. Hence this metric reflects quite

correctly the visual difference between two colored meshes.

5.5 Fast quasi-optimal determination of the next operation

To reduce the calculation time due to the distortion calcula-

tion, we propose a quasi-optimal method which adapts both

geometry and color quantization precision to intermediate

meshes based on a simple analysis of geometry and color

properties.

The procedure is quite similar to the method used for

meshes without color attributes (Sect. 4.3). During the en-

coding process, the optimal number of geometry quantiza-

tion bits qG is estimated and if qG is inferior to the current

quantization precision QG, the decrease of geometry quan-

tization precision is applied. In the same way, the decrease

of color quantization is performed if the current value QC is

superior to the estimated value qC .

Surprisingly, for the geometry quantization, the same

complexity measure used for meshes without color at-

tributes (1) can be used, although a different distortion mea-

sure is employed. In Fig. 14, 89 values of KG obtained

by our optimal determination scheme using intermediate

meshes of five colored models are plotted with the corre-

sponding geometry quantization precisions.

By using the logarithm fitting curve and the least square

method, we can now estimate qG, the optimal geometry

quantization precision:

qG = round(−1.031 ∗ log(KG) + 0.1477) (4)

For the color quantization, we observe that one complex-

ity measure cannot correctly determine the color quantiza-

tion precision qC for all intermediate meshes. Indeed, the

determination of the optimal color quantization precision is

more difficult to analyze than the geometry: contrary to the

geometry, color coordinates are generally concentrated in a

small portion of the color space, and the difference of color
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Fig. 14 Values of KG with their corresponding optimal number of

geometry quantization bits

between two adjacent vertices can also be very important.

Moreover, in the vertex-based color representation, colors

on a mesh surface depend on its geometric shape, since the

color value of a point on a facet is obtained by interpolation

using relative positions and colors of the facet vertices.

We can observe that the use of two complexity measures

allows us to correctly determine the optimal color quanti-

zation precision qC for all levels of detail: the first one is

used to decide the initial and the final quantization preci-

sions based only on information of the original mesh, and

the second one is employed to determine adequate color

quantization precision for all intermediate meshes.

To determine the initial and the final quantization preci-

sions, we use the first complexity measure KC1:

KC1 =
Mean color

Max color
(5)

where Mean color is calculated as an average of the color

differences of the vertices of all mesh edges and Max color

is the maximum of these color differences.

In Figs. 15 and 16, we plot, respectively, the initial num-

ber of quantization bits and the final number of quantization

bits obtained using our optimal determination method based

on seven colored models. Using a polynomial curve fitting,

we can now estimate the initial quantization precision qCinit

by

qCinit
= round

(

−58.0 ∗ K2
C1 + 5.31 ∗ KC1 + 7.81

)

(6)

and the final quantization precision qCfinal
by

qCfinal
= round

(

84.55 ∗ K2
C1 − 33.72 ∗ KC1 + 7.82

)

(7)

Now we need to determine the optimal color quantization

precisions for the intermediate meshes. First, we consider

the number of mesh elements in accordance with the con-

cept of KG. Then, we estimate the color complexity which

reflects the color variation on the mesh surface by the ratio

Fig. 15 Values of KC1 with their corresponding initial color quantiza-

tion precisions

Fig. 16 Values of KC1 with their corresponding final color quantiza-

tion precisions

between the mean value and the max value of the color dif-

ferences. For the normalization, we also take the area of the

mesh surface into account. To determine the optimal color

quantization precision, we introduce a second complexity

measure KC2:

KC2 =
Mean color

Max color
⊗

Surface area

#V
(8)

where Surface area is the sum of the mesh triangles’ areas

and #V denotes the number of mesh vertices.

Using the same seven colored models, we obtain val-

ues of KC2 with their corresponding quantization precisions.

For the fitting, we use averaged values of KC2 for each quan-

tization precision, as shown in Fig. 17 in order to improve

the accuracy of the complexity measure.

By means of the logarithmic fitting curve and the least

square method, we can estimate a near optimal quantization

precision qC for intermediate meshes:

qC = round(−1.18 ∗ log(KC2) + 0.33) (9)

In our quasi-optimal algorithm, during the encoding we

have to choose the next operation among decimation, de-

crease of geometry quantization precision, or decrease of
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Fig. 17 Averaged values of KC2 with their corresponding optimal

color quantization precisions

Algorithm 1 Our quasi-optimal method for R-D optimiza-

tion at the encoding process

Calculate qCinit
(Eq. 6) and qCfinal

(Eq. 7)

Decrease the current color quantization precision QC , un-

til reaching qCinit

repeat

Calculate qC (Eq. 9) and qG (Eq. 4)

if QC > qC AND QC > qCfinal
then

Decrease one bit of color quantization precision

else if QG > qG then

Decrease one bit of geometry quantization precision

else

Decimate the current mesh

end if

until Number of mesh elements > user-defined number

color quantization precision, at each iteration. Decimation is

chosen when decreases of geometry and color quantization

precision are not appropriate for the next operation. When

decreases of geometry and color quantization levels are both

appropriate, we have to make a decision between these two

possibilities. In this case, our proposed solution is to choose

the decrease of the color quantization level, since it is com-

puted with less accuracy by using more equations (6), (7),

and (9) than that of the geometry (4).

Our whole quasi-optimal algorithm is summarized in Al-

gorithm 1.

