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Abstract— Image-based rendering has been proposed as a way
of enabling interactive photorealistic viewing of objects and
scenes without the complexity of traditional computer graphics
rendering techniques. Image-based rendering, however, relies on
a large amount of image data to achieve photorealistic quality
and freedom in viewing directions and position. This poses several
challenges for remote viewing of these data sets over a network,
the first of which is efficient compression of the image data.
When streaming this data to a remote user who is interactively
viewing the light field, random access to images also turns
out to be an important consideration. With conventional light
field coding techniques, there is typically a trade-off between
random access and compression efficiency. Recently, a new
encoding scheme using multiple representations based on SP-
frames from video coding has been proposed. This new scheme
provides both good random access and compression efficiency.
In this paper, we propose a method for doing rate-distortion
optimized streaming of light fields that have been encoded with
multiple representations. We demonstrate that using multiple
representations in a streaming scenario can provide better rate-
distortion performance to the remote user.

I. I NTRODUCTION

3-D content is now commonplace on the Internet, but
most content is limited to data sets with few images and
limited mobility around the scene or object. Remote interactive
viewing of high-quality, photo-realistic3-D objects and scenes
can enable new applications in virtual reality, gaming, virtual
museums and e-commerce.

Image-based rendering has been proposed for interactive
applications as an alternative to traditional graphics rendering
techniques that are computationally complex. Novel views can
be computed by simply re-sampling acquired image data, and
using a geometry model if available. In this work, we consider
a image-based rendering data set called alight field.

A light field [1], [2] is an image data set, that represents
the outgoing radiance from a particular scene or object, at all
points in3-D space and in all directions. This4-D data set is
often parameterized as a2-D array of images. In this paper, we
use a2-D hemispherical arrangement of cameras surrounding
the object of interest in the light field.

Because of the large amount of image data, light fields
must be efficiently represented. The most efficient compression
techniques use disparity compensation, which utilizes geome-
try information to predict one image from one or more other
images. This technique is similar to motion-compensation in
video that utilizes motion information to predict one frame

from other frames. In our work, we consider a closed-loop
prediction-based light field coder that uses disparity compen-
sation with a geometry model [3]–[5].

Most work has looked at the storage or download transmis-
sion scenario. An interesting viewing scenario is one where
light field images are streamed to a user who interacts with
the 3-D object or scene. The key problem here is to select
which images to send or re-transmit, based on what the user
is looking at, the network conditions, knowledges of what has
already been sent and received, and the importance of each
image. In [6], we describe a rate-distortion optimized packet
scheduling framework for the streaming of compressed light
fields, that attempts to maximize the rendered image quality
for the user with a rate constraint.

The prediction structure used for encoding light fields can
significantly affect the streaming performance. Conventional
light field compression algorithms use prediction to reduce the
size of each image, but with an increases in the random access
cost. For streaming, random access to images is critical, as will
be shown in Section III. In [7], we propose a new encoding
method using multiple representations that incorporates ran-
dom access capabilities and predictive coding efficiency. In the
current paper, we propose a method for doing rate-distortion
optimized packet scheduling for light fields that are encoded
with multiple representations.

The outline of the paper is as follows. In Section II, we
review the framework for rate-distortion optimized streaming
of light fields. We compare the performance of streaming
independently encoded light field images versus a hierarchical
predictive encoding of the images in Section III. In Section
IV, we describe our approach for encoding light fields images
using multiple representations. We propose a method for rate-
distortion optimized streaming of light fields with multiple
representations in Section V. Finally, in Section VI, we present
our experimental results.

II. RATE-DISTORTION OPTIMIZED STREAMING

OF LIGHT FIELDS

In this section, we review our framework for rate-distortion
optimized streaming of compressed light fields [6]. This work
is based on earlier work on packet scheduling for audio and
video streaming [8], [9].

Our light field coder uses prediction between images to
encode the light field images. A data unit considered for



transmission to the remote user contains the information for a
particular image. If that image is predicted from other images,
then the data unit is dependent on other data units to be
correctly decoded. In [8], [9], this dependency is captured by
an acylic directed graph.

