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Abstract 
Compression of computer graphics data such as static and dynamic 3D meshes has received 

significant attention in recent years, since new applications require transmission over 

channels and storage on media with limited capacity. This includes pure graphics applications 

(virtual reality, games) as well as 3DTV and free viewpoint video. Efficient compression 

algorithms have been developed first for static 3D meshes, and later for dynamic 3D meshes 

and animations. Standard formats are available for instance in MPEG-4 3D Mesh 

Compression for static meshes, and Interpolator Compression for the animation part. For 

some important types of 3D objects, e.g. human head or body models, facial and body 

animation parameters have been introduced. Recent results for compression of general 

dynamic meshes have shown that the statistical dependencies within a mesh sequence can be 

exploited well by predictive coding approaches. Coders introduced so far use experimentally 

determined or heuristic thresholds for tuning the algorithms. In video coding rate-distortion 

(RD) optimization is often used to avoid fixed thresholds and to select the optimum 

prediction mode. We applied these ideas and present here an RD-optimized dynamic 3D 
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mesh coder. It includes different prediction modes as well as an RD cost computation that 

controls the mode selection across all possible spatial partitions of a mesh to find the 

clustering structure together with the associated prediction modes. The general coding 

structure is derived from statistical analysis of mesh sequences and exploits temporal as well 

as spatial mesh dependencies. To evaluate the coding efficiency of the developed coder, 

comparative coding results for mesh sequences at different resolutions were carried out. 

 

1 Introduction 
Efficient compression of computer graphics data becomes more and more important, since 

applications that require timely transmission over channels and storage on media with limited 

capacity become more and more popular. So far computer graphics data are mainly 

downloaded in advance and stored on spacious hard discs. Even real-time applications such 

as multi-user games rely on downloading almost all data and only exchanging some 

parameters in real-time, e.g. over the internet. 

Nowadays, mobile phones are small computers with good graphics capabilities, though 

limited disc space and a limited channel capacity. Real-time graphics systems such as 3D 

visualized navigation systems require real-time transmission of tremendous amounts of data. 

Further, future applications such as 3DTV and free viewpoint video [25] make use of 3D 

graphics data to be transmitted in real-time and/or stored on media with limited capacity. 

One type of such computer graphics data are polygonal 3D meshes as surface representations 

of 3D objects with 3D points and connectivity. Typically these are stored and transmitted in 

text or simple binary format posing a tremendous waste of capacities. First compression 

research for such data was focused on compression of static 3D mesh geometry in the format 

of vertex positions (points in 3D x, y, z) and connectivity (information about how to connect 

vertices to form surface patches) [22], [9]. Improvements on connectivity compression in the 

“Edgebreaker” coder from [22] were introduced in [8], [12], [27]. An overview on recent 

static mesh compression advances can be found in [2]. 

An important pre-condition for successful and wide application of digital media is the 

availability of international standard formats, providing interoperability while still enabling 

competition among equipment and content providers. ISO MPEG, as one of the international 



standardization bodies, has recognized the importance of efficient 3D mesh compression and 

included a tool called 3D Mesh Compression (3DMC), for static meshes exploiting spatial 

dependencies of adjacent polygons, in MPEG-4 [14]. This standard is the first real 

multimedia format including video, audio, graphics, text, etc. in a single specification. 

Later research was extended to compression of animated meshes and mesh sequences with 

changing vertex positions over time. In [20] a decomposition of the vertex position matrix is 

suggested, allowing a better decorrelation of different types of temporal mesh deformations. 

The deformation is described by special animation parameters, representing affine motion or 

free-form deformation. The residual between real mesh deformation and estimated animation 

parameter deformation is then coded. The temporal deformation is separated into low and 

high frequency motion - an approach that was later used in [24] to introduce a multi-

resolution approach for dynamic mesh coding. Dynapack [11] analyzes spatial and temporal 

dependencies using a predictor to exploit similarities of neighboring points. Spatial 

dependencies are also exploited in [28], where mesh connectivity is transformed into special 

codes for coding vertex valences, i.e. how many edges coincide at a 3D vertex. Besides this 

prediction, 3D points are compressed directly and not represented by substitutes, an approach 

that is taken in [1]. Here, principal component analysis (PCA) of the geometry covariance 

matrix is carried out to reduce spatial correlation. By applying linear predictive coding to 

PCA components, a fast algorithm was introduced in [19]. A different approach was taken 

with Geometry Images [7] and Geometry Videos [4], where 3D geometry is transformed into 

2D images and 3D vertices and normal vectors with x-, y- and z-coordinates are coded by R, 

G and B values of the image. Here, sophisticated mesh cutting needs to be applied to find a 

suitable mesh-to-image-mapping. 