5.6 Experimental results on meshes with color attributes

Table 2 shows the timings of our R-D optimization al-

gorithm compared to the algorithm of Lee et al. (LLD

2010) [20] (one of our previous works). QG designates

the number of geometry quantization bits. We can observe

that our method using optimal determination requires much

more calculation time due to the measurement of distortion

with the tool of Roy et al. [27]. Our quasi-optimal approach

Table 2 Comparison of running timings in seconds

Model #V QG LLD 2010 Our

Optimal Quasi-

optimal

Swirl 9216 10 0.2 22.1 0.4

Nefertiti 10013 10 0.3 35.6 1.2

Radiator 16002 10 0.4 49.7 0.5

Globe 36866 12 1.1 175.8 2.6

Gist-Monkey 67039 12 1.5 192.4 2.6

Enveloppe 125587 12 3.9 758.9 5.0

Renfort 190540 12 6.1 1495.9 6.8

allows us to considerably reduce the calculation time and

makes our R-D optimization algorithm more effective.

In Figs. 18, 19, 20, and 21, respectively, we illustrate

the R-D curves of the Radiator, the Enveloppe, the GIST-

Monkey, and the Nefertiti models. The Radiator and the En-

veloppe models are provided by the R&D division of EDF

(Energie de France) and they represent outputs from ther-

mal simulations. The distortion is obtained by measuring the

maximum of two RMS distances using the metric of Roy et

al. [27]. The Radiator and the Nefertiti are quantized using

10 bits, and the Enveloppe and the GIST-Monkey are quan-

tized using 12 bits. The rate includes the connectivity, the

geometry, and the color data. For all models, our algorithm

based on optimal determination considerably improves the

R-D performances in terms of the color deviation regarding

to LLD 2010, especially at low resolutions, and our quasi-

optimal determination technique gives very similar results.

In Fig. 20, we compare the R-D performance with the

method of Yoon et al. [34]. In their work, they propose a

prediction method for color encoding in the single-rate com-

pression scheme. Hence, we adopt this prediction method

into [20] (YKH(LLD 2010) in the figure) and also into our

optimal algorithm (YHK(Our optimal) in the figure) for the

comparison of the R-D trade-off. Since only the color encod-

ing scheme is different, YKH(LLD 2010) and YKH(Our op-

timal) produce very similar results to those of, respectively,

LLD 2010 and our optimal algorithm. We obtain the same

results for other models.

In addition, the Enveloppe model was not used as the data

set to establish quantization determination rules (see (4), (6),

(7), (9)); hence it demonstrates once again the genericity of

these rules. For the Radiator, a significant overhead of cod-

ing rate occurs due to the use of the color metric. As the

Radiator model is initially regular, the forbidding of vertex

removals during the mesh simplification raises the bit rates.

Even if our algorithm optimizes the R-D performance

using a color-based metric, it also optimizes the geometry

deviation during the whole transmission. The reason is that

the color metric also takes into account the geometry infor-

mation by using projection and barycentric interpolation to
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Fig. 18 Rate/geometric and

color distortion curve for the

Radiator

Fig. 19 Rate/geometric and

color distortion curve for the

Enveloppe

measure the distance between two meshes. We show the R-D

curve obtained by the pure geometric metric, METRO [6]

for the Nefertiti model in Fig. 22. We can see that our al-

gorithm also outperforms LLD 2010 by far in terms of geo-

metric deviation.

In Fig. 23, we show intermediate results of the Radia-

tor model for similar bit rates of our algorithm compared

to LLD 2010. For both algorithms, we use a volume-based

geometric metric to preserve the initial shape. We can see

that for all bit rates, our algorithm produces better results

in terms of visual quality. The use of our metric allows us

to more faithfully reconstruct color details adaptively to the

resolution levels. Note that our quasi-optimal algorithm de-

livers very similar results to those of our optimal algorithm.

6 Conclusion

In this paper, we have proposed a new lossless progres-

sive compression technique for 3D meshes with color at-

tributes. Based on the adaptation of the geometry and the

color quantization precision to the complexity of interme-

diate meshes, an optimization of the R-D trade-off is per-

formed. The next operation between decimation and de-

crease of quantization precision at the encoding process can
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Fig. 20 Rate/geometric and

color distortion curve for the

GIST-Monkey

Fig. 21 Rate/geometric and

color distortion curve for the

Nefertiti

be determined either optimally using any mesh distortion

measure, or quasi-optimally using an analysis of geometry

and color complexity, with the goal of reducing the calcula-

tion time.

Experimental results show that the adaptive quantization

and the use of our color metric allow improvement of the

R-D performance in terms of color and geometry deviation

for meshes with color attributes. In the case of meshes with-

out attributes, our algorithm improves the R-D performance

compared to the base algorithm [3] and can compete with the

recent IPR algorithm [31]. One of the strong points of our

approach is its genericity. Indeed the main idea of adapting

the quantization to the LODs can be easily adapted to other

existing algorithms; moreover any distance can be used to

optimize the R-D trade-off, even perceptual ones.

In our current framework, the adaptation of quantization

precision is performed globally: vertices of a resolution level

have the same number of quantization bits. In future works,

we will improve our algorithm to allow the adaption of the

quantization precision for each vertex during the reconstruc-

tion in order to further increase the R-D performance. We

also plan to improve our quasi-optimal algorithm to more

properly handle highly detailed objects by adapting its pa-

rameters to the amount of details.
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Fig. 22 Rate/geometric

distortion curve for the Nefertiti

Fig. 23 Comparison of intermediate meshes for similar bit rates between our algorithm (optimal) and LLD 2010 [20]
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