The goal in packet scheduling is to determine at what times
to send and potentially retransmit a data unit in order to
minimize the distortion that the remote user experiences given
some rate constraint over the network. Mathematically, we can
describe this as minimizing the function

J(π) = D(π) + λR(π), (1)

whereJ is the Lagrangian cost,D is the distortion the user
experiences,R is the rate over the network, andλ is the
Lagragian trade-off parameter.π represents the transmission
policy, which indicates the schedule of transmissions of each
data unit. We assume that these transmissions occur at fixed
intervals, such every100ms, as in our case.

The challenge in performing this minimization consists of
estimating the distortionD given our policy and the network
conditions, and optimizing over the large parameter space of
policies π. The latter problem is addressed in [8], [9] by
iterative minimization over the policies of each data unit in
turn, while holding the policies of the other data units constant.

Estimating the distortion poses special challenges for light
field streaming, detailed in [6]. Most obvious is that the distor-
tion depends on the user’s viewing trajectory. The importance
of a particular image depends upon where the user is currently
looking. We take the viewing trajectory into account explictly
when calculating the distortion contribution for a set of data
units.

In [8], [9], an additive distortion model was used. For a
light field, the importance of a particular image highly depends
on whether or not highly-correlated neighboring images are
available at the receiver. We show in [6] how to consider
various combinations of images in our distortion calculation
in a tractable manner.

Finally, with light field rendering, an image or data unit
may be required for more than one view. Thus, a data unit
may be required at several time instances, corresponding to
the views for which it is needed. The time instance by which
a data unit must arrive to be decoded and rendered is called
the decoding deadline. In [6], we generalize the original rate-
distortion optimized streaming framework to deal with the
multiple deadlines that exist in light field streaming.

We showed in [6] that the rate-distortion optimized stream-
ing framework can provide signficantly better performance
over a simple heuristic streaming approach. In the next section,
we see the effect of the encoding prediction structure on the
streaming performance.

III. R ANDOM ACCESS AND STREAMING PERFORMANCE

In this section, we compare the streaming performance
for two different light field encoding prediction dependency
structures. The first prediction structure “INTRA” uses inde-
pendently encoded images with no prediction between images.

This prediction structure has very good random access to
images, but the compressed size of each image is typically
larger than when using prediction between images. The second
scheme uses a hierarchical prediction structure, where images
are categorized into different levels. “Level 0” images are
independently encoded, “Level 1” images are predicted from
the nearest “Level 0” images, and so on. Here the size of each
compressed image is smaller, but random access to the images
is limited because several images may need to be transmitted
and decoded to decode a particular image.

We perform rate-distortion optimized streaming using two
light field data sets. TheBust light field contains339 images,
each of resolution768× 480, and theHorsedata set contains
110 images, each of resolution512×512. Both light field use
a hemispherical camera arrangement, and have corresponding
geometry models to be used for rendering and compression.

We perform rate-distortion optimized streaming for various
viewing trajectories of the two data sets. In the following
results, we consider a set of10 random viewing trajectories,
each consisting of25 views. In these random trajectories, since
the views are spaced close together, we call these trajectories
dense.

We assume a network that independently loses data units
with a probability of 0.1%. With data units that it does not
lose, it delays them according to a gamma distribution with a
mean of50ms and standard deviation of23ms.

In our streaming system, we have some latency between
the user requesting a view and when it is rendered on their
screen. We assume that the server has200ms between when
it knows a view is needed, and when the images for that
view must arrive at the remote client. The view trajectory
could be transmitted from the user to the server and known
perfectly, adding additional latency to the system, or could
be predicted from past user behavior. We assume that we
know the desired view perfectly at the server200ms before
its decoding deadline.

In our system, we consider transmissions every100ms. The
200ms delay provides the server2 transmission opportunities
in which to send the related images. Described another way,
for a given transmission opportunity, the server considers2
views when computing transmission policies. We call this our
view window.