If motion within a sequence of meshes is approximately linear over certain periods of time, it 

can be represented by a few key meshes. Then only the key meshes need to be encoded and 

the intermediate meshes can be generated by interpolation. This drastically reduces the data 

rate. A corresponding algorithm that further exploits temporal statistical dependencies for 

compressing the key meshes by prediction was introduced in [17]. This approach was 

adopted as an extension of the computer graphics part of MPEG-4 called Animation 

Framework eXtension (AFX) [15] for dynamic mesh coding. This tool is called Interpolator 

Compression (AFX-IC). In [31], a spatial clustering algorithm for motion vectors was 



introduced, predicting motion vectors within the object’s bounding cube by tri-linear 

interpolation of the cube’s corner vectors, which further reduces the amount of data to be 

encoded. 

In this paper we present a new approach for the compression of dynamic 3D meshes that 

combines [17] and [31] into a unified and optimized framework. Here, we concentrate on the 

coding of mesh motion information of successive frames, while the first frame of a mesh 

sequence is coded, using static state-of-the-art coding approaches, e.g. 3DMC for wireframe 

models. The reason for this separation originates from the mesh sequence properties with 

constant connectivity: While the first mesh of a mesh sequence requires coding of all 

attributes, like vertices and connectivity, all following meshes only need to be coded by their 

motion information. Furthermore, by coding the first mesh separately, our differential coding 

approach can easily be applied to other time consistent description forms of dynamic 3D 

objects, e.g. point or point splat representations [29], where the first frame of a 3D sequence 

is coded differently, while the motion information of successive meshes remains the same. In 

our coding framework for 3D motion vectors, different coding modes are available for each 

single vertex motion vector, or for appropriate clusters of motion vectors. We further 

developed an efficient mode control based on rate-distortion (RD) optimization that always 

selects the best possible prediction mode among all possible modes. Our system uses 

standard MPEG-4 components and syntax (3DMC and AFX-IC) as far as possible and 

extends them as appropriate, and can thus be easily integrated into a future extension of 

MPEG-4. 

The paper is organized into the sections Coding Structure and Coding Results. In Section 2, 

we describe the basic temporal DPCM-structure and RD-optimization. Furthermore, spatial 

subdivision and clustering methods are described, followed by arithmetic coding. In 

Section 3, we first discuss common error measures used for 3D mesh compression. Then we 

show how a certain rate point is selected by the RD-optimization process. Finally, in 

subsection 3.3 comparative coding results between our optimized coder and state-of-the-art 

dynamic mesh coding are presented.  

 



2 Coding Structure 
In dynamic mesh coding, often a sequence of time-consistent meshes is considered, where 

each single mesh of a sequence has the same number of vertices and all meshes share a 

common connectivity. An example of an animated mesh or mesh sequence is shown in Fig. 1. 

 
Fig. 1: Different meshes of the level 2 Humanoid sequence sharing a common connectivity. 

 

Here, all meshes share a common connectivity and only the 3D vertices change position. The 

introduced coding scheme was developed to exploit spatial or intra-mesh as well as temporal 

or inter-mesh dependencies of such mesh sequences. For real-world 3D data, constant 

connectivity may only be guaranteed over a limited time period, since scene content or the 

topology of 3D objects may change. In such cases, mesh sequences are terminated and 

reinitialized with new 3D attributes, like vertices and connectivity. Similar to 2D video 

coding, such sequences are called “Group of Meshes” or GOMs, where the first mesh is 

called an intra or I-mesh, followed by predictive or P-meshes. The resulting hybrid coding 

structure is presented in detail in the following sections. 

 

2.1 Basic DPCM Structure 

Based on the motion data of mesh sequences, we have developed a Differential 3D Mesh 

Compression (D3DMC) that operates on the difference or motion vectors. Fig. 2 shows a 

block diagram of the encoder. 
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Fig. 2: Block diagram of D3DMC encoder. 

 

The main structure is based on a DPCM-loop with 1st order predictor. The block diagram 

contains MPEG-4 3DMC as fallback mode that is enabled through the Intra/Inter switch that 

is fixed to either one for each 3D mesh of a sequence. This Intra mode is used for instance 

when the first mesh (I mesh) of a Group of Meshes (GOM) is encoded, i.e., when no 

prediction from previously decoded meshes is used. Additionally, I meshes can be used by 

the encoder in any other case, e.g., when the prediction error in D3DMC becomes too large. 

This mode provides backward compatibility to 3DMC and ensures that D3DMC can never be 

worse than 3DMC. The newly introduced predictive mode for mesh coding (P meshes) 

consists of the following steps:  

1. The previously decoded mesh is subtracted from the current mesh to be encoded. This 

step can only be done if time-consistent meshes with a common connectivity are 

available. In case of a change of connectivity a fallback to 3DMC via the Intra/Inter 

switch is done and the recursive process is reinitiated. Only the difference signal between 

original and prediction, i.e. the difference vectors, is further processed. This backward 

prediction scheme also ensures the suppression of error drift that occurs in forward 

prediction structures [18]. 



2. Spatial clustering is applied to the difference vectors, in order to compute only very few 

representatives for a number of vectors. This algorithm uses an octree structure with tree 

pruning based on reconstruction error between original and reconstructed motion vectors 

with large cell sizes in spatial regions of homogeneous motion and small sizes for 

outliers. The result is a number of substitute vectors representing the motion vectors and 

octree structure information. In the RD-optimized version (see below), three different 

modes for spatial clustering are available and selected according to RD-calculation. 

3. The substitute vectors are passed to an arithmetic coder using context-adaptive binary 

arithmetic coding (CABAC) [21] to efficiently adapt to the signal statistics.  

 

2.1.1 Spatial Clustering of Difference Vectors 
While a DPCM coding structure is used to exploit temporal dependencies between successive 

meshes, motion vector clustering is used to exploit spatial dependencies. The main concept of 

spatial clustering used here is to represent a number of similar motion vectors by only a few 

substitution vectors to achieve good compression results. This trilinear interpolation is 

illustrated in Fig. 3. 

 
Fig. 3: Trilinear interpolation of 3D motion vectors. 

 

The algorithm is also described in detail in [31]. Here, all motion vectors dl of vertices within 

a volume are represented by the motion vectors o1…o8 of the eight corner vertices. These 

corner vectors are calculated (as described in section 2.1.2) from all motion vectors within a 

spatial cell, according to their vertex positions. In Fig. 3 right, all distances for the calculation 

are shown with respect to the first corner vertex with motion vector o1, considering the 



distances sx, sy, sz for the vertex with shown motion vector dl relative to the vertex of o1 and 

the cell size Δx, Δy, Δz. 

Of course this clustering introduces an error. A decoder that receives only the representative 

motion vectors cannot recover the exact motion vectors. We therefore use an error measure ed 

to decide on further cell subdivision, which is the normalized sum of Euclidian distances 

between the original motion vectors dl and their respective reconstructions )(~ tld  from the 

corner motion vectors within the volume under consideration: 

∑
=

−=
L

l
lld tt

L
e

1
)()(~1 dd . (1) 

 

2.1.2 Spatial Octree Subdivision 
With this error measure the mesh under consideration can be clustered using an octree 

subdivision algorithm. Such algorithms are also applied in fine-scale 3D voxel reconstruction 

from 2D images [6], [23]. The octree subdivision scheme as an accelerated method for 3D 

reconstruction was introduced in [26]. This subdivision scheme allows a hierarchical volume 

partitioning that corresponds to the spatial statistics of 3D motion vectors. Here on one hand, 

large areas of homogenous motion of neighboring vertices exist that can be grouped into one 

large octree cell. On the other hand, small areas of diverse motion and single outliers exist, 

which require fine partitioning for grouping into individual cells. 

In the basic structure the subdivision is performed top-down, starting with one single volume 

that contains the entire mesh at a certain time instant together with the motion vectors for 

each individual vertex. Although any volume, which contains the entire object, can be 

selected, mostly the object’s bounding cube is taken. In the first subdivision step, the initial 

volume is split into eight octants, as shown in Fig. 4. 

For each octant, a set of representative vectors as in Fig. 3 is computed from the contained 

motion vectors. At the beginning, the trilinear reconstruction of the motion vectors dl(t) from 

the representative vectors om(t) with associated weights wm,l(t) is formulated first (see [31]): 
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Here, a set of L equations exist for all motion vectors dl(t) within a spatial cell, with l = 1…L. 

From this set, a matrix equation d = W⋅o is created with weighting matrix W, which contains 

the known positions of all motion vectors by means of their tri-linear weights. Thus, the 

representative vectors om(t) are calculated either from the pseudo inverse of W, since W is a 

non-square matrix: [ ] dWWWo ⋅=
− TT 1 , or by singular value decomposition and inversion of 

the decomposed matrices: ( )dUdiagVo T

ix
⋅⎟⎟
⎠

⎞
⎜⎜
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⋅=
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Then the error measure is computed for the calculated representatives with equation (1). If 

the error is below a certain threshold, the representatives for the octant are determined and 

further encoded. If the error exceeds the threshold, the octant is further subdivided into 8 sub-

octants, and the process is repeated recursively, as illustrated in Fig. 4. The complete process 

stops when the complete initial volume is processed and all representatives are determined. 

A significant drawback of the basic structure is the need to specify a threshold to control the 

algorithm. It has to be determined experimentally, but does not allow direct control of 

resulting bit rate and quality. This is overcome in the RD-optimized extension as described in 

section 2.2. 