Figure 1 compares the rate-distortion optimized streaming
performance of the INTRA and hierarchical coding for the
Bust and Horse data sets, and thedenseviewing trajectories.
The results are averaged over the10 random trajectories.

Consider the results for theBustdata set, shown in Figure
1(a). The x-axis shows the transmitted bit-rate in kbps, and
the y-axis represents the image quality in terms of dB of
PSNR. We see that for a large range of bit-rates, independent
coding outperforms hierarchical prediction. We see even more
impressive differences for theHorse light field, shown in
Figure 1(b).

When encoding the entire light field data set, hierarchical
prediction is a much more efficient strategy for encoding the
data set. Despite that fact, in a streaming scenario, for these
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Fig. 1. Rate-distortion optimized streaming results for theBustandHorselight fields, averaged over10 densetrajectories. INTRA coding results in streaming
performance that is better than or is comparable to Hierarchical coding.

data sets, it appears that random access is as important or more
important, and independent coding is the more efficient strat-
egy. In next section, we will describe an encoding scheme with
the same random access capabilties of independent coding, but
using prediction to give superior compression performance.

IV. M ULTIPLE REPRESENTATIONSENCODING

Conventional coding of light field images uses a fixed
prediction structure where one image is independently coded
or predicted from other images. With this fixed structure, in
order to communicate an image that is predicted, the images
used for prediction must also be transmitted to the decoder.

An alternative to this would be to predict based on what
is already available at the decoder. For different combinations
of prediction images available at the decoder, we could have
different image representations that we would store at the
server and send as appropriate. The problem with thismul-
tiple representationsapproach using conventional image and
video coding techniques is that, due to quantization, different
representations will lead to different reconstructed images.
This prediction mismatch can propagate during subsequent
prediction steps.

In [10], the authors solve the mismatch problem using coset
codes. We present a simpler solution to this problem in [7],
where we eliminate prediction mismatch by using standard
video coding concepts. Our approach, in addition, does not
have the decoding complexity of coset codes. We summarize
our work in this section.

In conventional predictive coding, the prediction signal is
subtracted from the original image giving the residual signal,
which is then transformed, quantized and entropy coded. Due
to the quantization of the transformed residual image, the

reconstructed image obtained for different predictions are not,
in general, identical.

SP-frames have been used in video coding to provide
identical image reconstruction for different prediction signals
[11]. Figure 2 shows a diagram of the encoder and decoder
that we implement, based on SP-frames. In the encoder, the
original image is first transformed and quantized, as is the
prediction image. These two sets of quantization indices are
then subtracted from one another to give a set of indices that
are entropy coded.

The decoder reverses this signal path by decoding the bit-
stream and adding back the quantization indices from the
prediction image. Since we have identical prediction signals at
both the encoder and decoder, the output of the summation is
exactly the quantized coefficients of the original image, that
is independent of the prediction signal used. Thus, even if
we use different prediction images, we obtain identical image
reconstructions.

In the context of SP-frames, the approach we have just
described represents secondary SP-frames. We also use an
INTRA coded image representation which we consider our
primary SP-frame. The INTRA coded image uses a quantizer
which is identical to that used for all the other representations
for the image.

In our light field coding application, for each image we
considerK different prediction images. These, for instance,
could be the prediction image from each of theK neighbors of
this image. Or, they could include combinations of images to
be used for prediction. In total we haveK+1 representations,
corresponding to theK prediction images, and the INTRA
representation of that image. The image reconstructions from
theK prediction signals will be identical to that of the INTRA
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Fig. 2. Encoding and decoding of images with no prediction mismatch Regardless of the prediction signal used, the reconstructed image will be identical
to that of INTRA coding. This system is equivalent to secondary SP-frames with INTRA-coded primary SP-frames.

reconstructed image.
The representations for each image are pre-encoded and

stored on the server. During interactive streaming, the appro-
priate image representation must be sent to the remote viewer.
In the next section, we propose a method of selecting in a
rate-distortion optimized fashion, the image representations to
be sent.