 

 
Fig. 4: Level 3 Selective Spatial Octree Subdivision. 

 

2.1.3 Context-Adaptive Arithmetic Coding 
The substitute vectors are passed to an arithmetic coder using context-adaptive binary 

arithmetic coding (CABAC) [21] to efficiently adapt to the signal statistics. Analysis of the 

probability density function (pdf) of the motion vector data has shown a Laplacian 



distribution that is superimposed by small peaks at varying positions due to the clustering 

algorithm, as shown in the distribution function in Fig. 5. 
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Fig. 5: Distribution of x-, y-, and z-coordinates of octree vectors. 

 

For CABAC, the binarization uses unary/kth-order Exp-Golomb codes to not only assign 

small code words to most frequent symbols but also to deal with certain outliers that 

frequently occur. Furthermore, the unary as well as the Exp-Golomb part sizes are calculated 

from the data to minimize overall code length. Thus the algorithm can adapt to changing 

statistics, since 3D meshes exhibit a variety of global and local motions that significantly 

modify the corner or substitute vector distribution An important feature of CABAC is its 

usage of multiple probability models to better fit the input signal statistics i.e. that for each 

element of the unary part of the unary/kth-order Exp-Golomb codeword a different probability 

model is applied. These probability models adapt to the most frequent code words. Two 

additional probability models are used to encode the resulting octree structure. One 

probability model adapts to bits representing nodes and leaves of the octree the second 

probability model adapts to bits which give evidence if a node or leaf of the octree contains 

data to be encoded. 



For the RD-optimization, CABAC becomes a part of the optimization process, where rate 

values need to be calculated for the mode and merge decision of each spatial cell. Due to the 

context adaptation, CABAC depends on the processing order of the octree pruning approach. 

Here, we follow the octree branch ordering, which usually starts at one corner of the 3D-

model. This approach does not require additional subdivision structure information. To 

provide the minimum rate at least for the selected processing path, all previous quantized 

motion vectors and structure information are used for CABAC coding, including the data 

from all previous meshes. Although this approach might not deliver the best overall coding 

across all meshes, it still presents an optimum under the imposed constraint of keeping the 

data in temporal mesh order. 

 

2.2 RD-optimized Coding Structure 

The basic structure from 2.1 already performs very well in comparison to AFX-IC as shown 

in the results section 3. It is basically the work presented in [31] extended by efficient 

arithmetic coding (CABAC). However the octree pruning relies on a predefined error 

threshold. Further, we have found that additional prediction modes can improve the overall 

compression performance significantly, which are the following: 

1. Direct Coding of differential vectors. This prediction mode is applied, if the motion 

vectors within the currently analyzed spatial volume are very different. 

2. Mean Replacement of all motion vectors by their mean vector. This mode prediction is 

selected, if all motion vectors within a volume are very homogeneous. 

3. Trilinear Interpolation of all differential motion vectors from the 8 corners. This 

prediction mode is selected, if the motion vectors exhibit a moderate smooth variation 

across the considered volume. 

Mean Replacement is beneficial if vectors within an octant are homogeneous. In that case 

only one instead of 8 representatives needs to be encoded. Direct Coding is beneficial for 

very heterogeneous vectors. This mode is exclusively used in AFX-IC. Also Zhang and 

Owen use a direct mode in their recent work [30]. However, they switch between direct mode 

and trilinear interpolation on a global basis mesh by mesh. In our approach we allow 

individual modes for each individual cell. Trilinear Interpolation is used as in the basic 



structure, however, in the RD-optimized version there is no need for a predefined threshold 

anymore. Instead we vary the Lagrangian parameter λ and obtain the minimum value of the 

cost function DA + λR for all octree motion vector quantizations between 5 and 11 bits and 

compute rate R and distortion DA for any possible subdivision (quantization below 5 and 

above 11 bits did not yield any minimum cost values and can therefore be omitted). 

Therefore, a minimum distortion is obtained at the associated bit rate and vice versa. By 

varying λ, associated optimal RD-pairs are obtained to create the final RD-curve across 

different bitrates and distortions. 

Having different modes available implies the need for a mechanism to select the best one for 

each single subdivision. Here, the RD cost function is analyzed for each single volume, 

starting from the fully subdivided volume, where each spatial cell only contains 8 vectors. 

This minimum number is required, since trilinear interpolation uses 8 corner vectors, such 

that this mode becomes similar to direct coding at this subdivision level in terms of the 

number of motion vectors. Therefore, only Mean Replacement and Direct Coding need to be 

evaluated at this level. The objective for each spatial cell is to decide, whether the cell should 

remain at the current level or being merged with its neighboring cells. Therefore, the 

described motion vector quantization is carried out for the 8 separate cells, as well as the 

merged cell for all modes. The minimum DA + λR cost value of all possibilities determines 

the merging decision as well as the optimal mode for a cell. The analysis continues up to the 

single volume, where the entire object’s motion vectors are contained. Finally, the optimal 

octree pruning scheme with the appropriate spatial clustering modes for the remaining cells 

has been determined for a given reconstruction quality. In this search strategy basically all 

possible mode combinations for all subdivision are calculated, and the best is selected. Here, 

best possible performance is ensured; however, computational complexity is immense as 

well. Our future work will include strategies to speed-up this process by appropriately 

constraining the search. 

The general structure of the RD-optimized coder still applies a DPCM structure, as shown in 

the basic structure in Fig. 2. The new elements introduced before have been integrated as 

shown in Fig. 6 top in the block "RD-Optimization". Here, the arithmetic coder was included 

in this block to be able to calculate the final rate of the coded bit stream for RD-optimization. 

A detailed graph of this block is shown in Fig. 6 bottom. 
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Fig. 6: Coding structure for the RD-optimized Dynamic 3D Mesh Coder (top) and detailed structure of 

RD-optimization (bottom). 



Here, the analysis-and-reconstruction block from the fixed D3DMC, where only octree 

clustering together with trilinear interpolation is applied, is extended towards the RD 

optimization block. The RD optimization takes all differential vectors d(t) and outputs the 

arithmetically coded data y(t) of a current mesh. For best compression results, context 

adaptive arithmetic binary coding (CABAC) [21] is used, which adapts to the mesh 

difference vector statistics over time. CABAC was also successfully applied to video 

compression and was standardized for H.264/MPEG4-AVC [16]. Furthermore, the RD-

optimization also outputs the estimated differential vectors )(ˆ td  for the following mesh at 

time t+1. 

As already described, the RD-optimization contains 3 different prediction modes, which are 

controlled and selected by the central "RD-Calculation" block by varying the Lagrangian 

parameter λ and quantizing the motion vectors for each λ. Since the mode selection is based 

on the RD decision, it requires the current distortion and rate. For that, distortion is calculated 

from input and predicted vectors d(t) and )(ˆ td  respectively, while the actual rate is taken 

from the arithmetically coded data y(t). Therefore, the arithmetic coder needs to be included 

into the RD analysis loop. With these inputs, the RD calculation block calculates the encoder 

settings and controls the octree subdivision block for the appropriate octree pruning scheme 

as well as the mode selection via the signal flow switches. 

 

3 Coding Results 
For the coding efficiency evaluation of the developed RD-optimized D3DMC, comparative 

experiments with state-of-the-art compression technology were carried out. Furthermore, we 

also compared our RD-optimized version against the basic structure to evaluate, to which 

degree the introduced changes contribute to possible coding gains. For the evaluation, a 

special 3D error measure is used, which considers spatial displacement as Euclidian distance 

as well as different temporal distances between successive key meshes. In the case of evenly 

distributed mesh sequences, only the Euclidian distance would be sufficient, however for 

sequences that where reduced to a subset of key meshes prior to coding, the different 

temporal distances also need to be considered. Key mesh sequences are considered here, 



since they where also used for the AFX-IC benchmark coding. The error measure and final 

coding results are introduced below. 

 

3.1 3D Error Measures 

One of the common error measures in 3D mesh comparison is the Hausdorff distance [10]. 

For two meshes A and B to be compared, the minimal distance dA,i between all points vA,i(t) of 

mesh A towards mesh B is calculated first: 

)()(min ,,, ttd kBiAkiA vv −=
∀

. (3) 

From this, the directional Hausdorff distance dA→B is obtained as the maximum of all single 

distances 

( )iAiBA dd ,max
∀→ = . (4) 

In the next step, the algorithm is applied vice versa to obtain dB→A. In general dA→B ≠ dB→A, 

such that the general Hausdorff distance dA,B is taken as the maximum of both directional 

distances: 

( )ABBABA ddd →→= ,max, . (5) 

In the case of time-consistent mesh sequences, which we also consider in this paper, a one-to-

one mapping between mesh A and B is possible. Therefore a direct Euclidian distance 

measure can be applied, which gives a far better displacement representation. For mesh 

comparison, we used the average distance dm: 
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In the case of the Hausdorff distance, only the maximum error of any two vertices is 

represented, such that all other displacements are neglected.  