V. STREAMING MULTIPLE REPRESENTATIONS

When streaming with multiple representations, we now have
a large number of data units to be considered for transmission.
If we have a large number of representations for each image,
this can quickly become computationally inefficient or even
intractable.

We propose a simple two-step procedure. First, we use rate-
distortion optimized packet scheduling using only the INTRA
coded representations to select the images. Second, for the
selected image, we transmit the representation with the lowest
bit-rate that can be decoded.

We start by scheduling using only the INTRA represen-
tations since there are no prediction dependencies with this
scheduling, and this is a special case of streaming with
hierarchical prediction encoded images. Since we know that
each representation of an image will result in identical im-
age reconstructions, the estimated distortion using the other
representations will be the same as that for the INTRA
representation. The different rates of the other representations
are not taken into account, however, which may result in a
suboptimal solution.

Once we know which images to send, we then select the
appropriate representation for each image. We do this in a
conservative manner by only considering representations that
we know can be decoded at the receiver. We know which
images have been acknowledged, and therefore which images
can be used for prediction, and which representations are
known to be decodable.

Of these representations, which always includes the INTRA
representation, we select the one with the smallest rate. Using
such a scheme guarantees that we do no worse than INTRA

coding since we have exactly the same image reconstruction
with no greater rate. The next section details the experimental
results from using multiple representations for streaming.

VI. EXPERIMENTAL RESULTS

We consider the same experimental set-up as before, with
the Bust and Horse data sets. We perform rate-distortion
optimized streaming for various viewing trajectories of the
two data sets. For each data set, we consider two sets of
10 random viewing trajectories, each consisting of25 views.
The first set of trajectories, which we namedenseconsists
of views that are closely spaced relative to one another. The
second set of trajectories, which we namewide consists of
views that are widely spaced relative to each other. These two
types of trajectories can be considered the two extremes of
viewing behaviour: slowly examining an object by rotating it,
or moving around the object rapidly to get a quick overall
impression of it. The network parameters are also identical to
those before. We useK = 31 neighboring images, or a total
of 32 representations for each image.

We compare the rate-distortion streaming performance using
multiple representations versus INTRA coding and hierar-
chical coding in Figures 3 and 4. Figure 3(a) shows the
comparison for theBustlight field anddensetrajectories. Here,
we see that streaming using multiple representations encoding
can improve image quality by up to2 dB over INTRA coding,
or reduce the bit-rate by15%. Forwide trajectories, shown in
Figure 3(b), we see smaller improvements since we have to
predict from more distant images with less correlation.

Figures 4(a) and 4(b) show the streaming performance for
the Horse light field, with similar results as that ofBust. We
see an improvement of up to2 dB in image quality at the same
bit-rate, or a reduction of up to10% in bit-rate at the same
image quality. Larger improvements are seen for thedense
trajectories than for thewide trajectories.

VII. C ONCLUSION

For interactive streaming of light fields, random access to
images is critical to the rate-distortion performance of the
system. A recently proposedmultiple representationslight
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Fig. 3. Rate-distortion optimized streaming results for theBust light field, averaged over10 trajectories. Multiple representations coding has superior
streaming performance compared to INTRA coding. There are improvements of up to2dB in image quality at the same bit-rate, or a bit-rate reduction of up
to 15% at the same image quality.
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Fig. 4. Rate-distortion optimized streaming results for theHorse light field, averaged over10 trajectories. Multiple representations coding has superior
streaming performance compared to INTRA coding. There are improvements of up to1.5dB in image quality at the same bit-rate, or a bit-rate reduction of
up to 10% at the same image quality.



field encoding scheme provides random access to images while
more efficiently encoding the light by using prediction. We
presented a method for rate-distortion optimized streaming
of a light field encoded using multiple representations. This
method used a simple two-step approach where the image to be
transmitted is first selected, then the appropriate representation
of that image chosen. Using this approach, we showed superior
performance over INTRA coded light field images. The image
quality, in terms of PSNR, was improved by up to1 − 2 dB
for the same bit-rate, or the bit-rate was reduced by up to
10 − 15%, at the same image quality, for the data sets and
trajectories we studied.
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