The average Euclidian distance dm or average root mean squared error (AVGRMSE) is used 

for mesh-to-mesh comparison, as it represents a common measure for mesh evaluation, as in 

“Mesh” [3] and “Metro” [5]; two tools that automatically calculate distances between 3D 

meshes. “Metro” additionally provides a visual comparison. Often, mesh sequences are only 

represented by a subset of key meshes with varying temporal distances between them. A 

distortion of two successive key meshes also influences distortion of all intermediate meshes 



that need to be interpolated after decoding. Thus also the temporal distance between the 

meshes needs to be included in an error measure. Here, the area distance was introduced in 

[17], which was also used in the experiments below. The main idea here is to extend the 1D 

Euclidian distance to a 2D area distance measure DA by adding the temporal distance as 2nd 

dimension. This area distance is first created separately for x-, y-, and z-component between 

any successive pair of key meshes within a sequence. The calculation for the x-component is 

shown in (7). Here, the error DA(x) is the sum of all single area distances DA,n(x) between 

adjacent key meshes at times tn and tn+1: 
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The single area distances DA,n(x) are calculated from the trapezoidal areas, defined by the 

spatial Euclidian distances dn(x) and dn+1(x) of the adjacent key meshes and the temporal 

distance tn+1 - tn, as shown in Fig. 7. 

key mesh distancetn tn+1

d xn( )
d xn+1( )

key mesh distancetn tn+1

d xn( )
d xn+1( )

Original animation path Reconstructed animation path D xA n, ( )  
Fig. 7: Area Calculation for non-crossing and crossing original and reconstructed animation paths for 

x-component, leading to regular and twisted trapezoidal areas for DA,n(x) respectively. 

Since the Euclidian distance is calculated from 1D components, it can also become negative 

and the signs of both distances dn(x) and dn+1(x) are used to specify, whether the area under 

investigation is a regular or twisted trapezoid and thus adapt the area calculation accordingly, 

as shown in equation (7) and the arrow directions for the signed distances dn(x) and dn+1(x) in 

Fig. 7. For the y-, and z-component, similar calculations are carried out. Finally, a normalized 

average distance AD  is calculated from the 3 separate area differences: 
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For normalization purposes, AD  is divided by the total temporal distance (tN-1 – t0), as well as 

the maximum spatial distance in x-, y- and z-direction dm,max. The normalized average area 



distance was also used in MPEG core experiments for 3D graphics compression technology 

and is described in [17] in more detail. 

 

3.2 RD Point Cloud Creation 

As already described, the coder performs RD optimization for all possible spatial 

subdivisions, starting from the finest spatial subdivision up to the entire bounding cube. This 

way the combination of subdivisions together with the appropriate prediction mode is 

determined. One example of an obtained RD point cloud is shown in Fig. 8. For visualization 

purposes, the distortion axis was logarithmically scaled to better show point resolution at low 

distortion errors, where one of the points is selected as the minimum RD costs at that data 

rate. Here, the points are vertically clustered around the quantization levels between 5 and 11 

bits for the motion values. Due to this quantization, each cluster has its lower distortion 

bound, e.g. a minimum distortion of 0.004 for the 7-bit-cluster. 

The final value is taken from that entire point cloud as the point with minimum rate-distortion 

value DA+λR. In the example in Fig. 8, this is the single leftmost point with DA = 0.0005 from 

the 10-bit-cluster. Note, that the linear minimum RD function for the point selection in Fig. 8 

is also drawn logarithmically due to the logarithmic distortion axis. 
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Fig. 8: RD point cloud (logarithmic scale) and finally selected rate point at a given maximum distortion 

(0.0006) and minimum bit rate. 

 

3.3 Comparative Coding Results 

In the coding experiments, the RD-optimized D3DMC is compared against AFX-IC as well 

as against a fixed version of D3DMC, developed earlier. The latter comparison is carried out 

to find out, how the RD-optimization components alone contribute to the coding gain. Also 

the comparison against AFX-IC has to be investigated at a number of different rate points. As 

already described in Section 3.2, spatial subdivision structure, as well as prediction mode 

selection vary according to the given rate point for the RD-optimized D3DMC. An example 

for prediction mode selection is given in Table 1, where the number of spatial cells for three 

different area distances or distortions is shown, together with the percentage of mode 

selection. 

Distortion DA Number of 

Spatial Cells 

Direct Coding Mean 

Replacement 

Trilinear 

Interpolation 



2.0x10-3 4027 41.79% 24.44% 33.77% 

8.6x10-4 14715 73.53% 6.46% 20.01% 

5.5x10-4 58314 92.15% 0.87% 6.98% 
Table 1: Number of spatial cells for three different resolutions and percentage of prediction mode 

selection, L3Humanoid_L3. 

 

First, the number of spatial cells increases with lower area distortion. Concurrently, the 

percentage of mode selection shifts from relatively equal distribution towards a direct mode 

selection for 92% of the spatial cells for lower distortion and higher reconstruction quality, as 

already expected in the statistical mesh analysis. 

Although the developed coder always selects the optimal prediction structure and thus 

combines the best technologies of AFX-IC and static D3DMC, it also requires slightly more 

bit rate, due to the signaling of spatial subdivision and prediction mode selection. Thus, the 

experiments also have to show, whether the advantage of RD-optimization can compensate 

this disadvantage. For AFX-IC, no spatial structure information needs to be transmitted, since 

this coder directly codes all differential motion vectors, i.e. operates completely in Direct 

mode. The fixed version of D3DMC requires spatial structure signaling, but no mode 

selection, since here only Trilinear Interpolation is carried out, similar to the approach in 

[31]. 

For the experiments, the “humanoid” test set with different resolutions was selected, which is 

an animated sequence of 399 frames at resolutions of 498, 1940 and 7646 vertices per mesh. 

The sequence is represented by 46 key meshes, which are also available for mesh coding and 

decoding. All other meshes are linearly interpolated during rendering from the 

CoordinateInterpolator-syntax from VRML [13], in which the animation is provided.  

The first graph in Fig. 9 shows the results for the coarsest resolution with 498 vertices.  
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Fig. 9: Distortion DA over bit rate for Fixed and RD-optimized D3DMC and AFX IC, L1Humanoid_L3, 

46 key meshes, 498 vertices. 

 

Here, the fixed D3DMC performed worse than the standard AFX IC, since a relatively large 

percentage (~34%) of the data rate is used for coding the spatial clustering structure. In 

comparison to that, the improved RD-optimized D3DMC performs similar to AFX IC at 

bitrates above 10 kbit/s and even better below. The improvement of the coder in comparison 

to the fixed version for low-resolution meshes mainly comes from the choice between 

different clustering modes, where a larger partition of the mesh is directly differentially 

coded, such that the tree structure for subdivision description is reduced. Since the RD-

optimized coder always performs equal or better than any of the other two, the additionally 

required spatial structure and mode selection information could be compensated. 

As an example, an analysis of the incremental coding gain for two intermediate coder 

implementation stages from Fixed D3DMC to the RD-optimized version is shown in Fig. 10. 

The first stage adds the RD-optimization, while the second stage adds Direct Coding as 

second prediction mode on top of it. Finally, Mean Replacement as third prediction mode is 

added, yielding the Full RD-optimized version. 
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Fig. 10: Distortion DA over bit rate for Fixed and RD-optimized D3DMC and intermediate steps: 

RD-optimized with Trilinear Interpolation mode (TI) and RD-optimized with Trilinear Interpolation and 

Direct Coding modes, L1Humanoid_L3, 46 key meshes, 498 vertices. 

 

Starting from the right curve for Fixed D3DMC in Fig. 10, the RD-optimization adds about 

25% of the total coding gain. Both coder versions only use Trilinear Interpolation as 

prediction mode. The largest percentage of 60% of the total coding gain is achieved, if Direct 

Coding as second prediction mode is included. Including Mean Replacement as the third 

prediction mode leads to the final RD-optimized version of D3DMC and adds the last 15% of 

the coding gain. 

In the second example at medium mesh resolution of 1940 vertices, the RD-optimized coder 

performs again better than the fixed version. Improvements are also obtained at higher data 

rates and lower distortion, where the fixed coder performed slightly worse above 55kBits/s 

than the standard AFX IC. Here, the RD-optimized D3DMC mainly codes the differential 

mesh motion vectors directly, thus omitting again a rather large and detailed subdivision 

structure. Both methods perform better at lower data rates, since here both D3DMC versions 

really benefit from the spatial clustering in combination with trilinear interpolation or mean 

replacement, where large spatial octree cells of differential motion vectors are coded by 8, 

respectively 1 substitution vector(s). 
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Fig. 11: Distortion DA over bit rate for Fixed and RD-optimized D3DMC and AFX IC, L2Humanoid_L3, 

46 key meshes, 1940 vertices. 

 

In the third case for highest mesh resolution of 7646, the coding gain of both D3DMC 

versions against AFX IC becomes even larger, as even more motion vectors with similar 

statistical properties can be clustered together and coded by very few substitution vectors. 

Here, the fixed D3DMC, which always uses trilinear interpolation as spatial clustering, 

performs worse than the standard AFX IC for higher data rates. The RD-optimized D3DMC 

uses mainly direct coding, similar to AFX IC, as shown in the mode selection analysis above. 

Therefore, the fixed coder requires a very detailed spatial clustering and therefore a higher 

number of substitution vectors from the trilinear interpolation to be coded. Additionally, this 

detailed subdivision structure information needs to be coded, which contributes considerably 

to the bit stream. On the other hand, this structure information is reduced considerably for the 

RD-optimized D3DMC, due to the direct coding of large spatial areas.  
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Fig. 12: Distortion DA over bit rate for Fixed and RD-optimized D3DMC and AFX IC, L3Humanoid_L3, 

46 key meshes, 7646 vertices. 

 

Beside the RD-curves in the figures above, a visual example is shown in Fig. 13 (a) and (b) 

for two different resolutions at lower data rates to visualize the effects of clustering in these 

data ranges.  

           
Fig. 13: Visual mesh reconstruction for 2 different resolutions, using the “Mesh”-Tool [3]: Original Mesh 

and reconstruction results for AFX-IC and D3DMC.  
(a): 1940 vertices, AFX IC: 60.1 kBit/s, D3DMC: 62.7 kBit/s,  
(b): 7646 vertices, AFX IC: 128.1 kBit/s, D3DMC: 86.4 kBit/s 

 

On the left of each figure, the original mesh geometry is shown, followed by the 

reconstruction results for AFX IC and D3DMC. Here, the “Mesh”-Tool from [3] was used, 

and the difference images show the root mean squared error or spatial component of the area 

distortion measure to visualize the reconstruction error at a certain time instance. Both error 

images have been adapted to the same error scale to better highlight the differences between 



the reconstruction methods. The lighter the color in the difference images, the larger is the 

reconstruction error. The scales are shown to the left of each error image and additionally 

include the error histograms. For the AFX IC reconstructed images, the mesh surface is rather 

distorted due to coarse quantization and the error histograms show a large error distribution. 

In contrast, D3DMC only has small reconstruction errors, and also a small error distribution 

at very small values. Here, the spatial clustering of D3DMC clearly outperforms a plain direct 

coding approach as used in AFX IC. Therefore, the difference between the two approaches 

becomes even larger for the higher resolution mesh sequence in Fig. 13 (b), where the data 

rate for D3DMC is only 2/3 of AFX IC, compared to equal bit rates in Fig. 13 (a). 

Overall, the proposed optimized D3DMC approach outperforms fixed D3DMC as well as 

AFX IC. The main improvements against the fixed version are in the area of high-quality 

coding at higher data rates, where the fixed version had to allocate a rather large portion of 

the total bit rate for the subdivision structure. The overall better performance of the RD-

optimized D3DMC comes from the combination and optimization of coding technology from 

both, fixed D3DMC as well as from AFX-IC. While fixed D3DMC only uses spatial 

clustering with trilinear interpolation, AFX IC is purely based on arithmetic coding of 

differential vectors. These modes are all included in the RD-optimized D3DMC, such that the 

improved coding results are not surprising. 

 

4 Conclusions 
In this paper we have presented a coding structure for dynamic mesh compression that 

utilizes spatial as well as temporal statistical dependencies of the mesh motion or differential 

vectors. Based on a statistical analysis of the spatial and temporal differential vector 

distribution, we introduced a basic DPCM coding structure similar to state-of-the-art hybrid 

2D video coders. For exploiting the spatial dependencies, we introduced a spatial octree 

subdivision scheme together with different prediction modes: clustering by trilinear 

interpolation and mean replacement, where a number of similar adjacent motion vectors are 

represented by 8 respectively 1 substitution vector(s). Additionally, a direct coding mode is 

applied in cases of dissimilar vectors. The mode selection as well as subdivision structure is 

controlled by an RD-optimization to ensure that the best RD coding decision is taken for a 



broad range of bit rates, respectively reconstruction qualities. Here, the prediction mode with 

minimal costs is selected, including all possible spatial subdivisions of the mesh sequence, 

starting from the smallest cell size and appropriate prediction mode up to the global bounding 

cube with the entire set of differential vectors.  

The obtained results show that the RD-optimized D3DMC coder always performs superior in 

comparison to the fixed version, where spatial subdivision is controlled by a global error 

value, and AFX IC as the current standard for dynamic mesh compression. AFX IC only 

applies arithmetic coding to the differential vectors, which is equivalent to direct mode 

selection for the entire set of vectors. Although fixed D3DMC already performs better than 

AFX IC on average, there are still losses for very high data rates as well as for very low mesh 

resolutions due to the additional partitioning information that needs to be transmitted. These 

problems are solved by using different prediction modes and thus combining the advantages 

of both coders into one single design. 

Future work will include further performance optimization through adding or replacing 

prediction modes. Moreover, since the mode selection results as found in our experiments 

indicate a certain pattern for high/low resolution meshes as well as high/low reconstruction 

quality, a preprocessing analysis about the mesh sequence characteristics might indicate, 

which restrictions could be imposed onto the RD-optimized D3DMC coder, in order to speed 

up processing. Additional work is also required for the first mesh or I mesh of a group of 

meshes, which still uses 3DMC. Here, further improvements in Intra mesh compression could 

lead to better overall coding results. 
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